• ISSN 2096-8957
  • CN 10-1702/P
Volume 52 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Zheng Y C, Tian Y. 2021. Seismic wavefields in a planet and their influence on the satellite orbit. Reviews of Geophysics and Planetary Physics, 52(2): 205-210
Citation: Zheng Y C, Tian Y. 2021. Seismic wavefields in a planet and their influence on the satellite orbit. Reviews of Geophysics and Planetary Physics, 52(2): 205-210

Seismic wavefields in a planet and their influence on the satellite orbit

doi: 10.19975/j.dqyxx.2020-014
  • Received Date: 2020-08-26
  • Accepted Date: 2020-09-23
  • Available Online: 2021-09-13
  • Publish Date: 2021-03-01
  • Seismology can play an important role in both astronomy and planetary science. We will mainly discuss the recently proposed Tidal-Seismic Resonance (TSR) effect and its role on the orbital evolution of the moon around a planet. For a planet-moon system, TSR is expected when a tidal force frequency matches a free-oscillation frequency of the planet. TSR can excite large-amplitude seismic waves that can change the shape of the planet, which in turn, exerts a negative torque on the moon to cause it to fall rapidly toward the planet. We have developed a 3-D seismic wavefield modeling package, AstroSeis, to numerically study the moon's orbit change. We further speculate that TSR might be an important mechanism to accelerate the planet accretion process in the early history of star formation. Because TSR significantly depends on the seismic Q value and S-wave velocity of the planet when its size was still small, future work studying the seismic wave velocity and Q of some asteroids in micro-gravity environments is important to reveal the evolution history of planets and the solar system.


  • loading
  • [1]
    Asphaug E, Moore J M, Morrison D, et al. 1996. Mechanical and geological effects of impact cratering on Ida[J]. Icarus, 120(1): 158-184. doi: 10.1006/icar.1996.0043
    Asphaug E. 2009. Growth and evolution of asteroids[J]. Annual Review of Earth and Planetary Sciences, 37: 413-448. doi: 10.1146/annurev.earth.36.031207.124214
    Asphaug E. 2020. Interiors of small bodies and moons[J]. Nature Communications, 11(1): 1-3. doi: 10.1038/s41467-019-13993-7
    Bills B G, Neumann G A, Smith D E, et al. 2005. Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos[J]. Journal of Geophysical Research-Planets, 110(E7): E07004. doi: 10.1029/2004JE002376
    Black B A, Mittal T. 2015. The demise of Phobos and development of a Martian ring system[J]. Nature Geoscience, 8(12): 913-917. doi: 10.1038/ngeo2583
    Chaillat S, Bonnet M, Semblat J -F. 2009. A new fast multi-domain BEM to model seismic wave propagation and amplification in 3-D geological structures[J]. Geophysical Journal International, 177(2): 509-531. doi: 10.1111/j.1365-246X.2008.04041.x
    Courville S W, Sava P C. 2020. Speckle noise attenuation in orbital laser vibrometer seismology[J]. Acta Astronautica, 172(2): 16-32.
    Darwin G H. 1898. The evolution of satellites[J]. The Atlantic Monthly, 81: 444-455.
    DellaGiustina D N, Emery J P, et al. 2019. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis[J]. Nature Astronomy, 3(4): 341-351. doi: 10.1038/s41550-019-0731-1
    Fuller J. 2014. Saturn ring seismology: Evidence for stable stratification in the deep interior of Saturn[J]. Icarus, 242: 283-296. doi: 10.1016/j.icarus.2014.08.006
    Fuller J, Luan J, Quataert E. 2016. Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems[J]. Monthly Notices of the Royal Astronomical Society, 458(4): 3867-3879. doi: 10.1093/mnras/stw609
    Ge Z, Fu L-Y, Wu R.-S. 2005. P-SV wave-field connection technique for regional wave propagation simulation[J]. Bulletin of the Seismological Society of America, 95(4): 1375-1386. doi: 10.1785/0120040173
    Ge Z, Chen X. 2008. An efficient approach for simulating wave propagation with the Boundary Element Method in multilayered media with irregular interfaces[J]. Bulletin of the Seismological Society of America, 98(6): 3007-3016. doi: 10.1785/0120080920
    Hesselbrock A J, Minton D A. 2017. An ongoing satellite–ring cycle of Mars and the origins of Phobos and Deimos[J]. Nature Geoscience, 10: 266-269. doi: 10.1038/ngeo2916
    Lainey V, Casajus L G, Fuller J, et al. 2020. Resonance locking in giant planets indicated by the rapid orbital expansion of Titan[J]. Nature Astronomy, https://doi.org/10.1038/s41550-020-1120-5.
    Lognonné P, Giardini D, Banerdt B, et al. 2000. The NetLander very broad band seismometer[J]. Planetary and Space Science, 48(12-14): 1289-1302. doi: 10.1016/S0032-0633(00)00110-0
    Mankovich C, Marley M S, Fortney J J, et al. 2019. Cassini ring seismology as a probe of Saturn's interior I: Rigid rotation[J]. The Astrophysical Journal, 871(1): 1. doi: 10.3847/1538-4357/aaf798
    Murdoch N, Hempel S, Pou L, et al. 2017. Probing the internal structure of the asteriod Didymoon with a passive seismic investigation[J]. Planetary Space Science, 144: 89-105. doi: 10.1016/j.pss.2017.05.005
    Quillen A C, Zhao Y, Chen Y, et al. 2019. Impact excitation of a seismic pulse and vibrational normal modes on asteroid Bennu and associated slumping of regolith[J]. Icarus, 319: 312-333. doi: 10.1016/j.icarus.2018.09.032
    Sánchez-Sesma F J, Campillo M. 1991. Diffraction of P, SV, and Rayleigh waves by topographic features: A boundary integral formulation[J]. Bulletin of the Seismological Society of America, 81(6): 2234-2253.
    Sava P, Asphaug E. 2019. Seismology on small planetary bodies by orbital laser Doppler vibrometry[J]. Advances in Space Research, 64(2): 527-544. doi: 10.1016/j.asr.2019.04.017
    Stamos A, Beskos D. 1996. 3-D seismic response analysis of long lined tunnels in half-space[J]. Soil Dynamics and Earthquake Engineering, 15(2): 111-118. doi: 10.1016/0267-7261(95)00025-9
    Tian Y, Zheng Y. 2019. Rapid falling of an orbiting moon to its parent planet due to tidal-seismic resonance[J]. Planetary and Space Science: 104796.
    Tian Y, Zheng Y. 2020. AstroSeis – A 3-D Boundary element modeling code for seismic wavefields in irregular asteroids and bodies[J]. Seismological Research Letters (in press).
    Willner K, Shi X, Oberst J. 2014. Phobos' shape and topography models[J]. Planetary and Space Science, 102: 51-59. doi: 10.1016/j.pss.2013.12.006
    Zheng Y, Malallah A, Fehler M, Hu H. 2016. 2D full-waveform modeling of seismic waves in layered karstic media[J]. Geophysics, 81(2): T25-T34. doi: 10.1190/geo2015-0307.1
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (709) PDF downloads(63) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint