• ISSN 2097-1893
  • CN 10-1855/P
于向前,王玲华,王永福,施伟红,宗秋刚,杨芯,王游龙,叶雨光,陈鸿飞,邹鸿. 2024. 行星际超低噪声三维能量粒子谱仪设计. 地球与行星物理论评(中英文),55(3):308-316. doi: 10.19975/j.dqyxx.2023-035
引用本文: 于向前,王玲华,王永福,施伟红,宗秋刚,杨芯,王游龙,叶雨光,陈鸿飞,邹鸿. 2024. 行星际超低噪声三维能量粒子谱仪设计. 地球与行星物理论评(中英文),55(3):308-316. doi: 10.19975/j.dqyxx.2023-035
Yu X Q, Wang L H, Wang Y F, Shi W H, Zong Q G, Yang X, Wang Y L, Ye Y G, Chen H F, Zou H. 2024. Design of an interplanetary ultralow-noise three-dimensional energetic particle spectrometer. Reviews of Geophysics and Planetary Physics, 55(3): 308-316 (in Chinese). doi: 10.19975/j.dqyxx.2023-035
Citation: Yu X Q, Wang L H, Wang Y F, Shi W H, Zong Q G, Yang X, Wang Y L, Ye Y G, Chen H F, Zou H. 2024. Design of an interplanetary ultralow-noise three-dimensional energetic particle spectrometer. Reviews of Geophysics and Planetary Physics, 55(3): 308-316 (in Chinese). doi: 10.19975/j.dqyxx.2023-035

行星际超低噪声三维能量粒子谱仪设计

Design of an interplanetary ultralow-noise three-dimensional energetic particle spectrometer

  • 摘要: 太阳系能量粒子的起源和加速一直是空间物理学的重要前沿课题之一. 在行星际空间中观测到的太阳系能量粒子主要分为两类:一类是持续存在的“太阳风能量粒子”,另一类是间歇性的“太阳能量粒子事件”. 受限于以往行星际粒子探测器的灵敏度还不足够高,人类迄今仍未洞悉这些能量粒子起源和加速的物理过程与本质. 本文设计了技术指标均为国际领先水平的行星际超低噪声三维能量粒子谱仪,采用双端望远镜结构(一端利用薄膜阻挡质子技术实现高灵敏电子探测,另一端利用磁场偏转电子技术实现高灵敏质子探测),结合多层、多像素半导体探测器阵列和覆盖近4π立体角的大视场设计,实现对行星际空间中20~1000 keV电子和25~12000 keV质子的三维分布进行高时间分辨率、高角度分辨率和高能量分辨率探测,用以揭示太阳系能量粒子起源和加速的机理,满足我国行星际探测和即将开展的深空探测的迫切需求.

     

    Abstract: The origin and acceleration of solar and heliospheric energetic particles have been prevalent research frontiers in space physics. Solar and heliospheric energetic particles measured in the interplanetary medium (IPM) can be classified into two major groups: continuous "solar wind suprathermal particles" and transient "solar energetic particles". Due to the limited sensitivity of instruments used to investigate energetic particles in the IPM, the origin/acceleration processes of heliospheric energetic particles remain poorly understood. In this study, we designed a new-generation interplanetary ultralow-noise three-dimensional energetic particle spectrometer meeting leading world-class specifications. The spectrometer utilizes a double-ended telescope structure and multi-layer, multi-pixel semiconductor detectors to assess the complete three-dimensional distribution of 20-1000 keV electrons and 25-12000 keV protons in the IPM. The spectrometer integrates the following cutting-edge technologies: (1) utilizing anti-coincidence correlations between adjacent detectors with narrow interlayer spacing to minimize the noise generated by cosmic rays and other high-energy penetrating particles in the semiconductor detectors; (2) a double-ended open telescope structure design, with thin foil covering to stop protons for high-sensitivity electron detection in one direction, magnets to sweep away electrons for high-sensitivity proton detection in the opposite direction, multi-layer detectors for dE/dX analysis, and high-precision discrimination of electron, proton, and helium ion types; (3) a large-area silicon semiconductor detector, combined with a large field of view covering nearly 4π solid angles, to improve the geometric factor and temporal resolution of the spectrometer; (4) four layers of a 5-pixel silicon semiconductor detector array to achieve high angular resolution; and (5) low-noise multi-channel Application Specific Integrated Circuit (ASIC) technology to achieve precise energy level observation and high energy resolution. The spectrometer will provide key measurements that reveal the physical nature of the origin/acceleration processes of solar and heliospheric energetic particles, which will prove beneficial for the upcoming interplanetary and deep space explorations by China.

     

/

返回文章
返回