Review of rock-physics studies on natural gas hydrate-bearing sediment attenuation
-
摘要: 衰减是储层的重要基础物性,正确认识天然气水合物储层的吸收衰减机制对于准确预测水合物饱和度具有重要意义. 天然气水合物以不同形态赋存在粗粒砂岩或细粒黏土质沉积物中,而这两种水合物储层对应的衰减特征存在显著差异. 为了阐明其内部的衰减机理,近年来学者们提出了多种岩石物理模型. 其中,砂岩水合物层的衰减模型大致有两类,其中一类以三相Biot理论为基础,模型中包含多种描述水合物颗粒与砂岩颗粒间接触作用的衰减机制,如颗粒胶结、摩擦、微裂隙导致的喷射流等. 这类模型可以较合理地再现实际声波测井资料中衰减随水合物饱和度增加而增加的情况,但在地震频段无法产生有效的衰减强度. 另一类模型的衰减主要以等效颗粒模型所描述的水合物内部孔隙水与自由孔隙水之间的交换作用为主导,其能够解释砂岩水合物在地震频段的衰减现象. 黏土质沉积物中的水合物衰减研究则是首先基于等效颗粒模型模拟黏土矿物附着水的衰减机制建立背景沉积物的衰减模型;接着在其基础上通过量化纯水合物的物性和水合物赋存对背景沉积物性质的改变来完成建模. 该模型也已成功应用于地震频段的反射地震资料中. 以上衰减模型的提出使水合物的衰减研究取得了实质性进展,使研究人员能够定量化分析观测资料中的衰减现象,并通过衰减约束水合物饱和度. 然而这些模型的应用仍存在不同程度的限制:研究发现砂岩水合物储层的衰减模型无法匹配实际资料中观测到的横波衰减强度;以及黏土质水合物储层衰减模型缺少对裂隙参数的表征,在声波频段的模型结果有待验证. 为了提升模型的预测精度和应用范围,未来需对水合物赋存形态与衰减的关系加深理解,结合更多实际资料进一步深入细致地开展岩石物理研究.Abstract: Attenuation is an essential reservoir property, and understanding its mechanism in gas hydrate-bearing sediments is important for predicting gas hydrate saturation. Natural gas hydrates mainly accumulate in coarse-grained sands or fine-grained clays with different morphologies, and the attenuation characteristics of these gas hydrate-bearing sediments are inconsistent. Many rock-physics models have been proposed in recent years to elucidate the attenuation mechanisms of gas hydrate occurrence. There are two types of attenuation models for gas hydrates in sands. One of these models is based on the three-phase Biot theory and contains multiple mechanisms that describe the contact effects between hydrate and sediment grains, such as grain cementation and squirt flows caused by microcracks. This model can reasonably reproduce the enhanced attenuation observed with increasing hydrate saturation in sonic-logging data. Attenuation described in the effective grain model is dominated by the viscous flow between the water in hydrate pores and free water. These types of models agree with the seismic attenuation observed in gas hydrates in sands. Moreover, the attenuation model of gas hydrates in clay is formulated by first establishing an attenuation model for background sediments, which employs the effective grain model to characterize attenuation in clay minerals; then, the properties of pure gas hydrate and the effects of hydrate occurrence on sediments are quantified. This model has also been successfully applied to seismic reflection data in the seismic frequency band. The above models have achieved significant progress in attenuation studies on gas hydrate-bearing sediments, and they have aided the quantitative interpretation of observed attenuation in field data and attenuation-related constraints for gas hydrate saturation. However, the application of these models is limited to certain extents: the attenuation predicted by the gas hydrate-bearing sands model failed to match that observed in the field data. Additionally, the gas hydrate-bearing clays model does not consider fracture shapes, and its performance has not been verified at the ultrasonic frequency band. To improve the accuracy and applicability of these models, the relationship between hydrate morphology and attenuation must be elucidated, and further rock-physics studies based on field data must be conducted.
-
Key words:
- natural gas hydrate /
- attenuation property /
- rock physics /
- hydrate morphology
-
图 1 天然气水合物的全球分布图. 图中的红色标记代表确定的水合物赋存区域,黄色圆圈代表存在多种水合物识别标志的赋存区,星号代表仅存在BSR的区域(来源:美国地质调查局)
Figure 1. Global gas hydrate distribution. The red markers in the figure represent the confirmed gas hydrate-bearing areas; yellow circles are possible gas hydrate host areas; and blue stars represent where BSR-only exists (source form: USGS)
图 2 水合物的赋存形态. (a)颗粒胶结;(b)孔隙充填;(c)骨架支撑;(d)水合物堵塞孔隙吼道;(e)毛细管捕获游离气;(f)水合物包裹游离气;(g)裂隙充填(修改自Ecker et al., 1998; 王秀娟等, 2023)
Figure 2. Gas hydrate morphologies. (a) Hydrate cementing grains; (b) Hydrate floating in pores; (c) Hydrate supporting sediment frame; (d) Hydrate blocking pore throat; (e) Pore throat capturing free gas; (f) Hydrate enveloping free gas; (g) Fracture-filling (modified from Ecker et al., 1998; Wang et al., 2023)
图 3 不同模型的纵波衰减结果与加拿大马利克 5L-38井的声波测井数据(修改自Guerin and Goldberg, 2005). 图中的数据点是基于观测数据计算的
$ {Q}^{-1} $ ,不同的曲线代表不同衰减机制的叠加结果. 其中,水合物饱和度是从电阻率测井数据中计算得出的Figure 3. P-wave attenuations predicted via different models and sonic-logging data at the Mallik 5L-38 site (modified from Guerin and Goldberg, 2005). Dots represent
$ {Q}^{-1} $ calculated from observed data, and different types of lines indicate the theoretical$ {Q}^{-1} $ . Gas hydrate saturation was calculated using resistivity well logs图 6 Liu等(2022)模型的理论衰减与印度克里希纳-哥达瓦里盆地地震反射数据实测衰减值的对比. 观测数据共有五组,分别来自不同的地震测线,用误差棒表示. 理论
$ {Q}^{-1} $ 用不同标志表示Figure 6. Comparisons between the attenuations predicted by the Liu et al. (2022) model and those determined from seismic reflection data in the Krishna-Godavari Basin in India. Five groups of field data from different seismic lines are marked using error bars. Theoretical
$ {Q}^{-1} $ values are denoted using different markers表 1 含水合物区域的衰减案例
Table 1. Attenuation measurements in gas hydrate-bearing areas
地区 沉积物类型 数据频段 水合物对衰减的影响 来源 加拿大马利克 砂岩 声波测井 增强 Guerin and Goldberg, 2002, 2005 砂岩 井间地震数据 增强 Bauer et al., 2005 砂岩 垂直地震剖面 增强 Bellefleur et al., 2007 日本南海海槽 砂岩 声波测井 增强 Matsushima, 2005 砂岩 垂直地震剖面 无明显影响 Matsushima, 2006 美国墨西哥湾 砂岩 声波测井 增强 Wang et al., 2017 黏土质沉积物 声波测井 无明显影响 Wang et al., 2017 印度克里希纳-哥达瓦里盆地 黏土质沉积物 反射地震 减弱 Dewangan et al., 2014 黏土质沉积物 反射地震 减弱 Jaiswal et al., 2012 印度科拉拉-康坎盆地 黏土质沉积物 反射地震 减弱 Sain et al., 2009 挪威斯瓦尔巴特群岛 黏土质沉积物 OBS&反射地震 减弱 Rossi et al., 2007; Westbrook et al., 2008 黏土质沉积物 反射地震 减弱 Singhroha et al., 2016 美国布莱克岭 黏土质沉积物 反射地震 无明显影响 Wood et al., 2000 人工样品 砂岩 <400 Hz 增强,随水合物饱和度增加,
衰减先增强后减弱Priest et al., 2006 人工样品 砂岩 50~550 Hz 增强,随水合物饱和度增加,
衰减先增强后减弱Best et al., 2013 -
[1] Anderson D M, Hoekstra E. 1965. Migration of interlamellar water during freezing and thawing of wyoming bentonite[J]. Soil Science Society of America Journal, 29: 498-504. doi: 10.2136/sssaj1965.03615995002900050010x [2] Bauer K, Haberland C, Pratt R, et al. 2005. Ray-based cross-well tomography for p-wave velocity anisotropy and attenuation structure around the mallik 5l-38 gas hydrate production research well[J]. Bulletin of the Geological Survey of Canada, 585: 1-21. [3] Bellefleur G, Riedel M, Brent T, et al. 2007. Implication of seismic attenuation for gas hydrate resource characterization, Mallik, Mackenzie Delta, Canada[J]. Journal of Geophysical Research: Solid Earth, 112: B10311. doi: 10.1029/2007JB004976 [4] Best A I, Priest J A, Clayton R, et al. 2013. The effect of methane hydrate morphology and water saturation on seismic wave attenuation in sand under shallow sub-seafloor conditions[J]. Earth and Planetary Science Letters, 368: 78-87. doi: 10.1016/j.jpgl.2013.02.033 [5] Biot M A. 1956. Theory of propagation of elastic waves in a fluid saturated porous solid[J]. Journal of the Acoustical Society of America, 28: 168-191. doi: 10.1121/1.1908239 [6] Carcione J M, Tinivella U. 2000. Bottom-simulating reflectors: sesimic velocities and AVO effects[J]. Geophysics, 65: 54–67. doi: 10.1190/1.1444725 [7] Carcione J M, Picotti S. 2006. P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties[J]. Geophysics, 71(3): 1-8. [8] Chand S, Minshull T A. 2004. The effect of hydrate content on seismic attenuation: A case study from Mallik 2L-38 well data, MacKenzie Delta, Canada[J]. Geophysical Research Letters, 31: L14609. https://doi: 10.1029/2004GL020292. [9] Chapman M. 2003. Frequency dependent anisotropy due to mesoscale fractures in the presence of equant porosity[J]. Geophysical Prospecting, 51: 369-379. doi: 10.1046/j.1365-2478.2003.00384.x [10] Chapman M. 2009. Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy[J]. Geophysics, 74: D97-D103. doi: 10.1190/1.3204779 [11] Collett T S, Johnson A, Knapp C, Boswell R. 2009. Natural gas hydrates—A review[J]. American Association of Petroleum Geologists Memoir, 89: 146–219. [12] 邓继新, 王尚旭, 杜伟. 2012. 介观尺度孔隙流体流动作用对纵波传播特征的影响研究——以周期性层状孔隙介质为例[J]. 地球物理学报, 55(8): 2716-2727 doi: 10.6038/j.issn.0001-5733.2012.08.024Deng J X, Wang S X, Du W. 2012. A study of the influence of mesoscopic pore fluid flow on the propagation properties of compressional wave—a case of periodic layered porous media[J]. Chinese Journal of Geophysics, 55(8): 2716-2727 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.08.024. [13] Dewangan P, Mandal, R, Jaiswal P, et al. 2014. Estimation of seismic attenuation of gas hydrate bearing sediments from multi-channel seismic data: A case study from Krishna-Godavari offshore basin[J]. Marine and Petroleum Geology, 58: 356-367. doi: 10.1016/j.marpetgeo.2014.05.015 [14] Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms[J]. Geophysics, 58: 524-533. doi: 10.1190/1.1443435 [15] Dutta, N C, Odé H. 1983. Seismic reflections from a gas-water contact[J]. Geophysics, 48(2): 148-162. doi: 10.1190/1.1441454 [16] Ecker C, Dvorkin J, Nur A. 1998. Sediments with gas hydrates: internal structure from seismic AVO[J]. Geophysics, 63: 1659–1669. doi: 10.1190/1.1444462 [17] Ecker C, Dvorkin J, Nur A. 2000. Estimating the amount of gas hydrate and free gas from marine seismic data[J]. Geophysics, 65: 565–573. doi: 10.1190/1.1444752 [18] Guerin G, Goldberg D. 2002. Sonic waveform attenuation in gas hydrate-bearing sediments from the Mallik 2L-38 research well, Mackenzie Delta, Canada[J]. Journal of Geophysical Research: Solid Earth, 107: 2088. doi: 10.1029/2001JB000556 [19] Guerin G, Goldberg D. 2005. Modeling of acoustic wave dissipation in gas hydrate-bearing sediments[J]. Geochemistry, Geophysics, Geosystems, 6: Q07010. [20] Gurevich B, Brajanovski M, Galvin R J, et al. 2010. P-wave dispersion and attenuation in fractured and porous reservoirs-poroelasticity approach[J]. Geophysical Prospecting, 57(2): 225-237. [21] Hashin Z, Shtrikman S. 1963. A variational approach to the theory of the elastic behaviour of multiphase materials[J]. Journal of the Mechanics and Physics of Solids, 11: 127–140. https://doi.org/10.1016/0022-5096(63)90060-7. [22] Helgerud M B. 2001. Wave speeds in gas hydrate and sediments containing gas hydrate: A laboratory and modeling study[D]. Stanford University. Ph. D. Thesis. [23] Holland M, Schultheiss P, Roberts J, et al. 2008. Observed gas hydrate morphologies in marine sediments[C]// Proceedings of the 6th International Conference on Gas Hydrates (ICGH), Vancouver, British Columbia, Canada. [24] 胡洪瑾, 姜文利, 李登华, 等. 2022. “双碳”目标下我国天然气水合物勘查开采发展建议[J]. 中国矿业, 31(4): 1-6. doi:10.12075/j. issn.1004-4051.2022.04.021Hu H J, Jiang W L, Li D H, et al. 2022. Suggestions on natural gas hydrate exploration and development in China under the goal of “carbon peak and neutrality”[J]. China Mining Magazine, 31(4): 1-6 (in Chinese). doi: 10.12075/j.issn.1004-4051.2022.04.021 [25] Hudson J A. 1981. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysical Journal of the Royal Astronomical Society International, 64(1): 133-150. doi: 10.1111/j.1365-246X.1981.tb02662.x [26] Jaiswal P, Dewangan P, Ramprasad T, et al. 2012. Seismic characterization of hydrates in faulted, fine-grained sediments of Krishna-Godavari Basin: Full waveform inversion[J]. Journal of Geophysical Research: Solid Earth, 117: B10305. https://doi.org/10.1029/2012JB009201. [27] Ji A, Zhu T, Marín-Moreno H, Lei X. 2021. How gas-hydrate saturation and morphology control seismic attenuation: A case study from the south Hydrate Ridge[J]. Interpretation, 9 (2): SD27–SD39. https://doi.org/10.1190/INT-2020-0137.1. [28] Kuhs W F, Genov G Y, Goreshnik E, et al. 2004. The impact of porous microstructures of gas hydrates on their macroscopic properties[J]. International Journal of Offshore and Polar Engineering, 14: 305–309. [29] Kuster G T, Toksöz M N. 1974. Velocity and attenuation of seismic waves in two-phase media: Part 1. Theoretical formulations[J]. Geophysics. 39(5): 587–606.https://doi: 10.1190/1.1440450. [30] Leclaire P, Cohen-Tenoudji F, Aguirre-Puente J. 1994. Extension of Biot’s theory of wave propagation to frozen porous media[J]. Journal of the Acoustical Society of America, 96(6): 3753–3768. doi: 10.1121/1.411336 [31] Lee M W, Collett T S. 2009. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India[J]. Journal of Geophysical Research: Solid Earth. 114, B07102. [32] Leurer K C. 1997. Attenuation in fine-grained marine sediments; extension of the Biot-Stoll model by the “effective grain model” (EGM) [J]. Geophysics, 62: 1465-1479. doi: 10.1190/1.1444250 [33] 刘财, 兰慧田, 郭智奇, 等. 2013. 基于改进BISQ机制的双相HTI介质波传播伪谱法模拟与特征分析[J]. 地球物理学报, 56(10): 3461-3473 doi: 10.6038/cjg20131021Liu C, Lan H T, Guo Z Q, et al. 2013. Pseudo-spectral modeling and feature analysis of wave propagation in two-phase HTI medium based on reformulated BISQ mechanism[J]. Chinese Journal of Geophysics, 56(10): 3461-3473 (in Chinese). doi: 10.6038/cjg20131021. [34] 刘炯, 马坚伟, 杨慧珠. 2009. 周期成层Patchy模型中纵波的频散和衰减研究[J]. 地球物理学报, 52(11): 2879-2885Liu J, Ma J W, Yang H Z. 2009. Research on dispersion and attenuation of P wave in periodic layered-model with patchy saturation[J]. Chinese Journal of Geophysics, 52(11): 2879-2885 (in Chinese). [35] Liu T, Liu X, Zhu T. 2020. Joint analysis of P-wave velocity and resistivity for morphology identification and quantification of gas hydrate[J]. Marine and Petroleum Geology, 112: 104036. doi: 10.1016/j.marpetgeo.2019.104036 [36] Liu T, Bao X, Guo J. 2022. Modeling of seismic attenuation in fracture-filling gas hydrate-bearing sediments and its application to field observations in the Krishna-Godavari Offshore Basin, India[J]. Marine and Petroleum Geology, 141: 105698 doi: 10.1016/j.marpetgeo.2022.105698 [37] 陆敬安, 杨胜雄, 吴能友, 等. 2008. 南海神狐海域天然气水合物地球物理测井评价[J]. 现代地质, 22(3): 447-451 doi: 10.3969/j.issn.1000-8527.2008.03.015Lu J A, Yang S X, Wu N Y. 2008. Well logging evaluation of gas hydrates in Shenhu area, South China Sea[J]. Geosciences, 22(3): 447-451 (in Chinese). doi: 10.3969/j.issn.1000-8527.2008.03.015 [38] Marín-Moreno H, Sahoo S K. Best A I. 2017. Theoretical modeling insights into elastic wave attenuation mechanisms in marine sediments with pore-filling methane hydrate[J]. Journal of Geophysical Research: Solid Earth, 122: 1835-1847. [39] Matsushima J. 2005. Attenuation measurements from sonic waveform logs in methane hydrate-bearing sediments at the Nankai Trough exploratory well-off Tokai, central Japan[J]. Geophysical Research Letters, 32: L03306. [40] Matsushima J. 2006. Seismic wave attenuation in methane hydrate-bearing sediments: Vertical seismic profiling data from the Nankai Trough exploratory well, offshore Tokai, central Japan[J]. Journal of Geophysical Research: Solid Earth, 111: B10101. doi: 10.1029/2005JB004031. [41] 欧芬兰, 于彦江, 寇贝贝, 等. 2022. 水合物藏的类型、特点及开发方法探讨[J]. 海洋地质与第四纪地质, 42(1): 194-213 doi: 10.16562/j.cnki.0256-1492.2021010601Ou F L, Yu Y J, Kou B B, et al. 2022. Gas hydrate reservoir types, characteristics and development methods[J]. Marine Geology & Quaternary Geology, 42(1): 194-213 (in Chinese). doi: 10.16562/j.cnki.0256-1492.2021010601 [42] Pan H, Li H, Wang X, et al. 2022. A unified effective medium modeling framework for quantitative characterization of hydrate reservoirs[J]. Geophysics, 87(5): MR219-MR234. doi: 10.1190/geo2021-0349.1 [43] Pride S R, Berryman J G, Harris J M. 2004. Seismic attenuation due to wave-induced flow[J]. Journal of Geophysical Research: Solid Earth, 109: B01201.https://doi: 10.1029/2003JB002639. [44] Priest J A, Best A I, Clayton C. 2006. Attenuation of seismic waves in methane gas hydrate-bearing sand[J]. Geophysical Journal International, 164: 149-159. doi: 10.1111/j.1365-246X.2005.02831.x [45] Roscoe R. 1973. Isotropic composites with elastic or viscoelastic phases: General bounds for the moduli and solutions for special geometries[J]. Rheological Acta, 12: 404–411. doi: 10.1007/BF01502992 [46] Rossi G, Gei D, Böhm G, et al. 2007. Attenuation tomography: an application to gas-hydrate and free-gas detection[J]. Geophysical Prospecting, 55: 655–669. doi: 10.1111/j.1365-2478.2007.00646.x [47] Sain K, Singh A P, Thakur N K, et al. 2009. Seismic quality factor observations for gas-hydrate-bearing sediments on the western margin of India[J]. Marine Geophysical Researches, 30: 137-145. doi: 10.1007/s11001-009-9073-1 [48] Schoenberg M. 1980. Elastic wave behavior across linear slip interfaces[J]. Journal of the Acoustical Society of America, 68: 1516-1521. doi: 10.1121/1.385077 [49] Singhroha S, Bünz S, Plaza-Faverola A, et al. 2016. Gas hydrate and free gas detection using seismic quality factor estimates from high-resolution P-cable 3D seismic data[J]. Interpretation, 4: SA39–SA54. doi: 10.1190/INT-2015-0023.1 [50] 宋永佳, 胡恒山. 2013. 裂隙挤喷流对孔隙介质排水体积模量的影响[J]. 力学学报, 45(3): 395-405 doi: 10.6052/0459-1879-12-230Song Y J, Hu H S. 2013. Effects of squirt-flow in cracks on drained bulk modulus of porous media[J]. Chinese Journal of Theoretical and Applied Mechanics, 45(3): 395-405 (in Chinese). doi: 10.6052/0459-1879-12-230 [51] Stoll R D, Bryan G M. 1970. Wave attenuation in saturated sediments[J]. Journal of the Acoustical Society of America, 47: 1440–1447. doi: 10.1121/1.1912054 [52] 唐晓明. 2011. 含孔隙、裂隙介质弹性波动的统一理论——Biot理论的推广[J]. 中国科学: 地球科学, 41(6): 784-795Tang X M. 2011. A unified theory for elastic wave propagation through porous media containing cracks—An extension of Biot’s poroelastic wave theory[J]. Science China Earth Sciences, 41(6): 784-795 (in Chinese). [53] Tang X M, Chen X, Xu X. 2012. A cracked porous medium elastic wave theory and its application to interpreting acoustic data from tight formations[J]. Geophysics, 77(6): 245-252. [54] 唐晓明, 王鹤鸣, 苏远大, 等. 2021. 用孔隙、裂隙介质弹性波理论反演岩石孔隙分布特征[J]. 地球物理学报, 64(8): 2941-2951Tang X M, Wang H M, Su Y D, et al. 2021. Inversion for micro-pore structure distribution characteristics using cracked porous medium elastic wave theory[J]. Chinese Journal of Geophysics, 64(8): 2941-2951 (in Chinese). [55] Walton K. 1987. The effective elastic moduli of a random packing of spheres[J]. Journal of the Mechanics and Physics of Solids, 35: 213–226. https://doi.org/10.1016/0022-5096(87)90036-6. [56] Wang J, Wu S, Geng J, et al. 2017. Acoustic wave attenuation in the gas hydrate-bearing sediments of Well GC955H, Gulf of Mexico[J]. Marine Geophysical Research, 39: 509–522. [57] 王秀娟, 等. 2023. 天然气水合物储层特性与定量评价[M]. 北京: 科学出版社.Wang X J, et al. 2023. Characteristics and Quantitative Evaluation of Natural Gas Hydrate Reservoirs[M]. Beijing: Science Press (in Chinese). [58] Westbrook G K, Chand S, Rossi G, et al. 2008. Estimation of gas hydrate concentration from multi-component seismic data at sites on the continental margins of NW Svalbard and the Storegga region of Norway[J]. Marine and Petroleum Geology, 25: 744–758.https://doi: 10.1016/j.marpetgeo.2008.02.003. [59] White J E. 1975. Computed seismic speeds and attenuation in rocks with partial gas saturation[J]. Geophysics, 40: 224–232. doi: 10.1190/1.1440520 [60] Wood W T, Holbrook W S, Hoskins H. 2000. In situ measurements of P-wave attenuation in methane hydrate and gas bearing sediments on the Blake Ridge[C]// Paull C K, Matsumoto R, Wallace P J, Dillon W P. Proceedings of the Ocean Drilling Program, Scientific Results: Ocean Drilling Program, 265-272. [61] 武存志, 张峰, 李向阳. 2022. 天然气水合物储层吸收衰减机制及岩石物理理论研究进展[J]. 石油地球物理勘探, 57(4): 992-1008Wu C Z, Zhang F, Li X Y. 2022. Progress of attenuation mechanisms and rock-physics studies of natural gas hydrate-bearing sediments[J]. Petroleum Geophysical Exploration, 57(4): 992-1008 (in Chinese). [62] 吴建鲁, 吴国忱, 宗兆云. 2015. 含混合裂隙、孔隙介质的纵波衰减规律研究[J]. 地球物理学报, 58(4): 1378-1389 doi: 10.6038/cjg20150424Wu J L, Wu G C, Zong Z Y. 2015. Attenuation of P waves in a porous medium containing various cracks[J]. Chinese Journal of Geophysics, 2015, 58(4): 1378-1389 (in Chinese). doi: 10.6038/cjg20150424. [63] 吴能友, 张光学, 梁金强, 等. 2013. 南海北部陆坡天然气水合物研究进展[J]. 新能源进展, 1(1): 80-94 doi: 10.3969/j.issn.2095-560X.2013.01.008Wu N Y, Zhang G X, Liang J Q, et al. 2013. Progress of gas hydrate research in Northern South China Sea[J]. Advances in New and Renewable Energy, 1(1): 80-94 (in Chinese). doi: 10.3969/j.issn.2095-560X.2013.01.008 [64] Xu D, Han T, Fu L. 2020. Seismic dispersion and attenuation in layered porous rocks with fractures of varying orientations[J]. Geophysical Prospecting, 69: 220-235. [65] Yang S X, Zhang M, Liang J Q, et al. 2015. Preliminary results of China’s third gas hydrate drilling expedition: A critical step from discovery[J]. Fire in the Ice, 15 (2): 1-5. [66] Zhan L, Matsushima J. 2018. Frequency-dependent p-wave attenuation in hydrate-bearing sediments: a rock physics study at Nankai Trough, Japan[J]. Geophysical Journal International, 214: 1961-1985. doi: 10.1093/gji/ggy229 [67] 张繁昌, 路亚威, 桑凯恒, 等. 2019. 裂缝、裂隙介质衰减频散研究[J]. 地球物理学报, 62(8): 3164-3174 doi: 10.6038/cjg2019M0216Zhang F C, Lu Y W, Sang K H, et al. 2019. Attenuation and dispersion of seismic waves in a cracked-fractured medium[J]. Chinese Journal of Geophysics, 62(8): 3164-3174 (in Chinese). doi: 10.6038/cjg2019M0216 -