• ISSN 2097-1893
  • CN 10-1855/P

地球陨石坑地球物理探测研究进展

邓阳凡 罗恒 张周 朱晟 黄润青 胡仲发 李鑫

引用本文: 邓阳凡,罗恒,张周,朱晟,黄润青,胡仲发,李鑫. 2024. 地球陨石坑地球物理探测研究进展. 地球与行星物理论评(中英文),55(2):153-163
Deng Y F, Luo H, Zhang Z, Zhu S, Huang R Q, Hu Z F, Li X. 2024. Recent progress of geophysical exploration in Earth's impact craters. Reviews of Geophysics and Planetary Physics, 55(2): 153-163 (in Chinese)

地球陨石坑地球物理探测研究进展

doi: 10.19975/j.dqyxx.2023-027
基金项目: 广州市科技计划资助项目(202201010453);中国科学院广州地球化学研究所“十四五”规划自主项目
详细信息
    通讯作者:

    邓阳凡,研究员. 主要从事壳幔结构探测研究. E-mail:yangfandeng@gig.ac.cn

  • 中图分类号: P315

Recent progress of geophysical exploration in Earth's impact craters

Funds: Supported by the Science and Technology Program of Guangzhou (Grant No. 202201010453), and "14th Five-Year Plan" Independent Project of GIGCAS
  • 摘要: 地球物理探测在研究和发现撞击构造方面发挥着重要作用. 本文综述了地球陨石坑的重、磁、电、震等常见地球物理特征. 陨石坑最明显的地球物理特征是圆形或环形的负重力异常,其主要原因是岩石破裂和角砾化导致岩石密度降低;具有较低的磁异常,细节特征复杂,其主要原因是撞击熔融降低了陨石坑内部岩石的磁化率,陨石撞击后的改造则造成了复杂的细节特征;简单陨石坑具有较高的电导率,复杂陨石坑具有从中央隆起向周缘升高的电导率,其受控于岩石的破碎程度和上覆沉积层的含水量,破碎程度、含水量越高电导率越高;具有低的地震波速,主要原因是破碎的角砾岩和断裂具有相对原岩更低的波速. 此外,地震反射波探测发现陨石坑撞击构造有明显凹形特征. 国际上已开展了大量陨石坑的地球物理探测研究,而我国现有被发现且证实的陨石坑不仅数量稀少,其相关的地球物理探测研究更是不多见. 通过对国内外陨石坑的常见地球物理特征开展综述和总结,不仅可为我国发现更多潜在的陨石坑提供科学参考和依据,同时也为公众认识和了解撞击构造提供可靠的科普素材,进而有效拓展地球陨石坑的科研和人文价值.

     

  • 图  1  全球已证实的陨石坑(红色圆圈)分布图(数据来源为The Planetary and Space Science Centre),圆圈大小指示陨石坑直径

    Figure  1.  Global distribution of confirmed impact craters (red circles) (Data from The Planetary and Space Science Centre). Circle size indicates the crater's diameter

    图  2  简单陨石坑(a)和复杂陨石坑(b)结构示意图(修改自Pilkingto and Grieve, 1992). D:陨石坑直径;da:表观深度,指目前在地表观察到的坑体深度,对应于坑缘顶部到坑底表面之间的高差;db:陨石坑深度,指陨石坑形成之初的深度,代表从坑缘顶部到坑底岩石碎块和撞击角砾岩堆积单元顶界面之间的高差;dt:陨石坑真实深度,指撞击成坑时坑体的挖掘深度,代表从坑缘顶部到岩石碎块和撞击角砾岩堆积单元底界面之间的高差

    Figure  2.  Schematic diagram showing simple (a) and complex (b) crater structures (modified from Pilkingto and Grieve, 1992). D : Crater diameter; da : Apparent depth (depth of the crater currently observed at the surface, corresponding to the height difference between the top of the crater rim and the bottom interface of the crater); db : Crater depth (depth at the beginning of the crater formation, corresponding to the height difference between the top of the crater rim and the top interface of rock fragments and impact breccia units at the bottom of the crater); dt: True crater depth (digging depth of impact cratering, corresponding to the height difference between the top of the crater rim and the bottom interface of rock fragments and impact breccia units)

    图  3  Chicxulub陨石坑的布格重力异常图(修改自Gulick et al., 2013

    Figure  3.  Bouguer gravity anomaly map of the Chicxulub crater (modified from Gulick et al., 2013)

    图  4  Ries陨石坑磁异常图,蓝色小点代表冲击熔融露头,灰色黑线表示陨石坑的范围(修改自Gilder et al., 2018

    Figure  4.  Magnetic anomaly map of the Ries crater. Blue dots represent impact melt outcrops. The gray black line represents the area of the crater (modified from Gilder et al., 2018)

    图  5  Chicxulub陨石坑的电性结构,中央隆起具有明显的高电阻率特征(修改自Campos-Enríquez et al., 2004

    Figure  5.  Electrical structure of Chicxulub crater, with the central uplift exhibiting distinct high resistivity (modified from Campos-Enríquez et al., 2004)

    图  6  横穿Nadir陨石坑的地震反射剖面(修改自Nicholson et al., 2022),可见明显的中央隆起

    Figure  6.  Seismic migration profile across the Nadir crater (modified from Nicholson et al., 2022), showing clear central uplift

    图  7  辽宁岫岩陨石坑的地震反射剖面位置及结果解释(引自赵成彬等,2011

    Figure  7.  Location and interpretation of seismic reflection profile in the Xiuyan crater (from Zhao et al., 2011)

  • [1] Aaloe A, Dabizha B, Karnaukh B, et al. 1976. Geophysical investigations of Kaali crater[J]. Eesti NSV Teaduste Akadeemia Geoloogia Instituudi Toimetised, Keemia, Geoloogia, 25(1): 58-65.
    [2] Adepelumi A A, Fontes S L, Schnegg P A, Flexor J. M. 2005. An integrated magnetotelluric and aeromagnetic investigation of the Serra da Cangalha impact crater, Brazil[J]. Physics of the Earth and Planetary Interiors, 150(1-3): 159-181. doi: 10.1016/j.pepi.2004.08.029
    [3] Bezaeva N S, Chareev D A, Rochette P, et al. 2016. Magnetic characterization of non-ideal single-domain monoclinic pyrrhotite and its demagnetization under hydrostatic pressure up to 2 GPa with implications for impact demagnetization[J]. Physics of the Earth and Planetary Interiors, 257: 79-90. doi: 10.1016/j.pepi.2016.05.009.
    [4] Campos-Enríquez J, Chavez-Garcia F, Cruz H, et al. 2004. Shallow crustal structure of Chicxulub impact crater imaged with seismic, gravity and magnetotelluric data: Inferences about the central uplift[J]. Geophysical Journal International, 157(2): 515-525. doi: 10.1111/j.1365-246X.2004.02243.x.
    [5] 陈鸣, 肖万生, 谢先德, 等. 2009. 岫岩陨石撞击坑的证实[J]. 科学通报, 54(22): 3507-3511 doi: 10.1360/csb2009-54-22-3507

    Chen M, Xiao W S, Xie X D, et al. 2009. Confirmation of Xiuyan meteorite impact crater [J]. Chinese Science Bulletin, 54(22): 3507-3511 (in Chinese). doi: 10.1360/csb2009-54-22-3507.
    [6] Chen M, Yin F, Li X, et al. 2013. Natural occurrence of reidite in the Xiuyan crater of China[J]. Meteoritics & Planetary Science, 48(5): 796-805. doi: 10.1111/maps.12106.
    [7] 陈鸣. 2016. 岫岩陨石坑星球撞击遗迹[M]. 北京: 科学出版社.

    Chen M. 2016. Remnants of Planet Impact in Xiuyan Crater[M]. Beijing: Science Press (in Chinese).
    [8] 陈鸣, 谢先德, 肖万生, 等. 2020. 依兰陨石坑: 我国东北部一个新发现的撞击构造[J]. 科学通报, 65(10): 948-954 doi: 10.1360/TB-2019-0704

    Chen M, Xie X D, Xiao W S, et al. 2020. Yilan Crater: A newly discovered impact structure in Northeast China [J]. Chinese Science Bulletin, 65(10): 948-954 (in Chinese). doi: 10.1360/TB-2019-0704.
    [9] 陈鸣. 2021. 依兰陨石坑特征及形成演化[M]. 北京: 科学出版社.

    Chen M. 2021. Characteristics and Evolution of Yilan Crater[M]. Beijing: Science Press (in Chinese).
    [10] Chen M, Koeberl C, Tan D, et al. 2021. Yilan crater, China: Evidence for an origin by meteorite impact[J]. Meteoritics & Planetary Science, 56(7): 1274-1292. doi: 10.1111/maps.13711.
    [11] Cisowski S, Fuller M. 1978. The effect of shock on the magnetism of terrestrial rocks[J]. Journal of Geophysical Research: Solid Earth, 83(B7): 3441-3458. doi: 10.1029/JB083iB07p03441.
    [12] Dence M R. 1972. The nature and significance of terrestrial impact structures[C]// 24th International Geological Congress, 77-89.
    [13] Di K, Li W, Yue Z, et al. 2014. A machine learning approach to crater detection from topographic data[J]. Advances in Space Research, 54: 2419–2429.
    [14] Elbeshausen D, Wünnemann K, Collins G S. 2013. The transition from circular to elliptical impact craters[J]. Journal of Geophysical Research: Planets, 118(11): 2295-2309. doi: 10.1002/2013je004477.
    [15] Erickson T M, Cavosie A J, Moser D E, et al. 2013. Identification and provenance determination of distally transported, Vredefort-derived shocked minerals in the Vaal River, South Africa using SEM and SHRIMP-RG techniques[J]. Geochimica et Cosmochimica Acta, 107: 170-188. doi: 10.1016/j.gca.2012.12.008.
    [16] Ernstson K. 1974. The structure of the Ries crater from geoelectric depth soundings[J]. Journal of Geophysics, 40: 639-659.
    [17] Ernstson K. 1984. A gravity-derived model for the Steinheim impact crater[J]. Geologische Rundschau, 73(2): 483-498. doi: 10.1007/bf01824969.
    [18] 樊华, 袁一凡, 刘明军, 等. 2013. 地震走时层析成像方法及在陨石坑探测中的应用[J]. CT 理论与应用研究, 22(4): 605-613 doi: 10.3969/j.issn.1004-4140.2013.04.004

    Fan H, Yuan Y F, Liu M J, et al. 2013. Seismic travel time tomography method and its application in crater detection [J]. CT Theoretical and Applied Research, 22(4): 605-613 (in Chinese). doi: 10.3969/j.issn.1004-4140.2013.04.004.
    [19] 樊计昌, 刘明军, 赵成彬, 等. 2010. 岫岩陨石坑三维 Q 值层析成像[J]. 地球物理学报, 53(10): 2367-2375 doi: 10.3969/j.issn.0001-5733.2010.10.010

    Fan J C, Liu M J, Zhao C B, et al. 2010. Three-dimensional Q-value tomography of Xiuyan Crater [J]. Chinese Journal of Geophysics, 53(10): 2367-2375(in Chinese). doi: 10.3969/j.issn.0001-5733.2010.10.010.
    [20] 樊计昌, 刘明军, 韩艳杰, 等. 2016. 利用地震成像技术研究我国首个国际认可的陨石坑[J]. 地球物理学进展, 31(5): 1895-1901

    Fan J C, Liu M J, Han Y J, et al. 2016. Study of China's first internationally recognized impact crater using seismic imaging technology [J]. Progress in Geophysics, 31(5): 1895-1901 (in Chinese). doi: CNKI:SUN:DQWJ.0.2016-05-002.
    [21] Florensky P, Dabizha A, Aaloe A, et al. 1979. Geological-geophysical characteristics of the Zhamanshin meteorite crater[J]. Meteoritika, 38: 86-98.
    [22] Fourie F, Huber M, Kovaleva E. 2019. Geophysical characterization of the Daskop granophyre dyke and surrounding host rocks, Vredefort impact structure, South Africa[J]. Meteoritics & Planetary Science, 54(7): 1579-1593. doi: 10.1111/maps.13300.
    [23] Fox J H. 1970. Geophysical investigation of the Crooked Creek, Missouri, cryptoexplosion structure[J]. Eos, Transactions American Geophysical Union, 51: 770.
    [24] Gardner G, Gardner L, Gregory A. 1974. Formation velocity and density—The diagnostic basics for stratigraphic traps[J]. Geophysics, 39(6): 770-780. doi: 10.1190/1.1440465.
    [25] Gilder S A, Pohl J, Eitel M. 2018. Magnetic Signatures of Terrestrial Meteorite Impact Craters: A Summary[M]// Holschneider M. Magnetic Fields in the Solar System: Planets, Moons and Solar Wind Interactions, 357-382. doi: 10.1007/978-3-319-64292-5_13.
    [26] Green R, Chetty P. 1990. Seismic refraction studies in the basement of the Vredefort structure[J]. Tectonophysics, 171(1-4): 105-113. doi: 10.1016/0040-1951(90)90092-m.
    [27] Grieve R A F. 1991. Terrestrial impact: The record in the rocks[J]. Meteoritics, 26(3): 175-194. doi: 10.1111/j.1945-5100.1991.tb01038.x.
    [28] Gudlaugsson S T. 1993. Large impact crater in the Barents Sea[J]. Geology, 21(4): 291-294. doi: 10.1130/0091-7613(1993)021<0291:licitb>2.3.co;2.
    [29] Gulick S, Christeson G, Barton P, et al. 2013. Geophysical characterization of the Chicxulub impact crater[J]. Reviews of Geophysics, 51(1): 31-52. doi: 10.1002/rog.20007.
    [30] Hanafy S M, Soupios P, Stampolidis A, et al. 2021. Comprehensive geophysical study at Wabar Crater, Rub Al-Khali Desert, Saudi Arabia[J]. Earth and Space Science, 8(9): e2020EA001432. doi: 10.1002/essoar.10504584.1.
    [31] Henkel H. 1992. Geophysical aspects of meteorite impact craters in eroded shield environment, with special emphasis on electric resistivity[J]. Tectonophysics, 216(1-2): 63-89. doi: 10.1016/0040-1951(92)90156-Z
    [32] 胡涛, 贺亮, 曹涛, 等. 2020. 行星陨石坑检测算法研究综述[J]. 载人航天, 26(5): 656-663

    Hu T, He L, Cao T, et al. 2020. A review of planetary crater detection algorithms [J]. Journal of Manned Spaceflight, 26(5): 656-663 (in Chinese).
    [33] Isaac J H, Stewart R. 1993. 3-D seismic expression of a cryptoexplosion structure[J]. Canadian Journal of Exploration Geophysics, 29(2): 429-439.
    [34] Jia Y, Liu L, Zhang C. 2021. Moon impact crater detection using nested attention mechanism based UNet++[J]. IEEE Access, 9: 44107-44116. doi: 10.1109/access.2021.3066445.
    [35] Karp T, Milkereit B, Janle P, et al. 2002. Seismic investigation of the Lake Bosumtwi impact crater: Preliminary results[J]. Planetary and Space Science, 50(7): 735-743. doi: 10.1016/S0032-0633(02)00049-1.
    [36] Kenkmann T, Poelchau M H, Wulf G. 2014. Structural geology of impact craters[J]. Journal of Structural Geology, 62: 156-182. doi: 10.1016/j.jsg.2014.01.015.
    [37] Kenkmann T. 2021. The terrestrial impact crater record: A statistical analysis of morphologies, structures, ages, lithologies, and more[J]. Meteoritics & Planetary Science, 56(5): 1024-1070. doi: 10.1111/maps.13657.
    [38] Kohout T, Pesonen L J, Deutsch A, et al. 2012. Shock experiments in range of 10–45 GPa with small multidomain magnetite in porous targets[J]. Meteoritics & Planetary Science, 47(10): 1671-1680. doi: 10.1111/maps.12003.
    [39] Louzada K L, Stewart S T, Weiss B P, et al. 2011. Impact demagnetization of the Martian crust: Current knowledge and future directions[J]. Earth and Planetary Science Letters, 305(3-4): 257-269. doi: 10.1016/j.jpgl.2011.03.013.
    [40] MacGregor J A, Bottke Jr W F, Fahnestock M A, et al. 2019. A possible second large subglacial impact crater in northwest Greenland[J]. Geophysical Research Letters, 46(3): 1496-1504. doi: 10.1029/2018gl078126.
    [41] Masero W, Fischer G, Schnegg P A. 1997. Electrical conductivity and crustal deformation from magnetotelluric results in the region of the Araguainha impact, Brazil[J]. Physics of the Earth and Planetary Interiors, 101(3-4): 271-289. doi: 10.1016/S0031-9201(96)03267-0
    [42] Melosh H J. 1989. Impact Cratering: A Geologic Process[M]. New York: Oxford University Press; Oxford: Clarendon Press. doi: 10.1016/0016-7037(89)90150-6.
    [43] Meyers J, Riley S, Groome W. 2019. Geophysical expression of the Meyers Crater, a new meteorite impact crater discovered in the Coolgardie Goldfield of Western Australia[J]. ASEG Extended Abstracts, 2019(1): 1-5. doi: 10.1080/22020586.2019.12073055.
    [44] Morgan J, Warner M, Collins G, et al. 2011. Full waveform tomographic images of the peak ring at the Chicxulub impact crater[J]. Journal of Geophysical Research: Solid Earth, 116(B6): B06303. doi: 10.1029/2010jb008015.
    [45] Morgan J, Rebolledo-Vieyra M. 2012. Geophysical Studies of Impact Craters[M]// Osinski G R, Pierazzo E. Impact Cratering. John Wiley & Sons, Ltd.
    [46] Nicholson U, Bray V J, Gulick S P, et al. 2022. The Nadir Crater offshore West Africa: A candidate Cretaceous-Paleogene impact structure[J]. Science Advances, 8(33): eabn3096. doi: 10.1126/sciadv.abn3096.
    [47] Ortiz-Aleman C, Martin R, Urrutia-Fucugauchi J, et al. 2021. Imaging the Chicxulub central crater zone from large-scale seismic acoustic wave propagation and gravity modeling[J]. Pure and Applied Geophysics, 178: 55-77. doi: 10.1007/s00024-020-02638-2.
    [48] Pilkington M, Grieve R. 1992. The geophysical signature of terrestrial impact craters[J]. Reviews of Geophysics, 30(2): 161-181. doi: 10.1029/92rg00192.
    [49] Plado J, Pesonen L J, Puura V. 1999. Effect of Erosion on Gravity and Magnetic Signatures of Complex Impact Structures: Geophysical Modeling and Applications[M]//Dressler B O, Sharpton V L. Large Meteorite Impacts and Planetary Evolution II. The Geological Society of America, 229-239.
    [50] Plado J, Hietala S, Kreitsmann T, et al. 2018. Summanen, a new meteorite impact structure in Central Finland[J]. Meteoritics & Planetary Science, 53(11): 2413-2426. doi: 10.1111/maps.13134.
    [51] Poag C W, Powars D S, Poppe L J, et al. 1994. Meteoroid mayhem in Ole Virginny: Source of the North American tektite strewn field[J]. Geology, 22(8): 691-694. doi: 10.1130/0091-7613(1994)022<0691:mmiovs>2.3.co;2.
    [52] Quesnel Y, Zylberman W, Rochette P, et al. 2020. Geophysical signature of the Tunnunik impact structure, Northwest Territories, Canada[J]. Meteoritics & Planetary Science, 55(3): 480-495. doi: 10.1111/maps.13447.
    [53] Salguero-Hernández E, Pérez-Cruz L, Urrutia-Fucugauchi J. 2020. Seismic attribute analysis of Chicxulub impact crater[J]. Acta Geophysica, 68: 627-640. doi: 10.1007/s11600-020-00442-z.
    [54] Schulte P, Alegret L, Arenillas I, et al. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary[J]. Science, 327(5970): 1214-1218. doi: 10.1126/science.1177265.
    [55] Sieh K, Herrin J, Jicha B, et al. 2020. Australasian impact crater buried under the Bolaven volcanic field, Southern Laos[J]. Proceedings of the National Academy of Sciences, 117(3): 1346-1353. doi: 10.1073/pnas.1904368116.
    [56] Stewart S A, Allen P J. 2002. A 20-km-diameter multi-ringed impact structure in the North Sea[J]. Nature, 418(6897): 520-523. doi: 10.1038/nature00914.
    [57] Unsworth M, Enriquez O C, Belmonte S, et al. 2002. Crustal structure of the Chicxulub impact crater imaged with magnetotelluric exploration[J]. Geophysical research letters, 29(16): 2002GL014998.
    [58] Vishnevsky S, Lagutenko V. 1986. The Ragozinka astrobleme: An Eocene crater in the central Urals[J]. Akad. Nauk USSR, 14: 1-42.
    [59] 王道经, 李健. 1993. 海南岛白沙陨石坑的遥感图像解译与验证[J]. 中国地质, 5: 23-24

    Wang D J, Li J. 1993. Interpretation and verification of remote sensing images of Baisha Crater in Hainan Island [J]. Geology of China, (5): 23-24 (in Chinese). doi: CNKI:SUN:DIZI.0.1993-05-012.
    [60] 王鹤年, 谢志东, 钱汉东. 2009. 太湖冲击坑溅射物的发现及其意义[J]. 高校地质学报, 15(4): 437 doi: 10.3969/j.issn.1006-7493.2009.04.001

    Wang H N, Xie Z D, Qian H D. 2009. Discovery and significance of sputtering in Taihu Crater [J]. Geological Journal of China Universities, 15(4): 437(in Chinese). doi: 10.3969/j.issn.1006-7493.2009.04.001.
    [61] 吴思本. 1996. 多伦陨石坑的研究进展[J]. 中国地质, 8: 14-16

    Wu S B. 1996. Research progress of Duolun Crater [J]. Geology in China, (8): 14-16 (in Chinese).
    [62] Xin X, Di K, Wang Y, et al. 2017. Automated detection of new impact sites on Martian surface from HiRISE images[J]. Advances in Space Research, 60(7): 1557-1569. doi: 10.1016/j.asr.2017.06.044.
    [63] 岳宗玉, 史珂, 邸凯昌, 等. 2023. 撞击坑研究进展与展望[J]. 中国科学: 地球科学, 53. https://doi.org/10.1007/s11430-022-1009-0

    Yue Z Y, Shi K, Di K C, et al. 2023. Progresses and prospects of impact crater studies[J]. Science China Earth Sciences, 53 (in Chinese). https://doi.org/10.1007/s11430-022-1009-0
    [64] 赵成彬, 刘明军, 樊计昌, 等. 2011. 岫岩陨石撞击坑结构高精度地震探测研究[J]. 地球物理学报, 54(6): 1559-1565 doi: 10.3969/j.issn.0001-5733.2011.06.015

    Zhao C B, Liu M J, Fan J C, et al. 2011. High-precision seismic detection of Xiuyan meteorite impact crater structure [J]. Chinese Journal of Geophysics, 54(6): 1559-1565 (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.06.015.
  • 加载中
图(7)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  259
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-14
  • 录用日期:  2023-06-26
  • 网络出版日期:  2023-06-30
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回