Advancements in deep tectonics and dynamic mechanisms beneath the eastern Tibetan Plateau—Inspirations from the 9th and 10th WTGTP Workshops
-
摘要: 青藏高原深部构造与动力学机制一直是深部地球物理与大陆动力学的重点研究领域. 青藏高原东部地形起伏剧烈,地震活动频繁,金属与油气矿床丰富,揭示出青藏高原东部极为复杂的壳幔结构与深部变形及非常强烈的深部物质运动. 近年来,随着地球物理综合观测技术、深部结构成像方法、地球动力学模拟等研究的快速发展,围绕青藏高原东部的深部构造、块体运动、深部动力模式、强震活动与深部蕴震机制及成矿深部构造等方面进展显著. 青藏高原东部构造与地球物理研讨会(WTGTP)是围绕青藏高原东部深部结构与动力学机制、资源开发、地质灾害等相关地球科学问题按年度召开的学术交流研讨会. 本文基于2021年和2022年召开的第九届和第十届WTGTP的会议报告,结合近年来的相关研究成果,围绕印度—欧亚板块碰撞、构造变形特征与动力学机制以及强震活动与深部蕴震机制等主要内容,介绍了青藏高原东部的地球物理结构及深部构造变形与动力学机制的研究进展. 初步展望了青藏高原深部构造与地球物理研究前景,期望能给相关科研人员提供一点有益的参考.Abstract: The Tibetan Plateau, known as the "Roof of the World" , is one of the most tectonically complex areas on Earth. Its deep tectonics and dynamical mechanisms have been the focus of intense research in the fields of deep geophysics and continental dynamics. The eastern Tibetan Plateau is characterized by strong topographic fluctuations, frequent seismic activities, and abundant metal deposits, which reveal the extremely complex crust–mantle structure, deep deformation, and intense deep material movement. In recent years, with the rapid development of comprehensive geophysical observation techniques, deep structure imaging methods, and geodynamic simulations, significant progress has been made in deep tectonics, block motions, deep dynamic models, strong seismic activity, deep seismic mechanisms, as well as the deep structure of metal mineralization in the eastern Tibetan Plateau. The Workshop on Tectonics and Geophysics in the east part of Tibetan Plateau (WTGTP) is an annual academic exchange symposium for the eastern part of the Tibetan Plateau. The 9th and 10th conferences were held in Xichang, China, in 2021 and online in 2022, respectively. Based on the reports of these conferences, in combination with the relevant research results in recent years, this paper focuses on the India–Eurasian plate collision, tectonic deformation and dynamic mechanisms, and strong earthquake activity and deep seismic mechanisms in the eastern Tibetan Plateau. The paper describes the research progress pertaining to the tectonic structure, deep structural deformation, and dynamic mechanisms of the eastern Tibetan Plateau. The research prospects of further delineating the deep structure and geophysics of the Tibetan Plateau are preliminarily addressed, with the goal of providing a useful reference for interested researchers. The research in this field has great significance because it enhances our understanding of the deep tectonic processes that shape the Tibetan Plateau. Such knowledge could have implications for predicting and mitigating seismic hazards in the region. Additionally, research into the metallogenic tectonics of the eastern Tibetan Plateau may provide insights into the formation of mineral deposits in other parts of the world. Overall, research into the deep tectonics and dynamical mechanisms of the Tibetan Plateau is a complex and challenging field that requires the use of advanced technology and multidisciplinary approaches. The WTGTP provides a valuable forum for researchers to share their findings and collaborate on solutions to these geologically complex problems.
-
Key words:
- the eastern Tibetan Plateau /
- WTGTP /
- the India-Eurasian plate collision /
- dynamics /
- deep tectonics
-
表 1 2021年第九届青藏高原东部构造与地球物理研讨会(9-WTGTP)学术报告列表
Table 1. List of academic reports of the 9th Workshop on Tectonics and Geophysics in the east part of Tibetan Plateau in 2021 (9-WTGTP)
报告人 职称 单位 报告题目 王绪本 教 授 成都理工大学 青藏高原东部岩石圈电性结构与特提斯洋俯冲及造山过程研究 于常青 研究员 中国地质科学院地质研究所 东构造结深部结构与地震关系探讨 高 原 研究员 中国地震局地震预测研究所 青藏高原东南缘S波地震各向异性的三种尺度形态 黄周传 教 授 南京大学 青藏高原东南缘上地幔结构与动力学 李忠海 教 授 中国科学院大学 青藏高原岩石圈增厚拆沉与侧向挤出的动力学竞争 徐义贤 教 授 浙江大学 克拉通岩石圈的显生宙演化:以NCC为例 邓阳凡 特任研究员 中国科学院广州地球化学研究所 一种通用的S波接收函数估计方法(GC_SRF)及其在西扬子的应用 余 年 教 授 重庆大学 红河断裂带及邻区岩石圈三维电性结构与物质流研究 叶 卓 副研究员 中国地质科学院 青藏高原北缘形成演化的岩石圈尺度逆冲楔模型:宽频地震和节点密集台阵剖面综合观测约束 蔡永恩 教 授 北京大学 利用地震应力降确定断层的力学环境 冯 梅 研究员 中国地质科学院 西拉木伦缝合带中段太古代克拉通核与古亚洲洋俯冲板片形迹 张会平 研究员 中国地震局地质研究所 青藏高原东缘晚新生代幕式剥露过程 白 玲* 研究员 中国科学院青藏高原研究所 南迦巴瓦地区地震与滑坡活动性分析 李国辉 副研究员 中国地震局地震预测研究所 基于三重震相波形拟合的青藏高原羌塘块体地幔过渡带结构及其构造意义 何 熹 博士后 中国科学院地质与地球物理研究所 2021年5月21—22日云南漾濞MS6.4和青海玛多MS7.4地震应力降研究及其构造意义 易桂喜 研究员 中国地震局成都青藏高原研究所 四川盆地地震震源机制与发震构造特征 朱守彪 研究员 应急管理部国家自然灾害防治研究院 为什么自然界中超剪切破裂地震的数量是如此之少 刘 震 副研究员 成都理工大学 青藏高原南部地壳增厚模式 皇甫鹏鹏 讲 师 中国科学院大学 新生代天山隆升新机制——印度与塔里木岩石圈地幔碰撞 刘 真 博士研究生 中国科学院地质与地球物理研究所 斯堪的纳维亚半岛及其周边地区地壳Lg波衰减的横向变化 李顺至 博士研究生 中国科学院地质与地球物理研究所 受大印度的尺度约束的年轻印度—欧亚汇聚碰撞 王祎然 博士研究生 中国科学院地质与地球物理研究所 中国西南地区右江盆地多期次金矿床地震学模型 朱威谋 博士研究生 中国科学院地质与地球物理研究所 西地中海地区地壳Lg波衰减及其构造意义 车子强 硕士研究生 中国地震局地震预测研究所 海原断裂带及邻区背景噪声结构成像初步结果 注*:因新冠疫情影响,报告人未到现场,远程做了网上报告 表 2 2022年第十届青藏高原东部构造与地球物理研讨会(10-WTGTP)学术报告列表
Table 2. List of academic reports of the 10th Workshop on Tectonics and Geophysics in the east part of Tibetan Plateau in 2022 (10-WTGTP)
报告人 职称 单位 报告题目 甘卫军 研究员 中国地震局地质研究所 青藏东部地壳顺时针流滑逃逸的起始时间——基于GPS形变观测和断裂弯转迹线的推测 郭晓玉 教 授 中山大学 碰撞-地幔流动与南海的构造演化 皇甫鹏鹏 副教授 中国科学院大学 青藏东、西部变形传递差异性物理机制 栾锡武 教 授 山东科技大学 西缅地体的碰撞拼贴 邓阳凡 研究员 中国科学院广州地球化学研究所 密集台阵揭示的海原断裂带蠕滑区域的花状构造特征 赵连锋 研究员 中国科学院地质与地球物理研究所 青藏高原东缘岩石圈分层Q值与流变强度估计 梁 瑶 助理研究员 中国地质科学院地质研究所 青藏高原东南缘小江断裂带中段精细S波速度结构成像研究 李玉江 副研究员 应急管理部国家自然灾害防治研究院 青藏高原东南缘现今地壳变形及动力学 刘少林 研究员 应急管理部国家自然灾害防治研究院 青藏高原东北缘壳幔速度与各向异性结构研究 赵盼盼 副研究员 中国地震局地震预测研究所 地壳速度结构揭示青藏高原东北缘的生长及其与华北克拉通的接触变形特征 裴顺平 研究员 中国科学院青藏高原研究所 泸定地震深部结构及发震机制 易桂喜 研究员 四川省地震局,中国地震局成都青藏高原研究所 2022年9月5日四川泸定MS6.8地震序列发震构造分析 蔡永恩 教 授 北京大学 利用震前断层应力变化探讨预报地震孕震区的可能性 张金海 研究员 中国科学院地质与地球物理研究所 无条件稳定显式有限差分地震波场模拟研究进展 王 杨 博士后 中国科学院大学 变质致密化解释大印度大陆地壳的消失之谜 崔起华 博士后 中国科学院大学 青藏高原之下印度板块撕裂成因机制:数值模拟 李江涛 研究员 武汉大学 青藏高原中南部地壳厚度和波速比分布及其启示 陈棋福 研究员 中国科学院地质与地球物理研究所 基于重复地震研究川滇主要断层的深部滑动速率 张海江 教 授 中国科学技术大学 地球物理联合成像揭示云南哀牢山金矿区的深部成矿背景 孙玉军 研究员 中国地质科学院地球深部探测中心 四川大岗山水库区域地震活动性及动力学机制模拟研究 李 兵 助理研究员 应急管理部国家自然灾害防治研究院 龙门山断裂带大邑地震空区地应力状态与地震危险性 叶秀薇 研究员 广东省地震局 粤港澳大湾区核心城区三维浅层地壳精细结构 李 倩 博士研究生 中国科学院大学 上覆岩石圈强度对大陆碰撞模式选择和俯冲迁移的影响 李抒予 硕士研究生 中国地震局地震预测研究所 利用GNSS与S波分裂资料浅析青藏高原东北部上地壳变形特征 -
[1] Ali R, Aitchison J C. 2005. Greater India[J]. Earth Science Reviews, 72(3-4): 169-188. doi: 10.1016/j.earscirev.2005.07.005 [2] 白玲, 宋博文, 李国辉, 等. 2019. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展, 34(6): 629-639Bai L, Song B W, Li G H, et al. 2019. Seismic activity in the Himalayan orogenic belt and its related geohazards[J]. Advances in Earth Science, 34(6): 629-639 (in Chinese). [3] Chen L, Tao W, Zhao L, et al. 2008. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton[J]. Earth and Planetary Science Letters, 267(1-2): 56-68. doi: 10.1016/j.jpgl.2007.11.024 [4] Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2 [5] Cui Q H, Li Z H, Liu M. 2021. Crustal thickening versus lateral extrusion during India-Asia continental collision: 3-D thermo-mechanical modeling[J]. Tectonophysics, 818: 229081. doi: 10.1016/j.tecto.2021.229081 [6] Cui Q H, Li Z H. 2022. Along strike variation of convergence rate and pre-existing weakness contribute to Indian slab tearing beneath Tibetan Plateau[J]. Geophysical Research Letters, 49: e2022GL098019. [7] Deng J, Wang Q F, Sun X, et al. 2022. Tibetan ore deposits: A conjunction of accretionary orogeny and continental collision[J]. Earth-Science Reviews, 235: 104245. doi: 10.1016/j.earscirev.2022.104245 [8] England P, Houseman G. 1986. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research: Solid Earth, 91(B3): 3664-3676. doi: 10.1029/JB091iB03p03664 [9] England P, Houseman G. 1988. The mechanics of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 326(1589): 301-320. [10] Fyhn M B W, Phach P V. 2015. Late Neogene structural inversion around the northern Gulf of Tonkin, Vietnam: Effects from right-lateral displacement across the Red River fault zone[J]. Tectonics, 34(2): 290-312. doi: 10.1002/2014TC003674 [11] Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 112(B8): B08416. [12] Gan W J, Molnar P, Zhang P Z, et al. 2022. Initiation of clockwise rotation and eastward transport of southeastern Tibet inferred from deflected fault traces and GPS observations[J]. GSA Bulletin, 134(5-6): 1129-1142. doi: 10.1130/B36069.1 [13] Gao R, Lu Z W, Klemperer S L, et al. 2016. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 9(7): 555-560. doi: 10.1038/ngeo2730 [14] Gao Y, Chen A G, Shi Y, et al. 2019. Preliminary analysis of crustal shear-wave splitting in Sanjiang lateral collision zone of the SE margin of the Tibetan Plateau and its tectonic implications[J]. Geophysical Prospecting, 67(9): 2432-2449. doi: 10.1111/1365-2478.12870 [15] 高原, 石玉涛, 王琼. 2020. 青藏高原东南缘地震各向异性及其深部构造意义[J]. 地球物理学报, 63(3): 802-816Gao Y, Shi Y T, Wang Q. 2020. Seismic anisotropy in the southeastern margin of the Tibetan Plateau and its deep tectonic significances[J]. Chinese Journal of Geophysics, 63(3): 802-816 (in Chinese). [16] Guo Z, Afonso J C, Qashqai M T, et al. 2016. Thermochemical structure of the North China Craton from multi-observable probabilistic inversion: Extent and causes of cratonic lithosphere modification[J]. Gondwana Research, 37: 252-265 doi: 10.1016/j.gr.2016.07.002 [17] Hao S J, Huang Z C, Han C R, et al. 2021. Layered crustal azimuthal anisotropy beneath the northeastern Tibetan Plateau revealed by Rayleigh-wave Eikonal tomography[J]. Earth and Planetary Science Letters, 563: 116891. doi: 10.1016/j.jpgl.2021.116891 [18] 侯增谦, 莫宣学, 杨志明, 等. 2006. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型[J]. 中国地质, 33(2): 340-351Hou Z Q, Mo X X, Yang Z M, et al. 2006. Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau: Tectonic setting, tempo-spatial distribution and ore deposit types[J]. Geology in China, 33(2): 340-351 (in Chinese). [19] Houseman G, England P. 1993. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision[J]. Journal of Geophysical Research: Solid Earth, 98(B7): 12233-12249. doi: 10.1029/93JB00443 [20] Huang Z C, Chevrot S. 2021. Mantle dynamics in the SE Tibetan Plateau revealed by teleseismic shear-wave splitting analysis[J]. Physics of the Earth and Planetary Interiors, 313: 106687. doi: 10.1016/j.pepi.2021.106687 [21] Huang Z X, Li H Y, Zheng Y J, et al. 2009. The lithosphere of North China Craton from surface wave tomography[J]. Earth and Planetary Science Letters, 288(1-2): 164-173. doi: 10.1016/j.jpgl.2009.09.019 [22] Huangfu P P, Li Z H, Zhang K J, et al. 2021. India-Tarim lithospheric mantle collision beneath western Tibet controls the Cenozoic building of Tian Shan[J]. Geophysical Research Letters, 48: e2021GL094561. [23] Ingalls M, Rowley D B, Currie B, et al. 2016. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation[J]. Nature Geoscience, 9: 848-853. doi: 10.1038/ngeo2806 [24] Ivanchenko G N, Gorbunova E M. 2021. Formalized lineament analysis of geological structures in the Baikal region[J]. Physics of the Solid Earth, 57: 779-788. doi: 10.1134/S1069351321050086 [25] Li G H, Bai L, Zhang H, et al. 2022. Velocity anomalies around the mantle transition zone beneath the Qiangtang terrane, central Tibetan Plateau from triplicated P waveforms[J]. Earth and Space Science, 9: e2021EA002060. [26] Li G H, Wang A J, Gao Y. 2023. Source rupture characteristics of the September 5, 2022 Luding MS6.8 earthquake at the Xianshuihe fault zone in southwest China[J]. Earthquake Research Advances, 3(2): 100201. doi: 10.1016/j.eqrea.2022.100201 [27] 李莹, 田建慧, 李心怡, 等. 2023.2022年9月5日四川泸定MS6.8地震深部构造特征[J]. 地球物理学报, 66(4): 1385-1396Li Y, Tian J H, Li X Y, et al. 2023. Deep tectonic pattern of the Luding MS6.8 earthquake on 5th September 2022 in Sichuan Province, China[J]. Chinese Journal of Geophysics, 66(4): 1385-1396 (in Chinese). [28] Liu D Y, Nutman A P W, Compston W, et al. 1992. Remmants of ≥3800 Ma crust in the Chinese part of the Sino-korean Craton[J]. Geology, 20: 339-342. [29] 刘同振, 夏新宇, 张怀, 等. 2023.2022年第十届青藏东部构造与地球物理研讨会(10-WTGTP)在线上召开[J]. 地震, 43(1): 198-200Liu T Z, Xia X Y, Zhang H, et al. 2023. The 10-WTGTP (10th Workshop on Tectonics and Geophysics in the east part of Tibetan Plateau) was held online in 2022[J]. Earthquake, 43(1): 198-200 (in Chinese). [30] Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 276: 788-790. doi: 10.1126/science.276.5313.788 [31] 沈胜意, 高原, 刘同振. 2022. 剪切波分裂揭示的青藏高原东北缘分层各向异性形态: 从海原断裂至银川地嵌[J]. 地球物理学报, 65(5): 1595-1611Shen S Y, Gao Y, Liu T Z. 2022. Two-layer anisotropy revealed by shear wave splitting beneath the NE margin of Tibetan Plateau: From Haiyuan fault to Yinchuan Garben[J]. Chinese Journal of Geophysics, 65(5): 1595-1611 (in Chinese). [32] Shi Y T, Gao Y, Shen X, Liu K H. 2020. Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan Plateau and tectonic implications of the Haiyuan fault[J]. Tectonophysics, 774: 228274. doi: 10.1016/j.tecto.2019.228274 [33] Styron R H, Taylor M H, Sundell K E, et al. 2013. Miocene initiation and acceleration of extension in the south Lunggar rift, western Tibet: Evolution of an active detachment system from structural mapping and (U-Th)/He thermochronology[J]. Tectonics, 32(4): 880-907. [34] 陶亚玲, 张会平, 葛玉魁, 等. 2020. 青藏高原东缘新生代隆升剥露与断裂活动的低温热年代学约束[J]. 地球物理学报, 63(11): 4154-4167Tao Y L, Zhang H P, Ge Y K, et al. 2020. Cenozoic exhumation and fault activities across the eastern Tibet: Constraints from low-temperature thermochronological data[J]. Chinese Journal of Geophysics, 63(11): 4154-4167 (in Chinese). [35] Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 [36] 滕吉文, 王绍舟, 姚振兴, 等. 1980. 青藏高原及其邻近地区的地球物理场特征与大陆板块构造[J]. 地球物理学报, 23(3): 254-268Teng J W, Wang S Z, Yao Z X, et al. 1980. Characteristics of the geophysical fields and plate tectonics of the Qinghai-Xizang Plateau and its neighbouring regions[J]. Chinese Journal of Geophysics, 23(3): 254-268 (in Chinese). [37] Tian J H, Gao Y, Luo Y. 2023. Deep seismogenic tectonics of Yangbi Ms6.4 on 21 May 2021 in the SE margin of the Tibetan plateau from earthquake sequence relocation, stress field and seismic anisotropy[J]. Tectonophysics, 851: 229768. doi: 10.1016/j.tecto.2023.229768 [38] van Hinsbergen D J J, Lippert P C, Li S H, et al. 2019. Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives[J]. Tectonophysics, 760: 69-94. doi: 10.1016/j.tecto.2018.04.006 [39] Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. [40] 王琼, 李翀, 于常青, 等. 2017.2017年第5届青藏东部构造与地球物理研讨会(WTGTP)在林芝顺利召开[J]. 国际地震动态, 11(467): 37-38Wang Q, Li C, Yu C Q, et al. 2017. The 5th workshop on tectonics and geophysics in the east part of Tibetan Plateau (WTGTP) was held in 2017 in Linzhi, China[J]. Recent Developments in World Seismology, 11(467): 37-38 (in Chinese). [41] Wang Y, Zhang L F, Li Z H. 2022. Metamorphic densification can account for the missing felsic crust of the Greater Indian continent[J]. Communications Earth & Environment, 3: 166. [42] 王志, 王剑, 付修根. 2021. 青藏高原东缘—扬子特提斯构造域深部结构与地壳形变研究[J]. 地质论评, 67(1): 1-13Wang Z, Wang J, Fu X G. 2021. Deep structure and crustal deformation in the Tethys tectonic domain of the eastern Xizang (Tibetan) margin—Yangtze Platform[J]. Geological Review, 67(1): 1-13 (in Chinese). [43] 王宗秀. 1995. 俯冲带楔体中逆冲构造的形成及演化──构造物理模拟实验研究[J]. 地球学报, 16(2): 165-176Wang Z X. 1995. Formation and evolution of thrust in the wedge of subduction zone: Experiment research on tectonophysics modeling[J]. Acta Geoscientia Sinica, 16(2): 165-176 (in Chinese). [44] 武粤, 李国辉, 高原. 2021. 第八届青藏高原东部构造与地球物理研讨会(WTGTP2020)反映的新进展[J]. 地震科学进展, 51(12): 529-546 doi: 10.3969/j.issn.2096-7780.2021.12.001Wu Y, Li G H, Gao Y. 2021. Advancement in geophysics and continental dynamics of the Tibetan Plateau: Review of the WTGTP2020[J]. Progress in Earthquake Sciences, 51(12): 529-546 (in Chinese). doi: 10.3969/j.issn.2096-7780.2021.12.001 [45] 谢周敏, 蔡永恩, 吉岡祥一, 等. 2022. 利用断层应力积累探讨大地震发生的地点——以日本2011年东北9级大地震为例[J]. 地球物理学报, 65(1): 1-11Xie Z M, Cai Y E, Yoshioka S, et al. 2022. Exploring the location of large earthquakes using fault stress accumulation—A case study upon MW9.0 Tohoku-Oki earthquake in Japan[J]. Chinese Journal of Geophysics, 65(1): 1-11 (in Chinese). [46] Xu Y G. 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism[J]. Physics and Chemistry of the Earth-Part A: Solid Earth and Geodesy, 26(9-10): 747-757. doi: 10.1016/S1464-1895(01)00124-7 [47] Xu Y X, Zhang Y, Yang B, et al. 2022. Phanerozoic evolution of lithospheric structures of the North China Craton[J]. Geophysical Research Letters, 49: e2022GL098341. [48] 许志琴, 杨经绥, 李文昌, 等. 2012. 青藏高原南部与东南部重要成矿带的大地构造定格与找矿前景[J]. 地质学报, 86(12): 1857-1868Xu Z Q, Yang J S, Li W C, et al. 2012. Tectonic background of important metallogenic belts in the southern and southeastern Tibetan Plateau and ore prospecting[J]. Acta Geologica Sinica, 86(12): 1857-1868 (in Chinese). [49] 许志琴, 李广伟, 张泽明, 等. 2022. 再探青藏高原十大关键地学科学问题——《地质学报》百年华诞纪念[J]. 地质学报, 96(1): 65-94Xu Z Q, Li G W, Zhang Z M, et al. 2022. Review ten key geological issues of the Tibetan Plateau——Commemoration of the centennial anniversary of Acta Geologica Sinica[J]. Acta Geologica Sinica, 96(1): 65-94 (in Chinese). [50] Yakovlev P V, Clark M K. 2014. Conservation and redistribution of crust during the Indo-Asian collision[J]. Tectonics, 33: 1016-1027. doi: 10.1002/2013TC003469 [51] Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211 [52] 曾融生, 朱介寿, 周兵, 等. 1992. 青藏高原及其东部邻区的三维地震波速度结构与大陆碰撞模型[J]. 地震学报, 14(S1): 523-533Zeng R S, Zhu J S, Zhou B, et al. 1992.3-D seismic wave velocity structure in Tibetan Plateau and its eastern neighboring regions and the continental collision model[J]. Acta Seismologica Sinica, 14(S1): 523-533 (in Chinese). [53] Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812. doi: 10.1130/G20554.1 [54] 张岳桥, 施炜, 董树文. 2019. 华北新构造: 印欧碰撞远场效应与太平洋俯冲地幔上涌之间的相互作用[J]. 地质学报, 93(5): 971-1001Zhang Y Q, Shi W, Dong S W. 2019. Neotectonics of north China: Interplay between far-field effect of India-Eurasia collision and Pacific subduction related deep-seated mantle upwelling[J]. Acta Geologica Sinica, 93(5): 971-1001 (in Chinese). -

计量
- 文章访问数: 162
- HTML全文浏览量: 125
- PDF下载量: 59
- 被引次数: 0