• ISSN 2097-1893
  • CN 10-1855/P

对流层臭氧污染对植物生理影响的研究进展

黎武标 王永达 姜文英

引用本文: 黎武标,王永达,姜文英. 2024. 对流层臭氧污染对植物生理影响的研究进展. 地球与行星物理论评(中英文),55(2):195-204
Li W B, Wang Y D, Jiang W Y. 2024. Impacts of tropospheric ozone pollution on plant physiology: Current status and future perspectives. Reviews of Geophysics and Planetary Physics, 55(2): 195-204 (in Chinese)

对流层臭氧污染对植物生理影响的研究进展

doi: 10.19975/j.dqyxx.2023-021
基金项目: 中国科学院战略性先导科技专项(XDB26000000);中国科学院地质与地球物理研究所重点部署项目(IGGCAS-201905)
详细信息
    作者简介:

    黎武标(1992-),男,博士研究生,主要从事第四纪环境变化的研究. E-mail:liwubiao@mail.iggcas.ac.cn

    通讯作者:

    姜文英(1968-),女,研究员,主要从事孢粉学与古环境研究. E-mail:wjiang@mail.iggcas.ac.cn

  • 中图分类号: P66

Impacts of tropospheric ozone pollution on plant physiology: Current status and future perspectives

Funds: Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB26000000) , and the Key Research Program of Institute of Geology and Geophysics, Chinese Academy of Sciences (Grant No. IGGCAS-201905)
  • 摘要: 对流层臭氧是一种存在于近地面、对动植物有害的光化学污染物,定量评估和研究其对植物生理的影响和机制对保障全球粮食安全和人体健康具有至关重要的作用. 由于过去三十年的快速工业化和城市化,对流层臭氧浓度正以每年约0.5%~2%的速度上升. 针对当前臭氧污染加剧的情况,根据前人的基础理论研究和实验探索,本文就臭氧对植物表观、花粉和光合作用的影响特征及机制进行了总结和分析,得到以下认识:(1)臭氧污染下植物叶片受损、光合速率和固碳能力下降,影响干物质的积累与分配,是造成作物减产的主要原因;(2)臭氧污染导致花粉细胞膜受损,细胞脂质过氧化,改变了过敏原蛋白质的结构,增加了人体呼吸道过敏的风险. 受损的化石花粉在沉积物中也有发现,通常与大规模生物灭绝同时期,推测与火山爆发或全球快速变暖导致的臭氧浓度增加有关. 这些发现表明应加强自然环境下臭氧对植物生态习性的影响研究,重视植物地下生态过程的影响,开展缓解臭氧对作物影响和耐臭氧品种选育的研究.

     

  • 图  1  北半球地表高浓度臭氧区域分布(修改自Van Dingenen et al., 2009)与臭氧浓度月均变化图. 臭氧月均变化数据来源自中国环境监测总站(http://www.cnemc.cn/jcbg/kqzlzkbg/)和美国环保署(https://aqs.epa.gov/aqsweb/airdata/download_Files.html);作物长势数据来源自全球农情遥感速报系统(http://cloud.cropwatch.com.cn/site/bulletin

    Figure  1.  Regional distribution of high ozone concentrations in the Northern Hemisphere (modified from Van Dingenen et al., 2009) , and the monthly average variation of ozone concentration in central northern India, the Yangtze River Delta and midwestern USA [Data sources: Environmental Monitoring of China (http://www.cnemc.cn/jcbg/kqzlzkbg/); United States Environmental Protection Agency (https://aqs.epa.gov/aqsweb/airdata/download_Files.html) and Cropwatch (http://cloud.cropwatch.com.cn/site/bulletin)]

    图  2  臭氧对植物生理的影响. (a)健康生长的水稻与(b)水稻叶片表面出现锈斑(修改自Frei, 2015);(c)和(d)水稻小穗发育不良(修改自Wang et al., 2012);(e)蓝桉花粉正常的大小和结构与(f)蓝桉花粉收缩,形状异常,一些颗粒物附着在表面(修改自Azzazy, 2016);(g)悬铃木花粉正常的大小和结构与(h)悬铃木花粉外壁受损(修改自Zhou et al., 2021

    Figure  2.  Effects of high ozone concentrations on three aspects of plant physiology. (a) Control group of rice and (b) visible foliar injury in rice (modified from Frei, 2015); (c) and (d) Rice spikelet degeneration (modified from Wang et al., 2012); (e) The normal size and structure of Eucalyptus globulus Labill pollen and (f) abnormal shapes of pollen grains, with several particles adhering to the surface (modified from Azzazy, 2016); (g) The normal size and structure of Platanaceae pollen and (h) damage to the pollen cell membrane (modified from Zhou et al., 2021)

    表  1  臭氧对植物不同发育阶段的影响

    Table  1.   Effects of ozone on different growth stages of plants

    发育阶段臭氧浓度受试植物症状参考文献
    生殖阶段61 ppb/6 h蓝桉花粉缩小、变薄,表面有突起Cuinica et al., 2013; Azzazy, 2016
    115 ppb/16 h桦树花粉蛋白质含量下降Zhu et al., 2018
    生长阶段50 ppb、100 ppb和
    200 ppb
    冬小麦光合速率分别降低2%、19%和46%郭建平等,2001
    45 ppb/7 h水稻叶片有零星黄色、锈色斑点Sharps et al., 2021
    45 ppb/49 d水稻叶面褪绿,严重时扩展到叶背Nouchi et al., 1991
    50~100 ppb/56 d水稻、
    小麦
    叶片变薄枯黄、卷曲、失水直到坏死Nouchi et al., 1991
    111 ppb/12 h棉花、
    番茄
    根冠薄化、根长缩短和根重降低Grantz et al., 2003; Thwe et al., 2013
    成熟阶段40 ppb冬小麦减产8.5%~14%Lin et al., 2018
    40 ppb水稻减产3.9%~14%Lin et al., 2018
    40 ppb玉米减产2.2%~5.5%Lin et al., 2018
    40 ppb小麦减产10%Feng and Kobayashi, 2009
    60 ppb水稻减产18%Feng, 2003
    100 ppb水稻减产39.9%Shao et al., 2020
    下载: 导出CSV
  • [1] Ahmad R, Zuily-Fodil Y, Passaquet C, et al. 2015. Molecular cloning, characterization and differential expression of novel phytocystatin gene during tropospheric ozone stress in maize (Zea mays) leaves[J]. Comptes Rendus Biologies, 338: 141-148. doi: 10.1016/j.crvi.2014.12.007
    [2] Akhtar N, Yamaguchi M, Inada H, et al. 2010. Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L. ) [J]. Environmental Pollution, 158: 1763-1767. doi: 10.1016/j.envpol.2009.11.011
    [3] Alves E S, Moura B B, Pedroso A N V, et al. 2016. Cellular markers indicative of ozone stress on bioindicator plants growing in a tropical environment[J]. Ecological Indicators, 67: 417-424. doi: 10.1016/j.ecolind.2016.03.011
    [4] Andersen C P. 2003. Source–sink balance and carbon allocation below ground in plants exposed to ozone[J]. New Phytologist, 157: 213-228. doi: 10.1046/j.1469-8137.2003.00674.x
    [5] Anfossi D, Sandroni S, Viarengo S. 1991. Tropospheric ozone in the nineteenth century: The Moncalieri series[J]. Journal of Geophysical Research: Atmospheres, 96: 17349-17352. doi: 10.1029/91JD01474
    [6] Ashrafuzzaman M, Lubna F A, Holtkamp F, et al. 2017. Diagnosing ozone stress and differential tolerance in rice (Oryza sativa L. ) with ethylenediurea (EDU) [J]. Environmental Pollution, 230: 339-350. doi: 10.1016/j.envpol.2017.06.055
    [7] Azzazy M. 2016. Environmental impacts of industrial pollution on pollen morphology of Eucalyptus globulus Labill (Myrtaceae) [J]. Journal of Applied Biology & Biotechnology, 4: 057-062.
    [8] Bashir M E, Ward J M, Cummings M, et al. 2013. Dual function of novel pollen coat (surface) proteins: IgE-binding capacity and proteolytic activity disrupting the airway epithelial barrier[J]. Plos One, 8(1), e53337.
    [9] Bates K H, Jacob D J. 2020. An expanded definition of the odd oxygen family for tropospheric ozone budgets: Implications for ozone lifetime and stratospheric influence[J]. Geophysical Research Letters, 47: e2019GL084486.
    [10] Beck I, Jochner S, Gilles S, et al. 2013. High environmental ozone levels lead to enhanced allergenicity of birch pollen[J]. PloS One, 8: e80147. doi: 10.1371/journal.pone.0080147
    [11] Beerling D J, Harfoot M, Lomax B, et al. 2007. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps[J]. . Philosophical Transactions of the Royal Society of London Series A, 365: 1843-1866.
    [12] Brimblecombe P. 2019. Air Pollution Episodes[M]// Nriagu J O. Encyclopedia of Environmental Health (Second Edition). Place Published: Elsevier, 41-48.
    [13] 曹际玲, 朱建国, 曾青, 等. 2012. 对流层臭氧浓度升高对植物光合特性影响的研究进展[J]. 生物学杂志, 2012, 29(1): 66-70 doi: 10.3969/j.issn.2095-1736.2012.01.066

    Cao J L, Zhu J G, Zeng, Q, et al. 2012. Research advance in the effect of elevated O3 on characteristics of photosynthesis[J]. Journal of Biology, 29(1): 66-70 (in Chinese). doi: 10.3969/j.issn.2095-1736.2012.01.066
    [14] Castagna A, Nali C, Ciompi S, et al. 2001. Ozone exposure affects photosynthesis of pumpkin (Cucurbita pepo) plants[J]. New Phytologist, 152: 223-229. doi: 10.1046/j.0028-646X.2001.00253.x
    [15] Chehregani A, Majde A, Moin M, et al. 2004. Increasing allergy potency of Zinnia pollen grains in polluted areas[J]. Ecotoxicology and Environmental Safety, 58: 267-272. doi: 10.1016/j.ecoenv.2003.12.004
    [16] Chuwah C, van Noije T, van Vuuren D P, et al. 2015. Global impacts of surface ozone changes on crop yields and land use[J]. Atmospheric Environment, 106: 11-23. doi: 10.1016/j.atmosenv.2015.01.062
    [17] Cohen A J, Brauer M, Burnett R, et al. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015[J]. The Lancet, 389: 1907-1918. doi: 10.1016/S0140-6736(17)30505-6
    [18] Cooper O R, Parrish D D, Ziemke J, et al. 2014. Global distribution and trends of tropospheric ozone: An observation-based review[J]. Elementa: Science of the Anthropocene, 2: 000029. doi: 10.12952/journal.elementa.000029
    [19] Cuinica L G, Abreu I, Gomes C R, et al. 2013. Exposure of Betula pendula Roth pollen to atmospheric pollutants CO, O3 and SO2[J]. Grana, 52: 299-304. doi: 10.1080/00173134.2013.830145
    [20] D'Amato G, Cecchi L, D'Amato M, et al. 2010. Urban air pollution and climate change as environmental risk factors of respiratory allergy: An update[J]. Journal of Investigational Allergology & Clinical Immunology, 20: 95-102.
    [21] De Marco A, Garcia-Gomez H, Collalti A, et al. 2022. Ozone modelling and mapping for risk assessment: An overview of different approaches for human and ecosystems health[J]. Environmental Research, 211: 113048. doi: 10.1016/j.envres.2022.113048
    [22] Dong C, Gao R, Zhang X, et al. 2021. Assessment of O3-induced crop yield losses in northern China during 2013–2018 using high-resolution air quality reanalysis data[J]. Atmospheric Environment, 259(12): 118527. DOI: 10.1016/j.atmosenv.2021.118527.
    [23] Emberson L D, Pleijel H, Ainsworth E A, et al. 2018. Ozone effects on crops and consideration in crop models[J]. European Journal of Agronomy, 100: 19-34. doi: 10.1016/j.eja.2018.06.002
    [24] Felzer B, Kicklighter D, Melillo J, et al. 2004. Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model[J]. Tellus, 56B: 230-248.
    [25] Feng Z. 2003. Effects of ground-level ozone O3 pollution on the yields of rice and winter wheat in the Yangtze River Delta[J]. Journal of Environmental Sciences, 15: 360-362.
    [26] Feng Z, Kobayashi K. 2009. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis[J]. Atmospheric Environment, 43: 1510-1519. doi: 10.1016/j.atmosenv.2008.11.033
    [27] Frei M. 2015. Breeding of ozone resistant rice: Relevance, approaches and challenges[J]. Environmental Pollution, 197: 144-155. doi: 10.1016/j.envpol.2014.12.011
    [28] Gao F, Calatayud V, García-Breijo F, et al. 2016. Effects of elevated ozone on physiological, anatomical and ultrastructural characteristics of four common urban tree species in China[J]. Ecological Indicators, 67: 367-379. doi: 10.1016/j.ecolind.2016.03.012
    [29] Gao Z, Sagi M, Lips S H. 1998. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L. ) as affected by salinity[J]. Plant Science, 135: 149-159. doi: 10.1016/S0168-9452(98)00085-5
    [30] Gao Z, Sun B, Chen Z, et al. 2021. Phosphoproteomic analysis of ozone stress-responsive mechanisms in grapevine identifies KEG required for stress regulation[J]. Plant Science, 311: 111008. doi: 10.1016/j.plantsci.2021.111008
    [31] Grantz D A. 2003. Ozone impacts on cotton: towards an integrated mechanism[J]. Environmental Pollution, 126: 331-344. doi: 10.1016/S0269-7491(03)00246-X
    [32] Grantz D A, Silva V, Toyota M, et al. 2003. Ozone increases root respiration but decreases leaf CO2 assimilation in cotton and melon[J]. Journal of Experimental Botany, 54: 2375-2384. doi: 10.1093/jxb/erg261
    [33] Grewling Ł, Bogawski P, Kostecki Ł, et al. 2020. Atmospheric exposure to the major Artemisia pollen allergen (Art v 1): Seasonality, impact of weather, and clinical implications[J]. Science of the Total Environment, 713: 136611. doi: 10.1016/j.scitotenv.2020.136611
    [34] Grundström M, Dahl Å, Ou T, et al. 2017. The relationship between birch pollen, air pollution and weather types and their effect on antihistamine purchase in two Swedish cities[J]. Aerobiologia, 33: 457-471. doi: 10.1007/s10453-017-9478-2
    [35] Guarin J, Jägermeyr J, Emberson L, et al. 2022. Impacts of tropospheric ozone and climate change on globalagricultural production[C]// AGU Fall Meeting Abstracts, pp. GC46C-09, Chicago, USA.
    [36] Guarin J R, Kassie B, Mashaheet A M, et al. 2019. Modeling the effects of tropospheric ozone on wheat growth and yield[J]. European Journal of Agronomy, 105: 13-23. doi: 10.1016/j.eja.2019.02.004
    [37] Guidi L, Nali C, Ciompi S, et al. 1997. The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars[J]. Journal of Experimental Botany, 48: 173-179. doi: 10.1093/jxb/48.1.173
    [38] 郭建平, 王春乙, 白月明, 等. 2001. 大气中臭氧浓度变化对冬小麦生理过程和籽粒品质的影响[J]. 应用气象学报, 12(2): 255-256.

    Guo J P, Wang C Y, Bai Y M, et al. 2001. Effects of ozone concentration change in the atmosphere on physiological process and grain quality of winter wheat[J]. Quarterly Journal of Applied Meteorology, 12(2): 225-256 (in Chinese).
    [39] Gupta A, Yadav D S, Agrawal S B, Agrawal M. 2023. Individual effects of high temperature and tropospheric ozone on tomato: A review[J]. Journal of Plant Growth Regulation, 42: 1421-1443. doi: 10.1007/s00344-022-10678-2
    [40] Gupta P, Duplessis S, White H, et al. 2005. Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and tropospheric O3[J]. New Phytologist, 167: 129-141. doi: 10.1111/j.1469-8137.2005.01422.x
    [41] Hassan I A, Ashmore M R, Bell J N B. 1994. Effects of O3 on the stomatal behaviour of Egyptian varieties of radish (Raphanus sativus L. cv. Baladey) and turnip (Brassica rapa L. cv. Sultani) [J]. New phytologist, 128: 243-249. doi: 10.1111/j.1469-8137.1994.tb04008.x
    [42] Haynes P H, McIntyre M E, Shepherd T G, et al. 1991. On the “Downward Control” of extratropical diabatic circulations by eddy-induced mean zonal forces[J]. Journal of Atmospheric Sciences, 48: 651-678. doi: 10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2
    [43] Hochuli P A, Schneebeli-Hermann E, Mangerud G, et al. 2017. Evidence for atmospheric pollution across the Permian-Triassic transition[J]. Geology, 45: 1123-1126.
    [44] Hoshika Y, Omasa K, Paoletti E. 2013. Both ozone exposure and soil water stress are able to induce stomatal sluggishness[J]. Environmental and Experimental Botany, 88: 19-23. doi: 10.1016/j.envexpbot.2011.12.004
    [45] IPCC. 2019. Summary for Policymakers[R]// Shukla P R, Skea J, Buendia E C, et al. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://doi.org/10.1017/9781009157988.001.
    [46] Islam M S, Matsui T, Yoshida Y. 1996. Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity[J]. Scientia Horticulturae, 65: 137-149. doi: 10.1016/0304-4238(95)00867-5
    [47] Junqua M, Biolley J P , Pie S , et al. 2000. In vivo occurrence of carbonyl residues in Phaseolus vulgaris proteins as a direct consequence of a chronic ozone stress[J]. Plant Physiology and Biochemistry, 38(11): 853−861. doi: 10.1016/S0981-9428(00)01193-1
    [48] Kannaujia R, Srivastava C M, Prasad V, et al. 2019. Phyllanthus emblica fruit extract stabilized biogenic silver nanoparticles as a growth promoter of wheat varieties by reducing ROS toxicity[J]. Plant Physiology and Biochemistry, 142: 460-471. doi: 10.1016/j.plaphy.2019.08.008
    [49] Karmakar S, Baul Das A, Gurung C, Ghosh C. 2022. Effects of ozone on plant health and environment: A mini review[J]. Research Journal of Agricultural Sciences, 13: 612-619.
    [50] Kasana M S. 1991. Sensitivity of three leguminous crops to O3 as influenced by different stages of growth and development[J]. Environmental Pollution, 69: 131-149. doi: 10.1016/0269-7491(91)90139-N
    [51] 梁晶, 曾青, 朱建国, 等. 2010. 开放式臭氧浓度升高对水稻叶片气体交换和荧光特性的影响[J]. 光谱学与光谱分析, 30(4): 991-995 doi: 10.3964/j.issn.1000-0593(2010)04-0991-05

    Liang J, Zeng Q, Zhu J G, et al. 2010. Effects of O3-FACE (ozone-free air control enrichment) on gas exchange and chlorophyll fluorescence of rice leaf[J]. Spectroscopy and Spectral Analysis, 30(4): 991-995 (in Chinese). doi: 10.3964/j.issn.1000-0593(2010)04-0991-05
    [52] 列淦文, 郭淑红, 薛立. 2014. 臭氧胁迫对植物生长影响的综述[J]. 生态科学, 33(3): 607-612

    Lie G W, Guo S H, Xue L. 2014. Effects of ozone stress on major plant physiological functions[J]. Acta Ecologica Sinica, 33(3): 607-612 (in Chinese).
    [53] Lin Y, Jiang F, Zhao J, et al. 2018. Impacts of O3 on premature mortality and crop yield loss across China[J]. Atmospheric Environment, 194: 41-47. doi: 10.1016/j.atmosenv.2018.09.024
    [54] Lyons T M, Barnes J D. 1998. Influence of plant age on ozone resistance in Plantago major[J]. New Phytologist, 138: 83-89. doi: 10.1046/j.1469-8137.1998.00879.x
    [55] Marshall J E A, Lakin J, Troth I, et al. 2020. UV-B radiation was the Devonian-Carboniferous boundary terrestrial extinction kill mechanism[J]. Science Advances, 6(22): eaba0768. doi: 10.1126/sciadv.aba0768
    [56] Martin M J, Host G E, Lenz K E, et al. 2003. Simulating the growth response of aspen to elevated ozone: A mechanistic approach from leaf-level photosynthesis to complex architecture[J]. Developments in Environmental Science, 115(3): 425-436.
    [57] Middleton J, Crafts A, Brewer R, et al. 1956. Plant damage by air pollution: Visible injury to plants by atmospheric pollutants amounts to annual loss of millions of dollars in some affected areas[J]. California Agriculture, 10(6): 9-12.
    [58] Mina U, Kumar P, Varshney C. 2010. Effect of ozone exposure on growth, Yield and isoprene Eemission from tomato (Lycopersicon esculentum L. ) plants[J]. Journal of Fruit and Ornamental Plant Research, 72: 35-48. doi: 10.2478/v10032-010-0004-0
    [59] Monks P S, Archibald A T, Colette A, et al. 2015. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer[J]. Atmospheric Chemistry and Physics, 15(15): 8889-8973. doi: 10.5194/acp-15-8889-2015
    [60] Mosley S. 2014. Environmental History of Air Pollution and Protection[M]// Agnoletti M, Neri Serneri S. The Basic Environmental History. Springer International Publishing, 143-169.
    [61] Nguyen D-H, Lin C, Vu C-T, et al. 2022. Tropospheric ozone and NOx: A review of worldwide variation and meteorological influences[J]. Environmental Technology & Innovation, 28: 102809.
    [62] Nouchi I, Ito O, Harazono Y, et al. 1991. Effects of chronic ozone exposure on growth, root respiration and nutrient uptake of rice plants[J]. Environmental Pollution, 74: 149-164. doi: 10.1016/0269-7491(91)90111-9
    [63] Paoletti E. 2006. Impact of ozone on Mediterranean forests: A review[J]. Environmental Pollution, 144: 463-474. doi: 10.1016/j.envpol.2005.12.051
    [64] Paoletti E, Grulke N E. 2010. Ozone exposure and stomatal sluggishness in different plant physiognomic classes[J]. Environmental Pollution, 158: 2664-2671. doi: 10.1016/j.envpol.2010.04.024
    [65] Prozherina N, Freiwald V, Rousi M, et al. 2003. Interactive effect of springtime frost and elevated ozone on early growth, foliar injuries and leaf structure of birch (Betula pendula) [J]. New Phytologist, 159: 623-636. doi: 10.1046/j.1469-8137.2003.00828.x
    [66] Rahman A, Luo C, Khan M H R. , et al. 2019. Influence of atmospheric PM2.5, PM10, O3, CO, NO2, SO2, and meteorological factors on the concentration of airborne pollen in Guangzhou, China[J]. Atmospheric Environment, 212: 290-304. doi: 10.1016/j.atmosenv.2019.05.049
    [67] Rai R, Agrawal M, Agrawal S B. 2011. Effects of ambient O3 on wheat during reproductive development: Gas exchange, photosynthetic pigments, chlorophyll fluorescence, and carbohydrates[J]. Photosynthetica, 49: 285-294. doi: 10.1007/s11099-011-0038-7
    [68] Ramya A, Dhevagi P, Rakesh S S, et al. 2021. Detection of ozone stress in rice cultivars using spectral reflectance[J]. Environmental Advances, 6: 100129. doi: 10.1016/j.envadv.2021.100129
    [69] Rich S, Taylor G S. 1960. Antiozonants to protect plants from ozone damage[J]. Science, 132: 150-151. doi: 10.1126/science.132.3420.150
    [70] Richards B L, Middleton J T, Hewitt W B. 1959. Ozone stipple of grape leaf lesions on the upper leaf surfaces and premature leaf fall occur on grapevines in areas polluted by air-borne ozone[J]. California Agriculture, 13: 4-11.
    [71] Roberts H R, Dodd I C, Hayes F, Ashworth K. 2022. Chronic tropospheric ozone exposure reduces seed yield and quality in spring and winter oilseed rape[J]. Agricultural and Forest Meteorology, 316: 108859. doi: 10.1016/j.agrformet.2022.108859
    [72] Rouvinen J, Jänis J, Laukkane, M-L, et al. 2010. Transient dimers of allergens[J]. PloS One, 5: e9037. doi: 10.1371/journal.pone.0009037
    [73] Sandermann H, Wellburn A R, Heath R L, et al. 1996. Forest decline and ozone. A comparison of controlled chamber and field experiments[J]. Trends in Ecology & Evolution, 12: 450-450.
    [74] Schauberger B, Rolinski S, Schaphoff S, et al. 2019. Global historical soybean and wheat yield loss estimates from ozone pollution considering water and temperature as modifying effects[J]. Agricultural and Forest Meteorology, 265: 1-15. doi: 10.1016/j.agrformet.2018.11.004
    [75] Scheidegger C, Schroeter B. 1995. Effects of ozone fumigation on epiphytic macrolichens: Ultrastructure, CO2 gas exchange and chlorophyll fluorescence[J]. Environmental Pollution, 88: 345-354. doi: 10.1016/0269-7491(95)93449-A
    [76] Self S, Thordarson T, Widdowson M. 2005. Gas fluxes from flood basalt eruptions[J]. Elements, 1: 283-287. doi: 10.2113/gselements.1.5.283
    [77] Shao Z, Zhang Y, Mu H, et al. 2020. Ozone-induced reduction in rice yield is closely related to the response of spikelet density under ozone stress[J]. Science of the Total Environment, 712: 136560. doi: 10.1016/j.scitotenv.2020.136560
    [78] Sharps K, Hayes F, Harmens H, et al. 2021. Ozone-induced effects on leaves in African crop species[J]. Environmental Pollution, 268: 115789. doi: 10.1016/j.envpol.2020.115789
    [79] Staehelin J, Thudium J, Buehler R, et al. 1994. Trends in surface ozone concentrations at Arosa (Switzerland) [J]. Atmospheric Environment, 28: 75-87. doi: 10.1016/1352-2310(94)90024-8
    [80] Staehelin J, Viatte P, Stübi R, et al. 2018. Stratospheric ozone measurements at Arosa (Switzerland): History and scientific relevance[J]. Atmospheric Chemistry and Physics, 18: 6567-6584. doi: 10.5194/acp-18-6567-2018
    [81] Thompson C, Kats G. 1970. Antioxidants reduce grape yield reductions from photochemical smog[J]. California Agriculture, 24: 12-13.
    [82] Thwe A A, Vercambre G, Gautier H, et al. 2013. Dynamic shoot and root growth at different developmental stages of tomato (Solanum lycopersicum Mill. ) under acute ozone stress[J]. Scientia Horticulturae, 150: 317-325. doi: 10.1016/j.scienta.2012.11.015
    [83] Tingey D T, Rodecap K D, Lee E H, et al. 2002. Pod development increases the ozone sensitivity of Phaseolus vulgaris[J]. Water, Air, and Soil Pollution, 139: 325-341.
    [84] Van Dingenen R, Dentener F J, Raes F, et al. 2009. The global impact of ozone on agricultural crop yields under current and future air quality legislation[J]. Atmospheric Environment, 43: 604-618. doi: 10.1016/j.atmosenv.2008.10.033
    [85] Verstraeten W W, Neu J L, Williams J E, et al. 2015. Rapid increases in tropospheric ozone production and export from China[J]. Nature Geoscience, 8: 690-695. doi: 10.1038/ngeo2493
    [86] Vingarzan R. , 2004. A review of surface ozone background levels and trends[J]. Atmospheric Environment, 38: 3431-3442. doi: 10.1016/j.atmosenv.2004.03.030
    [87] Wang Y, Yang L, Kobayashi K, et al. 2012. Investigations on spikelet formation in hybrid rice as affected by elevated tropospheric ozone concentration in China[J]. Agriculture, Ecosystems & Environment, 150: 63-71.
    [88] Weber J A, Clark C S, Hogsett W E. 1993. Analysis of the relationships among O3 uptake, conductance, and photosynthesis in needles of Pinus ponderosa[J]. Tree Physiology, 13: 157-172. doi: 10.1093/treephys/13.2.157
    [89] Wittig V E, Ainsworth E A, Naidu S L, et al. 2009. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis[J]. Global Change Biology, 15: 396–424. doi: 10.1111/j.1365-2486.2008.01774.x
    [90] Wu S, Mickley L J, Jacob D J, et al. 2007. Why are there large differences between models in global budgets of tropospheric ozone?[J]. Journal of Geophysical Research: Atmospheres, 112(D5): D05302.
    [91] Yahia E M, Contreras-Padilla M, Gonzalez-Aguilar G. 2001. Ascorbic acid content in relation to ascorbic acid oxidase activity and polyamine content in tomato and bell pepper fruits during development, maturation and senescence[J]. LWT - Food Science and Technology, 34: 452-457. doi: 10.1006/fstl.2001.0790
    [92] Yan K, Chen W, He X, et al. 2010. Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3[J]. Environmental and Experimental Botany, 69: 198-204. doi: 10.1016/j.envexpbot.2010.03.008
    [93] Younglove T, McCool P M, Musselman R C, et al. 1994. Growth-stage dependent crop yield response to ozone exposure[J]. Environmental Pollution, 86: 287–295. doi: 10.1016/0269-7491(94)90169-4
    [94] Zhang W, Niu J, Wang X, et al. 2011. Effects of ozone exposure on growth and photosynthesis of the seedlings of Liriodendron chinense (Hemsl. ) Sarg, a native tree species of subtropical China[J]. Photosynthetica, 49: 29-36. doi: 10.1007/s11099-011-0003-5
    [95] Zhou S, Wang X, Lu S, et al. 2021. Characterization of allergenicity of Platanus pollen allergen a 3 (Pla a 3) after exposure to NO2 and O3[J]. Environmental Pollution, 278: 116913. doi: 10.1016/j.envpol.2021.116913
    [96] Zhu C, Farah J, Choël M, et al. 2018. Uptake of ozone and modification of lipids in Betula Pendula pollen[J]. Environmental Pollution, 242: 880-886. doi: 10.1016/j.envpol.2018.07.025
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  93
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-06-16
  • 录用日期:  2023-06-19
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回