Development and application of automated processing tool for time series deformation analysis using open-source GMTSAR and iGPS software
-
摘要: 地表形变是地球内部多种物理过程的表现,是探索深部地球物理环境的重要工具. 近年来随着数据和软件的丰富,合成孔径雷达干涉(Interferometric Synthetic Aperture Radar, InSAR)技术常被作为探测地壳形变的首选手段,因而快速掌握处理技术成为构造地质和地震过程等研究领域从业者的迫切需求. 本文扩展了形变时序分析软件包iGPS的功能,开发了一套基于InSAR开源软件GMTSAR的辅助处理程序,实现了时序InSAR分析流程的自动化,具备数据自动获取、干涉自主组织、时序分析调用、形变结果分析与展示等功能,显著简化了处理过程;以青藏高原西部现今地壳形变探测为例,详述了自动化处理流程,并与GNSS速度场进行对比检验了形变结果的可靠性. 本文处理了2015年6月至2022年9月期间Sentinel-1卫星T12轨道的61期成像数据,获取了南北跨度上千千米的InSAR形变场,显示伴随青藏高原地壳东向挤出而产生的左旋剪切主要发生在高原北部,尤其是阿尔金断裂带、玛尔盖茶卡—昆仑断裂带之间的地带,吸收了大部分塔里木盆地与青藏高原之间的相对运动;带内活动断裂分布较近,构造形变混叠在一起难以有效分离,使得准确地估计阿尔金断裂带的现今滑动速率面临挑战. 本文系统地梳理了如何借助开源InSAR软件来实现形变时序的自动化处理,有助于地球物理等领域的研究者快速熟悉与掌握相关知识与技术.
-
关键词:
- 合成孔径雷达干涉测量 /
- GMTSAR /
- 青藏高原 /
- 构造形变 /
- iGPS
Abstract:Surface crustal deformation is often used to explore physical processes within the interior of the Earth. The observable surface changes can reflect variable subsurface physical processes that are usually inaccessible to modern instruments. For example, surface displacement observations have been widely used to study the geometric parameters of faults and slip distributions of earthquakes, to estimate interseismic slip rates and locking depths of active faults, and to constrain the physical properties of rock at depth. Therefore, a comprehensive knowledge of crustal deformation plays a key role in evaluating the seismic hazard probability in areas with active faults, particularly for heavily populated areas such as the North-South (Nanbei) Seismic Belt in western China. The two most widely used techniques for monitoring crustal movement are the Global Navigation Satellite System (GNSS) and interferometric synthetic aperture radar (InSAR). The former involves extensive fieldwork and is only applicable at locations with convenient transportation facilities. The latter can cover a relatively large region at significantly lower cost. With the increase of SAR data since the launch of Sentinel-1A satellite in 2014, InSAR has been the preferred tool for monitoring crustal deformation. Thus, there is an urgent need for a proficient application of this technique. Based on the iGPS time series analysis package, we developed a suite of programs that incorporate the open source InSAR software-GMTSAR to automate and facilitate the processing procedure of time series InSAR analysis. It can automatically download data, organize the interferometric processing tasks, perform time series, conduct data analysis, and visualize results. We first introduce the interferometric functionalities of GMTSAR and iGPS software. The processing flowchart is described in detail by deriving the present-day slow crustal deformation of the western Tibetan Plateau as an example. Owing to high coherence inherently for the Tibetan Plateau, using Sentinel-1 ascending track T12 data collected during June 2015 to September 2022, we demonstrated that a dense InSAR average velocity map of high accuracy could be obtained for a vast area spanning over 1000 km. The InSAR results showed that the eastward extrusion of the Tibetan Plateau resulted in rapid shear slip within a narrow belt between the Altyn Tagh and Margai Caka-Kunlun fault zones, absorbing over half of the relative motion between the Tarim Basin and Tibetan Plateau. This study systematically introduced how to perform automated small baseline subset (SBAS) InSAR processing using open-access SAR data and InSAR software to detect subtle crustal deformation. In the future, InSAR operators can apply this method to conduct their own processing chains for crustal deformation studies with limited inputs. -
Key words:
- InSAR /
- GMTSAR /
- Tibetan Plateau /
- tectonic deformation /
- iGPS
-
图 5 青藏高原现今地壳形变速率(LOS向)剖面. (a)InSAR平均速率图. ATF:阿尔金断裂带;MCF:玛尔盖茶卡断裂带;KLF:昆仑断裂带;RCF:日干配错断裂带;GCF:格仁错断裂带;AKMS:阿尼玛卿—昆仑—木孜塔格缝合带;JSS:金沙缝合带;BNS:班公—怒江缝合带;YZS:雅鲁藏布江缝合带. (b) AB速率剖面,其中灰点为InSAR观测结果,蓝色线为最优位错拟合(断裂两侧200 km范围),红色线为误差区间,红色点为Wang和Shen(2020)的GNSS速度场投影到LOS向的值. (c)类似于图(b),为CD速率剖面
Figure 5. Present-day crustal deformation rate (LOS) for the Tibetan Plateau. (a) InSAR mean velocity map. ATF: Altyn Tagh Fault; MCF: Margai Caka Fault; RCF: Riganpei Co Fault; GCF: Gyaring Co Fault; AKMS: Anyimaqen-Kunlun-Muztagh Suture; JSS: JinSha Suture; BNS: Bangong-Nujiang Suture; YZS: Yarlung-Zangbo Suture; (b) Velocity profile of AB. The gray dots are InSAR results, the blue curves are optimal fitting using the elastic screw dislocation; the red curves represent error ranges; and the red dots are GNSS velocities in Wang and Shen (2020) projected to LOS direction; (c) the same as (b) but for profile CD
表 1 常见InSAR处理软件功能对比
Table 1. Comparison of common InSAR processing software packages
软件 操作方式 干涉并行处理 对流层延迟校正 电离层延迟校正 解缠工具 时序分析工具 许可类型 GAMMA 命令行 支持 (多CPU) 时序 支持 MCF IPTA/第三方(StaMPS) 商业 GMTSAR 命令行 支持 (多CPU) CSS法 支持 Snaphu SBAS/第三方(StaMPS) 开源 ISCE 命令行 支持 (多CPU/GPU) 时序 支持 Snaphu 第三方(Giant或StaMPS) 开源 SARScape 界面、
批处理、
二次开发支持 (GPU/CPU) 时序 - Snaphu 永久散射体(PS) 、
短基线(SBAS) 、
层析SAR商业 SNAP 界面+命令行 - 第三方 支持 Snaphu StaMPS 开源 表 2 GMTSAR软件的主要程序
Table 2. Main programs in the GMTSAR software
程序名称 功能说明 pop_config.csh 自动化生成针对不同SAR数据的配置文件 preproc_batch_tops.csh
preproc_batch_tops_esd.csh对data.in中的原始图像进行预处理、图像配准;esd表示进行ESD配准优化,避免burst边界出现相位跳变 get_baseline_table.csh 基于raw目录中配准后的图像计算空间基线(baseline_table.dat) dem2topo_ra.csh 创建地理编码关系文件,将dem.grd文件由WGS84投影转换到雷达坐标(topo_ra.grd) intf_tops.csh
intf_tops_parallel.csh在intf目录进行干涉处理,生成干涉图、解缠、并生成预览图像文件,结果保存至intf_all目录;parallel表示单机多核CPU并行版的程序(下同) snaphu.csh 干涉图解缠 merge_batch.csh 子条带(subswath)干涉图的合并、解缠等 proj_ra2ll.csh
proj_ll2ra_ascii.csh
proj_ra2ll.csh
proj_ra2ll_ascii.csh
SAT_llt2rat图像、坐标值(ascii文本文件中)在雷达坐标(ra)与地理坐标(ll)之间的相互转换 sbas
sbas_parallelSBAS时序分析,输入数据为雷达坐标/地理坐标下的相干图和解缠后干涉图,生成位移时序文件及平均速率图等 grd2kml.csh 将NetCDF (*.grd)图像转换为KML文件 grd2geotiff.csh 将NetCDF (*.grd)图像转换为GeoTIFF文件 assemble_tops 同一时期多景连续S1图像的拼接(早期版本受到TIFF不能超过4GB大小的限制) cut_slc 配准后SLC文件的裁剪 phasediff 干涉相位生成 SAT_look 计算视线向(line of sight, LOS)方向矢量 表 3 iGPS InSAR分析程序
Table 3. InSAR analysis programs in iGPS
程序名称 功能说明 sh_asf_s1_get_slc_py 下载ASF网站提供的Python脚本文件(download-*.py)中的S1数据文件,保存至数据下载目录 sh_asf_s1_get_slc_roi 基于空间位置、成像时间、轨道等信息,利用ASF API查询所需的S1数据文件并下载 sh_esa_s1_get_aux_orb_gnss 从ESA网站下载S1卫星轨道文件 sh_s1_unzip_manifest 提取S1数据文件(zip格式)中的元数据文件(*.manifest.safe) esa_s1_manifest_overlap 基于元数据文件,通过空间位置匹配挑选出同一地区的S1数据文件,生成待处理的S1列表文件 sh_s1_unzip 将列表文件中的S1数据文件解压至临时目录($esa_unzip) sh_s1_run_tsa 时序分析(time series analysis, TSA)工具,是干涉自动处理主程序,调用GMTSAR完成:原始S1图像拼接、剪裁;主辅图像配准;地理编码转换关系生成;干涉对组合选择;干涉相位生成;相位解缠;相对基准转换;SBAS分析;地理编码等 sh_slc_cut 基于感兴趣区(area of interest, AOI)对配准后的SLC图像文件进行裁剪 sh_sar_intf_all_cut_roi 基于AOI对干涉图进行裁剪 sh_sar_intf_all_corr 相干性统计 sh_slurm_intf_tops 针对单个子条带,基于SLURM实现以干涉对为单位的计算机集群并行处理 sh_slurm_merge_batch 针对合并3个子条带后的整幅干涉图,基于SLURM实现以干涉对为单位的计算机集群并行处理 sh_s1_prep_f123 创建子条带干涉图合并的输入文件 sh_sar_gacos_tgz_unzip
sh_sar_gacos_ztd2ll
sh_sar_gacos_ll2ra
sh_sar_gacos_intf_all
sh_sar_gacos_apply_intf借助于GACOS资料实现对流层大气噪声校正,包括解压原始二进制文件压缩文件包、二进制格式转NetCDF格式、地理坐标系转雷达坐标系、干涉对大气相位差分、干涉图的大气相位校正 sh_sar_cp_intf_png 将已处理干涉对(intf_all)的预览文件(*.png)复制到预览文件目录(intf_all_png) ,以检查干涉相位、生成未处理的干涉对列表、挑选用于SBAS分析的干涉对等 sar_sbas_tab_from_png 基于已处理的干涉对(intf_all_png下的预览文件) ,创建SBAS输入文件(intf.tab、scene.tab) ,绘制干涉对时空基线图 sh_sar_sbas 调用GMTSAR的SBAS程序,并进行形变结果图像掩膜、重采样、格式转换等处理 sh_sar_sbas_corr_mask 统计相干性均值,根据阈值创建掩膜文件,从SBAS形变结果中滤掉低相干区域 sh_gnss_vel2los 将GNSS三维形变场转换到LOS向 sh_gnss_correct_insar_vel InSAR速率图由局部相对基准到GNSS LOS速度场基准的转换 sh_sar_sbas_extract_time_series_lls 提取点的InSAR位移时间序列 sar_los_profile_auto 提取沿断裂线的速率剖面,能够自动生成不同方向速率剖面(图1) sar_los_profile_fit 通过网格搜索,利用经典的弹性位错公式(Savage and Burford,1973)反演走滑断裂的滑动速率及断面闭锁深度 sar_los_profile_fits.m Matlab程序,调用MCMCSTAT程序包(Haario et al.,2006)来实现基于马尔可夫链蒙特卡罗算法(MCMC)的走滑断裂参数反演 表 4 时序InSAR分析涉及的文件和目录
Table 4. Files and directories used in time series InSAR analysis
类型 文件名/格式 所在位置及说明 S1数据文件 S1?_IW_SLC__1S?V_*.zip $esa_data/s1/ S1元数据文件 *.manifest.safe $esa_data/metainfo/manifest.safe/ S1 SLC图像数据及头文件 *.jpgf;*.xml 临时目录 $esa_unzip/
子条带处理目录(F1/F2/F3)下的 raw0/
子条带处理目录下的raw/S1轨道文件 *.EOF 精密轨道星历目录 $esa_data/aux_poeorb/
回归轨道文件目录 $esa_data/aux_resorb/
子条带处理目录下的 raw0/
子条带处理目录下的raw/数字高程模型 dem.grd DEM(digital elevation model)目录 $esa_data/topo/
数据处理主目录
子条带处理目录下的topo/地理编码关系文件 trans.dat 子条带处理目录下的topo/ 雷达坐标下的高程文件 topo_ra.grd 子条带处理目录下的topo/ 图像裁剪范围文件 pins.kml 数据处理主目录;在运行TSA时添加-roi pins.kml参数, pins.kml文件包含2个点要素,点的顺序遵循时间先后次序,要截取的图像成像起始时间在前,结束时间在后,即针对升轨数据,起始点在下,结束点在上;降轨则反之 待处理的SLC数据文件列表 input.lst 数据处理主目录 GMTSAR处理配置文件 batch_tops.config 数据处理主目录 GMTSAR图像配准输入文件 data.in 子条带处理目录;包含待处理的“图像文件-轨道文件”列表文件,第一行为主图像 时空基线文件 baseline_table.dat 子条带处理目录 干涉对集合文件 intf.in 子条带处理目录 干涉处理目录 intf/ 子条带处理目录 干涉相位结果 intf_all/ 子条带处理目录 干涉结果预览图集合 intf_all_png/ 子条带处理目录 SBAS输入参数文件 intf.tab、scene.tab 子条带处理目录 表 5 处理的T12轨道数据列表
Table 5. List of processed data from track T12
序号 观测日期 基线/m 序号 观测日期 基线/m 序号 观测日期 基线/m 1 2020-01-20 0.00 22 2018-05-30 20.19 43 2021-05-02 44.89 2 2015-06-03 −33.78 23 2018-09-03 −133.99 44 2021-05-14 −12.91 3 2015-06-27 −142.92 24 2018-09-15 −61.53 45 2021-05-26 −23.62 4 2015-07-21 −84.94 25 2018-09-27 −9.41 46 2021-09-11 −60.70 5 2015-09-07 −110.88 26 2019-01-01 8.10 47 2021-09-23 6.76 6 2016-01-05 5.40 27 2019-01-13 −42.01 48 2022-01-09 −67.19 7 2016-01-29 58.27 28 2019-01-25 −57.54 49 2022-01-21 38.74 8 2016-05-04 6.70 29 2019-05-01 −104.51 50 2022-05-09 −24.03 9 2016-05-28 −51.58 30 2019-05-13 −46.28 51 2022-05-21 −8.85 10 2016-09-01 111.30 31 2019-09-10 −45.44 52 2022-09-06 −245.82 11 2016-09-25 −94.32 32 2019-09-22 −120.28 53 2022-09-18 −17.67 12 2017-01-23 1.32 33 2020-01-08 38.75 54 2022-09-30 −107.30 13 2017-05-11 −65.76 34 2020-05-07 15.18 55 2023-01-04 69.28 14 2017-05-23 4.25 35 2020-05-19 −7.50 56 2023-01-16 104.84 15 2017-09-08 22.58 36 2020-05-31 −29.85 57 2023-01-28 −97.75 16 2017-09-20 −7.44 37 2020-09-04 7.12 58 2023-02-09 107.14 17 2018-01-06 −3.67 38 2020-09-16 3.27 59 2023-02-21 84.94 18 2018-01-18 13.15 39 2020-09-28 −46.95 60 2023-03-05 −83.10 19 2018-01-30 48.77 40 2021-01-02 −22.61 61 2023-03-17 95.78 20 2018-05-06 −22.02 41 2021-01-14 8.13 21 2018-05-18 −28.20 42 2021-01-26 28.19 -
[1] Aslan G, Lasserre C, Cakir Z, et al. 2019. Shallow creep along the 1999 Izmit earthquake rupture (Turkey) from GPS and high temporal resolution interferometric synthetic aperture radar data (2011–2017)[J]. Journal of Geophysical Research: Solid Earth, 124: 2218-2236. https://doi.org/10.1029/2018JB017022. [2] Baran I, Stewart M P, Kampes B M. et al. 2003. A modification to the Goldsetin Radar interferogram filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 41(9): 2114-2118. doi: 10.1109/TGRS.2003.817212 [3] Chen C W, Zebker H A. 2000. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms[J]. Journal of the Optical Society of America A, 17: 401-414. [4] 程佳, 徐锡伟, 陈桂华. 2020. 基于特大地震发生率的川滇地区地震危险性预测新模型[J]. 地球物理学报, 63(3): 1170-1182Cheng J, Xu X W, Chen G H. 2020. A new prediction model of seismic hazard for the Sichuan-Yunnan region based on the occurrence rate of large earthquakes[J]. Chinese Journal of Geophysics, 63(3): 1170-1182(in Chinese). [5] Corsa B, Barba-Sevilla M, Tiampo K, et al. 2022. Integration of DInSAR time series and GNSS data for continuous volcanic deformation monitoring and eruption early warning applications[J]. Remote Sensing, 14: 784. https://doi.org/10.3390/rs14030784. [6] De Zan F, Guarnieri A M. 2006. TOPSAR: Terrain observation by progressive scans[J]. IEEE Transactions on Geoscience and Remote Sensing, 44(9): 2352-2360. doi: 10.1109/TGRS.2006.873853. [7] Farr T G, Rosen P A, Caro E, et al. 2007. The shuttle radar topography mission[J]. Reviews of Geophysics, 45: RG2004. doi: 10.1029/2005RG000183. [8] 冯楚豪, 严月天, 冯万鹏, 等. 2022. 利用InSAR观测揭示2020年新疆于田MW6.3地震发震构造及对藏北裂谷生长的启示[J]. 地球物理学报, 65(8): 2844-2856 doi: 10.6038/cjg2022P0310Feng C H, Yan Y T, Feng W P, et al. 2022. Seismogenic fault of the 2020 MW6.3 Yutian, Xinjiang earthquake revealed from InSAR observations and its implications for the growth of the rift in the North Tibet[J]. Chinese Journal of Geophysics, 65(8): 2844-2856(in Chinese). doi: 10.6038/cjg2022P0310. [9] Feng W, Lindsey E, Barbot S, et al. 2017. Source characteristics of the 2015 MW7.8 Gorkha (Nepal) earthquake and its MW7.2 aftershock from space geodesy[J]. Tectonophysics, 712-713: 747-758. https://doi.org/10.1016/j.tecto.2016.02.029. [10] 冯万鹏, 何骁慧, 张逸鹏, 等. 2023.2022年青海门源MW6.6地震的发震断层及孕震构造模式[J]. 科学通报, 68(2-3): 254-270 doi: 10.1360/tb-2022-0154Feng W P, He X H, Zhang Y P, et al. 2023. Seismic faults of the 2022 MW6.6 Menyuan, Qinghai earthquake and their implication for the regional seismogenic structures[J]. Chinese Science Bulletin, 68(2-3): 254-270 (in Chinese). doi: 10.1360/tb-2022-0154. [11] Fialko Y, Simons M, Agnew D. 2001. The complete (3-D) surface displacement field in the epicentral area of the 1999 MW7.1 Hector Mine Earthquake, California, from space geodetic observations[J]. Geophysical Research Letters, 28(16): 3063– 3066. doi: 10.1029/2001GL013174 [12] Garthwaite M C, Wang H, Wright T J. 2013. Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR[J]. Journal of Geophysical Research: Solid Earth, 118: 5071–5083. doi: 10.1002/jgrb.50348. [13] Ge W P, Shen Z K, Molnar P, et al. 2022. GPS determined asymmetric deformation across central Altyn Tagh fault reveals rheological structure of northern Tibet[J]. Journal of Geophysical Research: Solid Earth, 127: e2022JB024216. https://doi.org/10.1029/2022JB024216. [14] Ghayournajarkar N, Fukushima Y. 2022. Using InSAR for evaluating the accuracy of locations and focal mechanism solutions of local earthquake catalogues[J]. Geophysical Journal International, 230(1): 607–622. https://doi.org/10.1093/gji/ggac072. [15] Goldstein R M, Werner C L. 1997. Radar ice motion interferometry[C]// Proceedings of 3rd ERS Symposium on Space at the Service of our Environment. Florence, Italy, 969-972. [16] Gomba G, Parizzi A, De Zan F, et al. 2016. Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 54(3): 1446-1461,doi: 10.1109/TGRS.2015.2481079. [17] Haario H, Laine M, Mira A, et al. 2006. DRAM: Efficient adaptive MCMC[J]. Statistics and Computing 16: 339-354. doi: 10.1007/s11222-006-9438-0. [18] He J, Vernant P, Chéry J, et al. 2013. Nailing down the slip rateof the Altyn Tagh fault[J]. Geophysical Research Letters, 40: 5382–5386. doi: 10.1002/2013GL057497. [19] 冀宗童, 张永志, 王思佳. 2021.2020年西藏尼玛MS6.6地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学进展, 36(6): 2312-2319 doi: 10.6038/pg2021EE0489Ji Z T, Zhang Y Z, Wang S J. 2021. Coseismic deformation field and fault slip distribution inversion of the MS6.6 Nima, Xizang earthquake by Sentinel-1A InSAR data[J]. Progress in Geophysics, 36(6): 2312-2319 (in Chinese). doi: 10.6038/pg2021EE0489. [20] Jolivet R, Cattin R, Chamot-Rooke N, et al. 2008. Thin-plate modeling of interseismic deformation and asymmetry across the Altyn Tagh fault zone[J]. Geophysical Research Letters, 35: L02309. doi: 10.1029/2007GL031511. [21] Jolivet R, Lasserre C, Doin M P, et al. 2012. Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry[J]. Journal of Geophysical Research, 117: B06401. doi: 10.1029/2011JB008732. [22] Kaneko Y, Fialko Y, Sandwell D T, et al. 2013. Interseismic deformation and creep along the central section of the North Anatolian fault (Turkey): InSAR observations and implications for rate-and-state friction properties[J]. Journal of Geophysical Research: Solid Earth, 118: 316-331. doi: 10.1029/2012JB009661. [23] Li Y X, Bürgmann R, Zhao B. 2020. Evidence of fault immaturity from shallow slip deficit and lack of postseismic deformation of the 2017 MW6.5 Jiuzhaigou earthquake[J]. Bulletin of the Seismological Society of America, 110(1): 154-165. doi:https://doi.org/ 10.1785/0120190162. [24] Li Y, Bürgmann R, Taira T. 2023. Spatiotemporal variations of surface deformation, shallow creep rate, and slip partitioning between the San Andreas and southern Calaveras Fault[J]. Journal of Geophysical Research: Solid Earth, 128: e2022JB025363. https://doi.org/10.1029/2022JB025363. [25] 李振洪, 朱武, 余琛, 等. 2022. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报, 51(7): 1485-1519 doi: 10.11947/j.AGCS.2022.20220224Li Z H, Zhu W, Yu C, et al. 2022. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 51(7): 1485-1519(in Chinese). doi: 10.11947/j.AGCS.2022.20220224. [26] 林珲, 马培峰, 王伟玺. 2017. 监测城市基础设施健康的星载MT-InSAR方法介绍[J]. 测绘学报, 46(10): 1421-1433 doi: 10.11947/j.AGCS.2017.20170339Lin H, Ma P F, Wang W X. 2017. Urban infrastructure health monitoring with spaceborne multi-temporal synthetic aperture radar interferometry[J]. Acta Geodaetica et Cartographica Sinica, 46(10): 1421-1433(in Chinese). doi: 10.11947/j.AGCS.2017.20170339. [27] Lindsey E O, Natsuaki R, Xu X, et al. 2015. Line-of-sight displacement from ALOS-2 interferometry: MW7.8 Gorkha Earthquake and MW7.3 aftershock[J]. Geophysical Research Letters, 42: 6655– 6661. doi: 10.1002/2015GL065385. [28] Lindsey E O, Almeida R, Mallick R, et al. 2018. Structural control on downdip locking extent of the Himalayan megathrust[J]. Journal of Geophysical Research: Solid Earth, 123: 5265-5278. https://doi.org/10.1029/2018JB015868. [29] Liu Y, Zhao D, Shan X. 2022. Asymmetric interseismic strain across the western Altyn Tagh fault from InSAR[J]. Remote Sensing. 14(9): 2112. https://doi.org/10.3390/rs14092112. [30] 罗毅, 胡应顺, 田云锋, 等. 2021.2014年新疆于田MS7.3地震的发震构造及余震特征[J]. 地震学报, 43(1): 48-56 doi: 10.11939/jass.20200044Luo Y, Hu Y S, Tian Y F, et al. 2021. Seismogenic fault and aftershock characteristics for the 2014 MS7.3 Yutian earthquake, Xinjiang[J]. Acta Seismologica Sinica, 43(1): 48-56(in Chinese). doi: 10.11939/jass.20200044. [31] Peter H, Jäggi A, Fernández J, et al. 2017. Sentinel-1A - First precise orbit determination results[J]. Advances in Space Research, 60(5): 879-892. doi:http://dx. doi.org/ 10.1016/j.asr.2017.05.034. [32] Sandwell D, Mellors R, Tong X, et al. 2011. Open radar interferometry software for mapping surface deformation[J]. EOS, Transactions American Geophysical Union, 92(28): 234. doi: 10.1029/2011EO280002. [33] Savage J C, Burford R O. 1973. Geodetic determination of relative plate motion in central California[J]. Journal of Geophysical Research, 78: 832–845. doi: 10.1029/JB078i005p00832. [34] Shen Z K, Sun J, Zhang P, et al. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2: 718–724. https://doi.org/10.1038/ngeo636. [35] 史大年, 余钦范, Georges POUPINET, 等. 2007. 阿尔金断裂带附近地壳结构的接收函数成像及其地球动力学意义[J]. 地质学报, 81(1): 139-144Shi D N, Yu Q F, Poupinet G, et al. 2007. Crustal structures across the Altyn Tagh fault imaged by teleseismic receiver functions and their geodynamic implications[J]. Acta Geologica Sinica, 81(1): 139-144 (in Chinese). [36] Shirzaei M, Bürgmann R. 2013, Time-dependent model of creep on the Hayward fault from joint inversion of 18 years of InSAR and surface creep data[J]. Journal of Geophysical Research: Solid Earth, 118: 1733– 1746. doi: 10.1002/jgrb.50149. [37] Socquet A, Hollingsworth J, Pathier E, et al. 2019. Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy[J]. Nature Geoscience, 12: 192–199. https://doi.org/10.1038/s41561-018-0296-0. [38] Tian Y F. 2011. iGPS: IDL tool package for GPS position time series analysis[J]. GPS Solutions, 15(3): 299-303. doi: 10.1007/s10291-011-0219-7 [39] Tong X, Sandwell D, Luttrell K, et al. 2010. The 2010 Maule, Chile earthquake: Downdip rupture limit revealed by space geodesy[J]. Geophysical Research Letters, 37: L24311. doi: 10.1029/2010GL045805. [40] Tong X, Sandwell D T, Smith-Konter B. 2013. High-resolution interseismic velocity data along the San Andreas fault from GPS and InSAR[J]. Journal of Geophysical Research: Solid Earth, 118: 369– 389. doi: 10.1029/2012JB009442. [41] Turner R C, Shirzaei M, Nadeau R M, et al. 2015. Slow and Go: Pulsing slip rates on the creeping section of the San Andreas Fault[J]. Journal of Geophysical Research: Solid Earth, 120: 5940-5951. doi: 10.1002/2015JB011998. [42] Tymofyeyeva E, Fialko Y. 2015. Mitigation of atmospheric phase delays in InSAR data, with application to the eastern California shear zone[J]. Journal of Geophysical Research: Solid Earth, 120: 5952– 5963. doi: 10.1002/2015JB011886. [43] Tymofyeyeva E, Fialko Y, Jiang J, et al. 2019. Slow slip event on the southern San Andreas fault triggered by the 2017 Mw8.2 Chiapas (Mexico) earthquake[J]. Journal of Geophysical Research: Solid Earth, 124: 9956– 9975. https://doi.org/10.1029/2018JB016765. [44] 万永革, 许鑫, 黄少华, 等. 2022. P波极性资料确定的2022青海门源MS6.9地震序列震源机制及应力场[J]. 地震工程学报, 44(3): 670-679, 690Wan Y G, Xu X, Huang S H, et al. 2022. Focal mechanisms and stress field of the 2022 Menyuan, Qinghai MS6.9 earthquake sequence determined by P-wave polarity data[J]. China Earthquake Engineering Journal, 44(3): 670-679, 690 (in Chinese). [45] Wang H, Wright T J, Liu-Zeng J, et al. 2019. Strain rate distribution in south-central Tibet from two decades of InSAR and GPS[J]. Geophysical Research Letters, 46(10): 5170-5179. https://doi.org/10.1029/2019GL081916 [46] Wang K, MacArthur H S, Johanson I, et al. 2019. Interseismic quiescence and triggered slip of active normal faults of Kīlauea Volcano's south flank during 2001–2018[J]. Journal of Geophysical Research: Solid Earth, 124: 9780-9794. https://doi.org/10.1029/2019JB017419. [47] Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125: e2019JB018774. https://doi.org/10.1029/2019JB018774. [48] 王敏, 沈正康. 2020. 中国大陆现今构造变形: 三十年的GPS观测与研究[J]. 中国地震, 36(4): 660-683Wang M, Shen Z K. 2020. Present-day tectonic deformation in continental China: Thirty years of GPS observation and research[J]. Earthquake Research in China, 36(4): 660-683 (in Chinese). [49] Wang Q, Zhang P Z, Freymueller J T, et al. 2001. Present-day crustal deformation in China constrained by Global Positioning System measurements[J]. Science, 294(5542): 574-577. doi: 10.1126/science.1063647. [50] 王阎昭, 王敏. 2020. 关于阿尔金断裂错动速率研究的综述及其启示[J]. 中国地震, 36(4): 817-826Wang Y Z, Wang M. 2020. A review of slip rates along the Altyn Tagh fault and its implications[J]. Earthquake Research in China, 36(4): 817-826 (in Chinese). [51] Wei M, Sandwell D, Fialko Y, et al. 2011. Slip on faults in the Imperial Valley triggered by the 4 April 2010 MW7.2 El Mayor-Cucapah earthquake revealed by InSAR[J]. Geophysical Research Letters, 38: L01308. doi: 10.1029/2010GL045235. [52] Wessel P, Smith W H F. 1995. New version of the generic mapping tools released[J]. EOS, Transactions American Geophysical Union, 76(33): 329. [53] Wessel P, Luis J F, Uieda L, et al. 2019. The generic mapping tools version 6[J]. Geochemistry, Geophysics, Geosystems, 20: 5556-5564. https://doi.org/10.1029/2019GC008515. [54] 吴文豪, 张磊, 张腾旭, 等. 2020. Sentinel-1卫星TOPS模式影像增强谱分集配准优化[J]. 测绘学报, 49(11): 1451-1462 doi: 10.11947/j.AGCS.2020.20180578Wu W H, Zhang L, Zhang T X, et al. 2020. Advanced ESD coregistration of inteferometric processing for Sentinel-1 TOPS data[J]. Acta Geodaetica et Cartographica Sinica, 49(11): 1451-1462(in Chinese). doi: 10.11947/j.AGCS.2020.20180578. [55] Xu C, Zhu S. 2019. Temporal and spatial movement characteristics of the Altyn Tagh fault inferred from 21 years of InSAR observations[J]. Journal of Geodesy, 93: 1147–1160. https://doi.org/10.1007/s00190-019-01232-2. [56] Xu X H, Sandwell D T, Smith-Konter B. 2020. Coseismic displacements and surface fractures from Sentinel-1 InSAR: 2019 Ridgecrest earthquakes[J]. Seismological Research Letters, 91(4): 1979-1985. doi:https://doi.org/ 10.1785/0220190275. [57] Xu X, Sandwell D T, Klein E, et al. 2021. Integrated Sentinel-1 InSAR and GNSS time-series along the San Andreas fault system[J]. Journal of Geophysical Research: Solid Earth, 126(11): e2021JB022579. [58] Xu X, Liu D, Lavier L. 2023. Constraining fault damage zone properties from geodesy: A case study near the 2019 Ridgecrest earthquake sequence[J]. Geophysical Research Letters, 50: e2022GL101692. https://doi.org/10.1029/2022GL101692. [59] Yang Y H, Tsai M C, Hu J C, et al. 2018. Coseismic slip deficit of the 2017 MW6.5 Ormoc earthquake that occurred along a creeping segment and geothermal field of the Philippine Fault[J]. Geophysical Research Letters, 45: 2659-2668. https://doi.org/10.1002/2017GL076417. [60] Yu C, Li Z, Penna N T, et al. 2018. Generic atmospheric correction model for interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research: Solid Earth, 123(10): 9202-9222. doi: 10.1029/2017JB015305 [61] 张培震, 王琪, 马宗晋. 2002. 中国大陆现今构造运动的GPS速度场与活动地块[J]. 地学前缘, 2: 430-441Zhang P Z, Wang Q, Ma Z J. 2002. GPS velocity field and active crustal blocks of contemporary tectonic deformation in continental China[J]. Earth Science Frontiers, 2: 430-441 (in Chinese). [62] Zhao D, Qu C, Bürgmann R, et al. 2022. Large-scale crustal deformation, slip-rate variation, and strain distribution along the Kunlun Fault (Tibet) from Sentinel-1 InSAR observations (2015–2020)[J]. Journal of Geophysical Research: Solid Earth, 127: e2021JB022892. https://doi.org/10.1029/2021JB022892. -