-
摘要: 近年来,地球外层空间在地球上造成灾害的风险逐渐增加. 未来行星探测对提高应对太空灾害风险能力具有重要意义. 2018年,利用InSight任务收集到的地震数据对火星台站下方不同尺度的地下介质结构进行了探测;然而,单一地震台站的摆放对于大规模火星探测仍然存在很大的局限性. 因此,本研究设计了一种单站观测系统,通过将单个接收站和移动源相结合的方式来收集行星地震数据,从而能够在早期地外探测中收集更可靠的地震信号. 为了从地震信号中获得一维地下介质结构,讨论了高阶频散曲线成像方法在其中的应用,提出了一种高分辨率频率Hankel函数频散曲线提取方法,用于消除频散曲线中的高频部分伪影,改进了高阶频散曲线提取方法. 然后将该方法扩展到多分量情况,为利用不同分量地震信号提取更多频散曲线信息提供了可能. 同时,本研究所提出的数据采集系统为二维和三维地下介质成像提供了数据基础. 此外,还讨论了基于单个地震台站开发汽车地震学的可能性,以解决超重车辆导致高架桥坍塌的普遍问题,说明了单个地震台站系统在地震成像和震源监测中的重要作用.Abstract: In recent years, the risk of disasters on Earth caused by space issues has increased gradually. Future planetary exploration is of great significance to enhance the ability to monitor space disaster risks. In 2018, underground media structures at different scales were explored beneath Mars stations through the InSight mission; however, there remain significant limitations to large-scale Mars exploration. Therefore, in this study, a single-station observation system was designed by combining a single receiving station and a mobile source as a novel method for collecting planetary seismic data, thereby enabling the collection of more reliable seismic signals in early extraterrestrial explorations. To obtain a one-dimensional underground medium structure, high-order dispersion curve imaging methods were applied, and a high-resolution frequency Hankel function dispersion curve extraction method was proposed to eliminate artifacts in the dispersion curve and improve the extracted dispersion curves. The system was then extended to a multicomponent case to demonstrate the complementarity between the multicomponent and single-component results. The proposed data acquisition system provides a foundation for two-dimensional and three-dimensional underground media imaging systems. Furthermore, the feasibility of developing automotive seismic technology based on this system to address the widespread issue of viaduct collapse caused by overweight vehicles was discussed, demonstrating the importance of single-station systems in seismic imaging and source monitoring.
-
Key words:
- single station /
- seismic imaging /
- source monitoring
-
Figure 3. Dispersion curve extraction results for the FJ method and MFJ method. (a) Results of the frequency-Bessel function transformation method (FJ) with a short offset; (b) Hankel function (MFJ) transformation results with a short offset; (c) Bessel function transformation (FJ) results with a long offset; and (d) Hankel function transformation (MFJ) results with a long offset
Figure 4. Regularization parameter selection results. (a) Method for determining the regularization parameters for the L-curve values. (b) The frequency dispersion value obtained for a larger regularization parameter. (c) The normalized dispersion value when the regularization parameter is selected near the inflection point. (d) The normalized dispersion value when a smaller regularization parameter is selected
Figure 6. Comparison of four methods for extracting the dispersion curve. (a) Frequency-Bessel function transformation method (FJ) for extracting the dispersion curves. (b) Modified frequency-Bessel function method (MFJ) for extracting the dispersion curve. (c) The dispersion energy map obtained by the compressed sensing (CS) method. (d) The dispersion energy map obtained by high-resolution Hankel function method
Figure 7. Comparison of the dispersion curves obtained by the CS method and the method proposed in this paper. (a) Normalized dispersion energy diagram based on the RZ component extraction results of the CS method. (b) Absolute value of the dispersion energy diagram obtained with the CS method. (c) The normalized dispersion energy map based on the method proposed in this paper. (d) Absolute value graphs based on the normalized results of the proposed method
Table 1. Physical parameters of Model 1
Layer Thickness/m P wave/ (m·s−1) S wave/ (m·s−1) Density/ (kg·m−3) 1 25 1350 200 1900 2 Infinite 2000 1000 2500 Table 2. Physical parameters of Model 2
Layer Thickness/
mP-wave/
(m·s−1)S-wave/
(m·s−1)Density/
(kg·m−3)1 10 1500 180 1780 2 10 1750 350 1850 3 20 1600 250 1800 4 Infinite 2000 600 1940 -
[1] Aki K, Richards P. 2002. Quantitative Seismology[M]. Herndon: University Science Books. [2] Asten M W. 2006. Site shear velocity profile interpretation from microtremor array data by direct fitting of SPAC curves[C]//Proceedings of the Third International Symposium on the Effects of Surface Geology on Seismic Motion (ESG2006) Citeseer. [3] Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broadband surface wave dispersion measurements[J]. Geophysical Journal International, 169(3): 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x [4] Bensen G D, Ritzwoller M H, Yang Y. 2009. A 3-D shear velocity model of the crust and uppermost mantle beneath the united states from ambient seismic noise[J]. Geophysical Journal International, 177(3): 1177-1196. doi: 10.1111/j.1365-246X.2009.04125.x [5] Campillo M, Paul A. 2003. Long-range correlations in the diffuse seismic coda[J]. Science, 299(5606): 547-549. [6] Capon J. 1969. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 57(8): 1408-1418. doi: 10.1109/PROC.1969.7278 [7] Chen X. 1993. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 115(2): 391-409. doi: 10.1111/j.1365-246X.1993.tb01194.x [8] Daly R T, Ernst C M, Barnouin O S, et al. 2023. Successful kinetic impact into an asteroid for planetary defense[J]. Nature, 616(7957): 443-447. doi: 10.1038/s41586-023-05810-5 [9] Forbriger T. 2003. Inversion of shallow-seismic wavefields: I. Wavefield transformation[J]. Geophysical Journal International, 153(3): 719-734. doi: 10.1046/j.1365-246X.2003.01929.x [10] Gao L, Zhang W, Zhang Z, Chen X. 2021. Extraction of multimodal dispersion curves from ambient noise with compressed sensing[J]. Journal of Geophysical Research: Solid Earth, 126: e2020JB021472. [11] Hu S, Luo S, Yao H. 2020. The frequency-bessel spectrograms of multicomponent cross-correlation functions from seismic ambient noise[J]. Journal of Geophysical Research: Solid Earth, 125(8): e2020JB019630. [12] Khan A, Ceylan S, van Driel M, et al. 2021. Upper mantle structure of Mars from InSight seismic data[J]. Science, 373(6553): 434-438. doi: 10.1126/science.abf2966 [13] Knapmeyer-Endrun B, Panning M P, Bissig F, et al, 2021, Thickness and structure of the martian crust from InSight seismic data[J]. Science, 373(6553): 438-443. [14] Lacoss R T, Kelly E J, Toksöz M N. 1969. Estimation of seismic noise structure using arrays[J]. Geophysics, 34(1): 21-38. [15] Lei Y H, Yin F, Hong H T, et al. 2021. Shallow structure imaging using higher-mode Rayleigh waves based on F-J transform in DAS observation[J]. Chinese Journal of Geophysics, 64(12): 4280-4291 (in Chinese). DOI: 10.6038/cjg2021P0438. [16] Li C C, Chen X F. 2023. Multiscale imaging of ambient noise cross correlation function[J]. Chinese Journal of Geophysics, 66(2): 546-557 (in Chinese). DOI: 10.6038/cjg2022P0994. [17] Li Z, Chen X. 2020. An effective method to extract overtones of surface wave from 720 array seismic records of earthquake events[J]. Journal of Geophysical Research, 125: e2019JB018. [18] Lin F C, Ritzwoller M H, Shen W. 2011. On the reliability of attenuation measurements from ambient noise cross-correlations[J]. Geophysical Research Letters, 38: L11303. [19] Luo Y, Xu Y, Liu Q, Xia J. 2008. Rayleigh-wave dispersive energy imaging and mode separating by high-resolution linear Radon transform[J]. The Leading Edge, 27(11): 1536-1542. doi: 10.1190/1.3011026 [20] Maraschini M, Ernst F, Foti S, Socco L. 2010. A new misfit function for multimodal inversion of surface waves[J]. Geophysics, 75(4): G31-G43. doi: 10.1190/1.3436539 [21] McMechan G A, Yedlin M J. 1981. Analysis of dispersive waves by wave field transformation[J]. Geophysics, 46(6): 869-874. [22] Nolet G, Panza G F. 1976. Array analysis of seismic surface waves: Limits and possibilities[J]. Pure and Applied Geophysics, 114(5): 775-790. doi: 10.1007/BF00875787 [23] Park C B, Miller R D, Xia J. 1998. Imaging dispersion curves of surface waves on multi-channel record[C]//SEG Technical Program Expanded Abstracts : Society of Exploration Geophysicists, 1377-1380. [24] Park C B, Miller R D, Xia J, Ivanov J. 2007. Multichannel analysis of surface waves (MASW)—Active and passive methods[J]. Geophysics, 26(1): 60-64. [25] Park C B, Miller R D. 2008. Roadside passive multichannel analysis of surface waves (MASW)[J]. Journal of Environmental and Engineering Geophysics, 13(1): 1-11. doi: 10.2113/JEEG13.1.1 [26] Qian X S. 1963. Introduction to Interstellar Navigation[M]. Beijing: Science Press (in Chinese). [27] Shapiro N M, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 31(7): L07614. DOI: 1029/2004GL019491. [28] Shapiro N M, Campillo M, Stehly L, Ritzwoller M H. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 307(5715): 1615-1618. doi: 10.1126/science.1108339 [29] Shen W, Ritzwoller M H. 2016. Crustal and uppermost mantle structure beneath the United States[J]. Journal of Geophysical Research: Solid Earth, 121: 4306-4342. doi: 10.1002/2016JB012887 [30] Stahler S C, Khan A, Banerdt W B, et al. 2021. Seismic detection of the martian core[J]. Science, 373(6553): 443-448. [31] Sun W J, Wang Y B, Wei Y, et al. 2021. Martian seismology and review of Martian interior structure[J]. Reviews of Geophysics and Planetary Physics, 52 (4): 437-449 (in Chinese). [32] Taylor S R, Gerstoft P, Fehler M. 2009. Estimating site amplification factors from ambient noise[J]. Geophysical Research Letters, 36: L09303. [33] Tian Y, Shen W, Ritzwoller M H. 2013. Crustal and uppermost mantle shear velocity structure adjacent to the Juan de Fuca Ridge from ambient seismic noise[J]. Geochemistry Geophysics Geosystems, 14: 3221-3233. doi: 10.1002/ggge.20206 [34] Tokimatsu K. 1997. Geotechnical site characterization using surface waves[C]// International Conference on Earthquake Geotechnical Engineering, 1333-1368. [35] Wang J, Wu G, Chen X. 2019. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research, 124(4): 3708-3723. doi: 10.1029/2018JB016595 [36] Wiggins R A. 1972. The general linear inverse problem—Implication of surface waves and free oscillations for Earth structure[J]. Reviews of Geophysics, 10(1): 251-285. doi: 10.1029/RG010i001p00251 [37] Xi C Q, Xia J H, Mi B B, et al. 2021. Modified frequency-Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophysical Journal International, 225(2): 1271-1280. doi: 10.1093/gji/ggab008 [38] Xia J, Miller R D, Park C B, Tian G. 2003. Inversion of high frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics, 52(1): 45-57. doi: 10.1016/S0926-9851(02)00239-2 [39] Yang Y, Ritzwoller M H, Levshin A L, Shapiro N M. 2007. Ambient noise Rayleigh wave tomography across Europe[J]. Geophysical Journal International, 168(1): 259-274. doi: 10.1111/j.1365-246X.2006.03203.x [40] Yang Y, Ritzwoller M H, Jones C H. 2011. Crustal structure determined from ambient noise tomography near the magmatic centers of the Coso region, southeastern California[J]. Geochemistry, Geophysics, Geosystems, 12(2): 1525-2027. [41] Yao H, van der Hilst R D, de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps[J]. Geophysical Journal International, 166: 732-744. doi: 10.1111/j.1365-246X.2006.03028.x [42] Yokoi T. 2010. New formulas derived from seismic interferometry to simulate phase velocity estimates from correlation methods using microtremor[J]. Geophysics, 75(4): SA71-SA83. doi: 10.1190/1.3454210 [43] Zhou J, Chen X. 2022. Removal of crossed artifacts from multimodal dispersion curves with modified frequency–Bessel method[J]. Bulletin of the Seismological Society of America, 112(1): 143-152. doi: 10.1785/0120210012 -