Automatic fluxgate theodolite in Phase II of the Meridian Project
-
摘要: 地磁台站观测有相对记录和绝对观测2种,相对记录数据需经基线值改正后方可得到地磁场要素的实际值. 磁通门经纬仪是获取基线值的基本设备之一,在地磁观测中发挥着重要作用. 目前台站采用的磁通门经纬仪需人工操作,人为因素会对观测数据质量产生影响,因在偏远地区和环境恶劣地区无法实现地磁绝对观测,造成地磁绝对观测的空间覆盖空白. 子午工程二期将在我国大陆地区首次开展自动化磁偏角和磁倾角地磁绝对观测,必将推动地磁绝对观测技术创新与发展. 自动磁通门经纬仪是我国自主研发的磁偏角和磁倾角自动化观测设备,采用无磁材料和压电电机,通过优化设计与改进加工工艺,以及引入多参量误差补偿算法,有效克服和消除了系统误差,提高了测量精度. 该设备在河北涉县台、吉林合隆台、陕西乾陵台和北京白家疃台等台站开展了长时间的实际观测,并与台站的人工磁通门经纬仪观测结果进行了对比. 结果表明,自动磁通门经纬仪的主要性能指标达到了人工磁通门经纬仪水平. 该设备也通过了中国地震局前兆设备入网测试,功能和性能指标符合地磁台站地磁绝对观测要求.Abstract: Absolute observation and relative record are two methods in geomagnetic station observation. The actual values of geomagnetic field elements can be obtained after the relative record data is corrected by baseline data. Fluxgate theodolite is one of the basic tools required to obtain baseline values and plays an important role in geomagnetic observations. At present, fluxgate theodolite used in stations requires manual operation, and human factors affect the observation data quality. Because absolute geomagnetic observation cannot be realized in remote areas or areas with harsh environments, some blank areas in the coverage of geomagnetic absolute observation exist. The second phase of the Meridian Project will carry out automatic geomagnetic absolute observation of magnetic declination and inclination for the first time in mainland China, which will promote the innovation and development of geomagnetic absolute observation technology. The automatic fluxgate theodolite is a self-developed equipment from China for automatic observation of magnetic declination and inclination. It adopts non-magnetic materials and piezoelectric motors, effectively overcomes and eliminates the systematic errors by optimizing the design, improves the machining process, and compensates for the multi-parameter error algorithm, so as to ensure measurement accuracy. The equipment has been applied to long-term practical observation in stations such as Shexian Station in Hebei Province, Helong Station in Jilin Province, Qianling Station in Shanxi Province and Baijiatuan Station in Beijing. Compared with the observation results of artificial fluxgate theodolite in these stations, the results show that the main performance of the automatic fluxgate theodolite is the same as that of the artificial fluxgate theodolite. The equipment has also passed a precursor equipment standard test from the China Earthquake Administration, and its functions and performance meet the requirements of absolute geomagnetic observation for geomagnetic stations.
-
表 1 国内外自动磁通门经纬仪指标对比
Table 1. Comparison of automatic fluxgate theodolite from different countries
AutoDIF
(比利时)GyroDIF
(比利时)GAUSS
(德国)AutoDIF
(中国)D测量精度 6″ - 4″ 6″ I测量精度 6″ - 4″ 6″ 定向方式 激光对标 光纤陀螺 激光对标 激光对标 驱动方式 压电电机 压电电机 压电电机 压电电机 测量周期 30 min - 30 min 20 min 每天最大测量组数 48组 12组 24组 72组 表 2 子午工程二期自动磁通门经纬仪配置站点
Table 2. Installation sites of automatic fluxgate theodolites in Phase II of the Meridian Project
台站名称 经度/E° 纬度/N° 高程/m 喀什站 75.81 39.51 1309.00 且末站 85.45 38.12 1246.13 噶尔站 80.11 32.52 4403.00 巴塘站 99.11 30.01 2600.00 拉萨城关站 91.00 29.60 3633.00 嘉峪关站 98.22 39.81 1720.00 应城站 113.33 30.92 54.10 满洲里南区站 117.44 49.58 681.78 贺兰站 106.07 38.80 1465.00 表 3 台站人工磁通门经纬仪与自动磁通门经纬仪观测值差
Table 3. Differences between records of artificial and automatic fluxgate theodolites
日期 2019-05-01 2019-05-02 2019-05-03 2019-05-04 2019-05-05 2019-05-06 2019-05-07 2019-05-08 2019-05-09 2019-05-10 磁偏角/(″) 1.32 −1.86 −0.54 −0.36 −1.98 −1.92 −1.20 −0.30 −0.11 −0.48 磁倾角/(″) 1.02 −0.24 1.5 −0.84 −1.2 −0.42 0.06 −1.02 0.36 −1.26 日期 2019-05-11 2019-05-12 2019-05-13 2019-05-14 2019-05-15 2019-05-16 2019-05-17 2019-05-18 2019-05-19 2019-05-20 磁偏角/(″) −0.78 −0.36 −2.88 −0.72 −1.68 −1.44 −0.30 −0.48 −2.70 −0.48 磁倾角/(″) −1.78 1.56 1.74 −0.06 0.66 0.3 0 −0.06 1.56 1.14 表 4 自动磁通门经纬仪技术指标
Table 4. Test results of automatic fluxgate theodolite
序号 检测项 技术指标 备注 1 最大允许误差 △D≤±0.20′,△I≤±0.20′ 符合 2 重复性 △D≤±0.10′,△I ≤±0.10′ 符合 3 转向差 △D≤5′,△I ≤5′ 符合 4 线性度 ≤0.30%(满量程) 符合 5 修正系数 1.000±1% 符合 6 测量范围 −20000 nT~20000 nT 符合 7 零点漂移 ≤3.0 nT,±20 nT内可调节 符合 -
[1] Auster H U, Mioara M, Hemshorn A. 2007. Automation of absolute measurement of the geomagnetic field[J]. Earth Planets and Space, 59(9): 1007-1014. doi: 10.1186/BF03352041 [2] Department of Monitoring and Forecasting, CEA. 2002. Seismic Electromagnetic Digital Observation Technology [M]. Beijing: Seismological Press (in Chinese). [3] 范晓勇, 张涛, 张策, 等. 2018. 国产自动化磁通门经纬仪研制[J]. 地震地磁观测与研究, 39(5): 172-177 doi: 10.3969/j.issn.1003-3246.2018.05.025Fan X Y, Zhang T, Zhang C, et al. 2018. Development for the magnetic fluxgate theodolite of domestic automation[J]. Seismological and Geomagnetic Observation and Research, 39(5): 172-177 (in Chinese). doi: 10.3969/j.issn.1003-3246.2018.05.025 [4] Gilbert D, Rasson J L. 1998. Effect on DIFlux measuring accuracy due to a magnet located on it[C]//Proceedings of the VIIth Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing, Scientific Technical Report STR98/21. GeoForschungsZentrum Potsdam, 168-171. [5] Gonsette A, Rasson J. 2013. Autodif: Automatic absolute DI measurements[C]// Proceedings of the XVth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing. Boletin ROA No. 03/13, 16-19. [6] Gonsette A, Poncelet A, Marin J-L, et al. 2014. Autodif validation procedure[C]// XVIth IAGA Workshop on Geomagnetic Observatory Instrument, Data Acquisition and Processing. Hyderabad, India. [7] Marsal S, Curto J J, Torta J M, et al. 2017. An automatic DI-flux at the Livingston Island geomagnetic observatory, Antarctica: Requirements and lessons learned[J]. Geoscientific Instrumentation Methods and Data Systems, 6(2): 269-277. doi: 10.5194/gi-6-269-2017 [8] Poncelet A, Gonsette A, Rasson J. 2017. Few years' experience with Automatic DIFlux systems: Theory, validation and results[J]. Geoscientific Instrumentation, Methods and Data Systems Discussions, 6(2): 353-360,doi: 10.5194/gi-2017-20. [9] Rasson J L, van Loo S, Berrami N. 2009. Automatic DIflux measurements with AUTODIF[R]// Proceedings of the XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing. U. S. Geological Survey Open-File Report 2009-1226, 220-224. [10] Rasson J L, Gonsette A. 2011. The MarkII Automatic DIFlux[J]. Data Science Journal, 10(30): IAGA169-IAGA173. [11] Sebastien A V, Rasson J L. 2007. Development of an Automatic Declination-inclination Magnetometer[M]. Geomagnetics for Aeronautical Safety, 177-186. [12] Van Loo S A, Rasson J L. 2007. Presentation of the prototype of an automated DIFlux[J]. Publications of the Institute of Geophysics, Polish Academy of Sciences, C-99 (398): 77-86. [13] 王赤, 陈志青, 胡连欢, 等. 2021. 我国空间环境天地基监测平台的发展态势和展望[J]. 航天器环境工程, 38(3): 225-239 doi: 10.12126/see.2021.03.001Wang C, Chen Z Q, Hu L H, et al. 2021. Development and prospect of China’s space-based and ground-based space environment monitoring platforms[J]. Spacecraft Environment Engineering, 38(3): 225-239 (in Chinese). doi: 10.12126/see.2021.03.001 [14] 张策. 2020. 自动化地磁偏角倾角绝对测量仪关键技术研究[D]. 北京: 中国地震局地球物理研究所.Zhang C. 2020. Research on key technology of automatic geomagnetic deviation and inclination absolute measuring instrument[D]. Beijing: Institute of Geophysics, CEA (in Chinese) [15] 张策, 滕云田, 张涛, 等. 2020. 自动磁通门经纬仪多参量误差补偿算法[J]. 仪器仪表学报, 41(6): 85-93 doi: 10.19650/j.cnki.cjsi.J2006281Zhang C, Teng Y T, Zhang T, et al. 2020. Multi-parameter error compensation algorithm for automatic fluxgate theodolite[J]. Chinese Journal of Scientific Instrument, 41(6): 85-93 (in Chinese). doi: 10.19650/j.cnki.cjsi.J2006281 [16] 中国地震局监测预报司. 2002. 地震电磁数字观测技术[M]. 北京: 地震出版社. -