• ISSN 2097-1893
  • CN 10-1855/P

子午工程二期自动磁通门经纬仪

王喜珍 范晓勇 张策 滕云田 马新欣 陈志青

引用本文: 王喜珍,范晓勇,张策,滕云田,马新欣,陈志青. 2023. 子午工程二期自动磁通门经纬仪. 地球与行星物理论评(中英文),54(0):1-7
Wang X Z, Fan X Y, Zhang C, Teng Y T, Ma X X, Chen Z Q. 2023. Automatic fluxgate theodolite in Phase II of the Meridian Project. Reviews of Geophysics and Planetary Physics, 54(0): 1-7 (in Chinese)

子午工程二期自动磁通门经纬仪

doi: 10.19975/j.dqyxx.2023-014
基金项目: 国家重大科技基础设施项目(子午工程二期)
详细信息
    通讯作者:

    王喜珍(1972-),男,副研究员,主要从事地球物理观测技术研究. E-mail:wangxz@cea-igp.ac.cn

  • 中图分类号: P315

Automatic fluxgate theodolite in Phase II of the Meridian Project

Funds: Supported by the National Major Science and Technology Infrastructure Projects Grand (Phase II of the Meridian Project)
  • 摘要: 地磁台站观测有相对记录和绝对观测2种,相对记录数据需经基线值改正后方可得到地磁场要素的实际值. 磁通门经纬仪是获取基线值的基本设备之一,在地磁观测中发挥着重要作用. 目前台站采用的磁通门经纬仪需人工操作,人为因素会对观测数据质量产生影响,因在偏远地区和环境恶劣地区无法实现地磁绝对观测,造成地磁绝对观测的空间覆盖空白. 子午工程二期将在我国大陆地区首次开展自动化磁偏角和磁倾角地磁绝对观测,必将推动地磁绝对观测技术创新与发展. 自动磁通门经纬仪是我国自主研发的磁偏角和磁倾角自动化观测设备,采用无磁材料和压电电机,通过优化设计与改进加工工艺,以及引入多参量误差补偿算法,有效克服和消除了系统误差,提高了测量精度. 该设备在河北涉县台、吉林合隆台、陕西乾陵台和北京白家疃台等台站开展了长时间的实际观测,并与台站的人工磁通门经纬仪观测结果进行了对比. 结果表明,自动磁通门经纬仪的主要性能指标达到了人工磁通门经纬仪水平. 该设备也通过了中国地震局前兆设备入网测试,功能和性能指标符合地磁台站地磁绝对观测要求.

     

  • 图  1  自动磁通门经纬仪组成. (a)磁偏角和倾角测量系统;(b)方位角定向装置;(c)控制器

    Figure  1.  Composition of an automatic fluxgate theodolite. (a) Magnetic declination and inclination measurement system; (b) Azimuth orientation device; (c) Recorder

    图  2  磁偏角和倾角测量系统结构示意图

    Figure  2.  Schematic diagram of magnetic declination and inclination measurement system

    图  3  方位角定向装置原理示意图

    Figure  3.  Schematic diagram of azimuth orientation device

    图  4  测试运行台站. (a)河北涉县台;(b)吉林合隆台;(c)陕西乾陵台;(d)北京白家疃台

    Figure  4.  Test operation stations. (a) Shexian Station in Hebei; (b) Helong Station in Jilin; (c) Qianling Station in Shanxi; (d) Baijiatuan Station in Beijing

    图  5  河北涉县台磁通门经纬仪对比观测结果,蓝色线为台站MINGO-01A观测结果,红色线为自动磁通门经纬仪观测结果

    Figure  5.  Comparative observation results of fluxgate theodolites at Shexian Station, Hebei Province. The blue line is the observation result of MINGO-01A, and the red line is the observation result of the automatic fluxgate theodolite

    图  6  自动磁通门经纬仪基线值观测结果

    Figure  6.  Observation results of baseline values of automatic fluxgate theodolites

    表  1  国内外自动磁通门经纬仪指标对比

    Table  1.   Comparison of automatic fluxgate theodolite from different countries

    AutoDIF
    (比利时)
    GyroDIF
    (比利时)
    GAUSS
    (德国)
    AutoDIF
    (中国)
    D测量精度6″-4″6″
    I测量精度6″-4″6″
    定向方式激光对标光纤陀螺激光对标激光对标
    驱动方式压电电机压电电机压电电机压电电机
    测量周期30 min-30 min20 min
    每天最大测量组数48组12组24组72组
    下载: 导出CSV

    表  2  子午工程二期自动磁通门经纬仪配置站点

    Table  2.   Installation sites of automatic fluxgate theodolites in Phase II of the Meridian Project

    台站名称经度/E°纬度/N°高程/m
    喀什站 75.81 39.51 1309.00
    且末站 85.45 38.12 1246.13
    噶尔站 80.11 32.52 4403.00
    巴塘站 99.11 30.01 2600.00
    拉萨城关站 91.00 29.60 3633.00
    嘉峪关站 98.22 39.81 1720.00
    应城站 113.33 30.92 54.10
    满洲里南区站 117.44 49.58 681.78
    贺兰站 106.07 38.80 1465.00
    下载: 导出CSV

    表  3  台站人工磁通门经纬仪与自动磁通门经纬仪观测值差

    Table  3.   Differences between records of artificial and automatic fluxgate theodolites

    日期 2019-05-01 2019-05-02 2019-05-03 2019-05-04 2019-05-05 2019-05-06 2019-05-07 2019-05-08 2019-05-09 2019-05-10
    磁偏角/(″) 1.32 −1.86 −0.54 −0.36 −1.98 −1.92 −1.20 −0.30 −0.11 −0.48
    磁倾角/(″) 1.02 −0.24 1.5 −0.84 −1.2 −0.42 0.06 −1.02 0.36 −1.26
    日期 2019-05-11 2019-05-12 2019-05-13 2019-05-14 2019-05-15 2019-05-16 2019-05-17 2019-05-18 2019-05-19 2019-05-20
    磁偏角/(″) −0.78 −0.36 −2.88 −0.72 −1.68 −1.44 −0.30 −0.48 −2.70 −0.48
    磁倾角/(″) −1.78 1.56 1.74 −0.06 0.66 0.3 0 −0.06 1.56 1.14
    下载: 导出CSV

    表  4  自动磁通门经纬仪技术指标

    Table  4.   Test results of automatic fluxgate theodolite

    序号检测项技术指标备注
    1最大允许误差D≤±0.20′,△I≤±0.20′符合
    2重复性D≤±0.10′,△I ≤±0.10′符合
    3转向差D≤5′,△I ≤5′符合
    4线性度≤0.30%(满量程)符合
    5修正系数1.000±1%符合
    6测量范围−20000 nT~20000 nT符合
    7零点漂移≤3.0 nT,±20 nT内可调节符合
    下载: 导出CSV
  • [1] Auster H U, Mioara M, Hemshorn A. 2007. Automation of absolute measurement of the geomagnetic field[J]. Earth Planets and Space, 59(9): 1007-1014. doi: 10.1186/BF03352041
    [2] Department of Monitoring and Forecasting, CEA. 2002. Seismic Electromagnetic Digital Observation Technology [M]. Beijing: Seismological Press (in Chinese).
    [3] 范晓勇, 张涛, 张策, 等. 2018. 国产自动化磁通门经纬仪研制[J]. 地震地磁观测与研究, 39(5): 172-177 doi: 10.3969/j.issn.1003-3246.2018.05.025

    Fan X Y, Zhang T, Zhang C, et al. 2018. Development for the magnetic fluxgate theodolite of domestic automation[J]. Seismological and Geomagnetic Observation and Research, 39(5): 172-177 (in Chinese). doi: 10.3969/j.issn.1003-3246.2018.05.025
    [4] Gilbert D, Rasson J L. 1998. Effect on DIFlux measuring accuracy due to a magnet located on it[C]//Proceedings of the VIIth Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing, Scientific Technical Report STR98/21. GeoForschungsZentrum Potsdam, 168-171.
    [5] Gonsette A, Rasson J. 2013. Autodif: Automatic absolute DI measurements[C]// Proceedings of the XVth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing. Boletin ROA No. 03/13, 16-19.
    [6] Gonsette A, Poncelet A, Marin J-L, et al. 2014. Autodif validation procedure[C]// XVIth IAGA Workshop on Geomagnetic Observatory Instrument, Data Acquisition and Processing. Hyderabad, India.
    [7] Marsal S, Curto J J, Torta J M, et al. 2017. An automatic DI-flux at the Livingston Island geomagnetic observatory, Antarctica: Requirements and lessons learned[J]. Geoscientific Instrumentation Methods and Data Systems, 6(2): 269-277. doi: 10.5194/gi-6-269-2017
    [8] Poncelet A, Gonsette A, Rasson J. 2017. Few years' experience with Automatic DIFlux systems: Theory, validation and results[J]. Geoscientific Instrumentation, Methods and Data Systems Discussions, 6(2): 353-360,doi: 10.5194/gi-2017-20.
    [9] Rasson J L, van Loo S, Berrami N. 2009. Automatic DIflux measurements with AUTODIF[R]// Proceedings of the XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing. U. S. Geological Survey Open-File Report 2009-1226, 220-224.
    [10] Rasson J L, Gonsette A. 2011. The MarkII Automatic DIFlux[J]. Data Science Journal, 10(30): IAGA169-IAGA173.
    [11] Sebastien A V, Rasson J L. 2007. Development of an Automatic Declination-inclination Magnetometer[M]. Geomagnetics for Aeronautical Safety, 177-186.
    [12] Van Loo S A, Rasson J L. 2007. Presentation of the prototype of an automated DIFlux[J]. Publications of the Institute of Geophysics, Polish Academy of Sciences, C-99 (398): 77-86.
    [13] 王赤, 陈志青, 胡连欢, 等. 2021. 我国空间环境天地基监测平台的发展态势和展望[J]. 航天器环境工程, 38(3): 225-239 doi: 10.12126/see.2021.03.001

    Wang C, Chen Z Q, Hu L H, et al. 2021. Development and prospect of China’s space-based and ground-based space environment monitoring platforms[J]. Spacecraft Environment Engineering, 38(3): 225-239 (in Chinese). doi: 10.12126/see.2021.03.001
    [14] 张策. 2020. 自动化地磁偏角倾角绝对测量仪关键技术研究[D]. 北京: 中国地震局地球物理研究所.

    Zhang C. 2020. Research on key technology of automatic geomagnetic deviation and inclination absolute measuring instrument[D]. Beijing: Institute of Geophysics, CEA (in Chinese)
    [15] 张策, 滕云田, 张涛, 等. 2020. 自动磁通门经纬仪多参量误差补偿算法[J]. 仪器仪表学报, 41(6): 85-93 doi: 10.19650/j.cnki.cjsi.J2006281

    Zhang C, Teng Y T, Zhang T, et al. 2020. Multi-parameter error compensation algorithm for automatic fluxgate theodolite[J]. Chinese Journal of Scientific Instrument, 41(6): 85-93 (in Chinese). doi: 10.19650/j.cnki.cjsi.J2006281
    [16] 中国地震局监测预报司. 2002. 地震电磁数字观测技术[M]. 北京: 地震出版社.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-01
  • 录用日期:  2023-04-25
  • 网络出版日期:  2023-05-24

目录

    /

    返回文章
    返回