Preliminary results of Calcium atom analysis by the wind-temperature-metal-constituents LiDAR at Mohe middle-upper atmosphere for the Phase II of Chinese Meridian Project
-
摘要: 子午工程二期漠河(122°E, 53°N)大气风温金属成分激光雷达利用高空大气金属层共振荧光散射机制探测80~120 km区域的金属层成分,并将这些金属成分作为示踪物去研究中高层大气的各种复杂的化学和动力学过程. 子午工程二期漠河钙原子激光雷达采用的时间分辨率为1.1 min,空间分辨率为30 m. 在这种高时空分辨率下,仍然得到了高信噪比信号. 通过对2023年1月钙原子数密度随时间和高度的演化过程进行分析,发现背景层钙原子峰值密度达到了33.55 cm−3左右,并且其突发层钙原子峰值密度可以达到约53.64 cm−3;在与延庆(116.0°E, 40.5°N)钙原子数密度的比较研究中,我们发现延庆的钙原子数密度小于漠河的钙原子数密度;在与国外台站钙原子观测的比较研究中,我们发现漠河钙原子数密度和德国Kuhlungsborn(54°N, 12°E)台站的钙原子数密度接近,比法国的Observatoire de Haute Provence(44°N, 6°E)台站的钙原子数密度大. 在2023年1月12日至14日,我们观测到了钙流星尾迹,并且流星尾迹往往出现在金属层峰值的附近.Abstract: The Phase II of Chinese Meridian Project atmosphere wind-temperature-metal-constituents LiDAR at Mohe (122°E, 53°N) station uses a resonance fluorescence scattering mechanism to detect the metal layer composition in the upper atmosphere at 80-120 km , and subsequently uses these metal components as tracers to study various complex chemical and kinetic processes in the middle and upper atmosphere. The time resolution of this LiDAR is 1.1 min and the spatial resolution is 30 m. With high spatial and temporal resolution, we obtained a high signal to noise ratio for Ca number density. Further, we analyzed the evolution of Ca number density with time and height in January 2023. We observed that the peak value of background and sporadic Ca number densities reached approximately 33.55 cm−3 and 53.64 cm−3, respectively. In comparison with that in Yanqing (116.0°E, 40.5°N) station, the Ca number density in Mohe station was higher. Moreover, while examining the Ca observation studies conducted at foreign stations, we found that the Ca number density in Mohe was close to that of Kuhlungsborn station (54°N, 12°E; Germany) and was higher than that of Observatoire de Haute Provence station (44°N, 6E; France). Additionally, during January 12–14, 2023, we observed calcium meteor trails, consistently appearing near the peak of the metal layer spectrum.
-
Key words:
- LiDAR /
- Ca count density /
- meteor trail
-
表 1 延庆与漠河钙原子观测激光雷达参数
Table 1. Calcium atom observation of LiDAR parameters in Yanqing and Mohe
Ca 延庆染料 延庆OPO 漠河OPO 经纬度 (116.0°E, 40.5°N) (116.0°E, 40.5°N) (122°E, 53°N) 脉冲能量/mJ 9 28~33 90 重复频率/Hz 30 15 15 望远镜直径/m 1.23 1.23 1.5 时间分辨率/min 0.55 1.1 1.1 空间分辨率/m 96 96 30 探测高度范围/km 393.408 1179.648 125.798 表 2 其他台站的钙原子观测研究
Table 2. Calcium atom observations at other stations
文献 地理位置 观测时间 主要结论 Granier et al., 1989 法国
Observatoire de Haute Provence
(44°N, 6°E)1983—1984年
14个夜晚钙原子峰值密度的均值约为22 cm−3 Gerding et al., 2000 德国
Kühlungsborn (54°N, 12°E)1996-12—1998-12
Ca:112个夜晚钙原子层季节变化特征:夏季密度最大,秋冬次大. 钙原子的峰值密度约为40 cm−3 Gerding et al., 2001 德国
Kühlungsborn
(54°N, 12°E)1997-03-04—1997-08-02
Ca:7个夜晚钙原子平均密度约为17 cm−3 -
[1] Alpers M, Josef Höfffner, Zahn U V. 1996. Upper atmosphere Ca and Ca+ at mid-latitudes: First simultaneous and common-volume lidar observations [J]. Geophysical Research Letters, 23(5): 567-570. doi: 10.1029/96GL00372 [2] Gardner C S, Kane T J, Senft D C, et al. 1993. Simultaneous observations of sporadic E, Na, Fe, and Ca+ layers at Urbana, Illinois: Three case studies[J]. Journal of Geophysical Research: Atmospheres, 98(D9): 16865-16873. doi: 10.1029/93JD01477 [3] Gerding M, Alpers M, Zahn V, et al. 2000. Atmospheric Ca and Ca+ layers: Midlatitude observations and modeling [J]. Journal of Geophysical Research: Atmospheres, 105(A12): 27131-2714. doi: 10.1029/2000JA900088 [4] Gerding M, Alpers M, Hoffner J, Zahn V. 2001. Sporadic Ca and Ca+ layers at mid-latitudes: Simultaneous observations and implications for their formation [J]. Annales Geophysicae, 19: 47-58. doi: 10.5194/angeo-19-47-2001 [5] 龚少华, 杨国韬, 徐寄遥, 等. 2013. 中国不同纬度背景Na层夜间和季节变化特征的激光雷达研究[J]. 地球物理学报, 56(8): 2511-2521 doi: 10.6038/cjg20130802Gong S H, Yang G T, Xu J Y, et al. 2013. Study on night and seasonal variation characteristics of Na layer in different latitude background in China using Lidar [J]. Chinese Journal of Geophysics, 56(8): 2511-2521(in Chinese). doi: 10.6038/cjg20130802 [6] Granier G, Jégou J P, Mégie G. 1985. Resonant lidar detection of Ca and Ca+ in the upper atmosphere [J]. Geophysical Research Letters, 12(10): 655-658. doi: 10.1029/GL012i010p00655 [7] Granier C, Jegou J P, Megie G. 1989. Atomic and ionic calcium in the Earth's upper atmosphere [J]. Journal of Geophysical Research: Atmospheres, 94(D7): 9917-9924. doi: 10.1029/JD094iD07p09917 [8] Jiao J, Chu X Zo, Jin H, et al. 2022. First Lidar profiling of meteoric Ca+ ion transport from ∼80 to 300 km in the midlatitude nighttime ionosphere[J]. Geophysical Research Letters, 49(18): e2022GL100537. [9] Plane J. 1991. The chemistry of meteoric metals in the Earth's upper atmosphere[J]. International Reviews in Physical Chemistry, 10(1): 55-106. doi: 10.1080/01442359109353254 [10] Plane J, Feng Wuhu, Dawkins E. 2015. The mesosphere and metals: Chemistry and changes[J]. Chemical Reviews, 115(10): 4497. doi: 10.1021/cr500501m [11] Tepley C A, Raizada S, Zhou Q H, Friedman J S. 2003. First simultaneous observations of Ca+, K, and electron density using lidar and incoherent scatter radar at Arecibo[J]. Geophysical Research Letters, 30(30): 91-94. [12] Wan W X, Xu J Y. 2014. Recent investigation on the coupling between the ionosphere and upper atmosphere [J]. Science China Earth Sciences, 57(9): 1995-2012. doi: 10.1007/s11430-014-4923-3 [13] Yi F, Zhang S, Yu C, et al. 2013. Simultaneous and common-volume three-lidar observations of sporadic metal layers in the mesopause region [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 102: 172-184. doi: 10.1016/j.jastp.2013.05.013 [14] Yiğit E, Medvedev A S. 2015. Internal wave coupling processes in Earth’s atmosphere [J]. Advances in Space Research, 55(4): 983-1003. doi: 10.1016/j.asr.2014.11.020 [15] YiğIt E, Koucká K P, Georgieva K, Ward W. 2016. A review of vertical coupling in the Atmosphere–Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 141: 1-12. doi: 10.1016/j.jastp.2016.02.011 [16] 曾令旗. 2011. 铁、钠流星尾迹的激光雷达观测研究及钠层全天时观测技术[D]. 武汉: 武汉大学.Zeng L Q. 2011. Study on the observation of iron and sodium meteor wakes by Lidar and the observation technology of sodium layer in the whole sky[D]. Wuhan: Wuhan University (in Chinese). -