Comparative analysis of underground and ground-level tilt and acceleration
-
摘要: R-2型旋转地震仪可同时记录旋转三分量、MEMS加速度以及倾斜角度. 利用在淮南深地实验室地面和深部地下实施的两期连续观测数据,本文分析了地面和地下加速度与倾斜观测中背景噪声的差异. 结果表明:相比于地面,深地环境背景噪声干扰更弱,频谱上二者差异可达10 dB,说明深地环境具有低振动噪声的优势. 利用倾斜数据对MEMS加速度进行倾斜校正,校正前后的对比结果显示倾斜对加速度测量具有不可忽略的影响. 地倾斜信号的时频分析结果表明,相对于地表环境,深地环境有利于进行长周期微弱地球形变信号的检测. 本文还分析了固体潮信号观测的精度要求与现有仪器的不足,证明了在深地环境下进行高精度观测的必要性.Abstract: The R-2 rotary seismograph can record rotating three components, MEMS acceleration, and tilt angle. In this study, the difference between ground acceleration and tilted background noise were analyzed using two phases of continuous observation data implemented in the ground and deep underground of the Huainan Deep Earth Laboratory. It was found that the deep earth environmental background interference was weaker, with background noise differences on the spectrum of up to 10 dB, showing that the Deep Earth Laboratory has superior conditions regarding low vibration and noise. The contrast before and after the skew correction of the MEMS acceleration using the tilt data revealed that the tilt had a non-negligible influence. The time-frequency analysis showed that the deep earth environment was favorable relative to the surface environment. The precision requirements of solid tide signal observations and shortcomings of existing instruments were also analyzed, proving the necessity of high precision observations in the deep earth environment.
-
Key words:
- rotate the seismograph /
- deep observation /
- tilt /
- acceleration
-
图 1 淮南深地实验室R-2地震仪观测点位分布(修改自陈畅等,2022)
Figure 1. Distribution of the R-2 seismometer observation sites in the Huainan Deep Earth Laboratory (modified from Chen et al., 2022)
图 3 倾斜数据波形图地面地下对比(E方向、N方向、Z方向). (a)为地面观测的原始倾斜数据;(b)为地下观测的原始倾斜数据;(c)为去均值后的结果. 蓝色为地面的倾斜数据,红色为地下的倾斜数据
Figure 3. Comparison of tilt data wave graph between the ground and the underground (E direction, N direction, Z direction). (a) Shows the original tilt data observed on the gound; (b) Shows the original tilt data observed on the undergound; (c) Shows the results after removing the mean. Blue is the tilt data of the ground and red is the tilt data of the ground
图 4 MEMS加速度和倾斜数据功率谱对比. (a)为MEMS;(b)为倾斜;地面数据:红色为E方向,绿色为N方向,蓝色为Z方向;地下数据:粉色为E方向,黄色为N方向,黑色为Z方向
Figure 4. Power spectrum comparison of the MEMS acceleration and tilt data. (a) MEMS; (b) Tilt. Ground data: red is the E direction, green is the N direction, blue is the Z direction; Ground data: pink is the E direction, yellow is the N direction, black is the Z direction
表 1 R-2地震仪主要性能参数(旋转)
Table 1. Main performance parameters of the R-2 seismograph (rotation)
性能参数 R-2 输出数据通道 X、Y、Z rotational 分辨率 6×10−8 rad/s at 1 Hz 自噪声功率谱 −125 dB (rel. 1 rad/s2/√Hz) 频率范围 0.033~50 Hz 温度范围 −15℃~55 ℃ 电压供应范围 10~18 V 表 2 R-2地震仪MEMS加速度和倾斜主要性能参数
Table 2. Main performance parameters of the MEMS acceleration and tilt of the R-2 seismographs
性能参数 MEMS +TILT 输出数据通道 MEMS/TILT E N Z 可以选择的采样频率 125, 250, 500, 1000 Hz/1, 10, 20, 100 s 输入电压 ± 20 V 功率消耗 < 2 W (rec, 6 ch, Еtherneton) 存储容量 32 GB FAT32/EXT4 存储格式 miniSEED 温度范围 −40°C~85°C 表 3 有效观测时段
Table 3. Statistics of the effective observation duration
位置 仪器类型 第一期观测时间范围(UTC+8) 第二期观测时间范围(UTC+8) 地下 R-2
(221)倾斜仪 2020-03-30 8:00—2021-05-15 10:00 2021-05-25 8:00—2021-06-09 8:00 MEMS加速器 2020-03-30 16:00—17:00 2021-05-25 8:00—2021-06-09 8:00 旋转地震计 2020-03-30 16:00—17:00 2021-05-25 8:00—2021-06-09 8:00 地面 R-2
(220)倾斜仪 2020-01-20 12:00—2020-01-22 13:00 2021-05-26 8:00—2021-06-11 8:00 MEMS加速器 2020-01-20 12:00—2020-01-22 13:00 2021-05-26 8:00—2021-06-11 8:00 旋转地震计 2020-01-20 12:00—2020-01-22 13:00 2021-05-26 8:00—2021-06-11 8:00 表 4 MEMS加速度数据倾斜校正前后对比
Table 4. Comparison of the MEMS acceleration data
仪器型号 方向 状态 平均值/g 差值/g 改变幅度 221地下 E 校正前 −0.005863 校正后 0.015382 0.021245 −362.36% N 校正前 0.012756 校正后 0.023152 0.023152 181.50% Z 校正前 0.98641 校正后 0.98612 −0.00029 −0.03% 220地面 E 校正前 −0.07098 校正后 −0.040716 0.030264 −42.64% N 校正前 0.029821 校正后 0.14623 0.116409 390.36% Z 校正前 0.97245 校正后 0.96361 −0.00884 −0.91% -
[1] Amoruso A, Crescentini L, Scarpa R, et al. 2015. Abrupt magma chamber contraction and microseismicity at Campi Flegrei, Italy: Cause and effect determined from strainmeters and tiltmeters[J]. Journal of Geophysical Research: Solid Earth, 120(8): 5467-5478. doi: 10.1002/2015JB012085. [2] Baisch S, Bohnhoff M, Ceranna L, Tu Y M, Harjes H P. 2002. Probing the crust to 9-km depth: Fluid-injection experiments and induced seismicity at the KTB superdeep drilling hole, Germany[J]. Bulletin of the Seismological Society of America, 92(6): 2369-2380. doi: 10.1785/0120010236 [3] Boudin F, Bernard P, Meneses G, et al. 2021. Slow slip events precursory to the 2014 Iquique earthquake, revisited with long-base tilt and GPS records[J]. Geophysical Journal International, 228(3): 2092-2121. doi: 10.1093/gji/ggab425. [4] 陈畅, 王赟, 郭高源, 等. 2022. 几种旋转地震仪在深部地下巷道的观测对比[J]. 地球物理学报, 65(12): 4569-4582 doi: 10.6038/cjg2022Q0318Chen C, Wang Y, Guo G Y, et al. 2022. Deep underground observation comparison of rotational seismotometers[J]. Chinese Journal of Geophysics, 65(12): 4569-4582 (in Chinese). doi: 10.6038/cjg2022Q0318. [5] 方俊. 1984. 固体潮[M]. 北京: 科学出版社, 43-55Fang J. 1984. Solid Tide[M]. Beijing: Science Press, 43-55 (in Chinese). [6] Fores B, Champollion C, Moibne N, et al. 2017. Assessing the precision of the iGrav superconducting gravimeter for hydrological models and Karstic hydrological process identification[J]. Geophysical Journal International, 208(1): 269-280. doi: 10.11093/gji/ggw396. [7] Grasemann B, Plan L, Baroň I, Scholz D. 2022. Co-seismic deformation of the 2017 MW 6.6 Bodrum-Kos earthquake in speleothems of Korakia Cave (Pserimos, Dodecanese, Greece)[J]. Geomorphology, 402: 1-11. doi: 10.1016/j.geomorph.2022.108137. [8] Hirose H, Kimura T. 2020. Slip distributions of short term slow slip events in Shikoku, southwest Japan, from 2001 to 2019 based on tilt change measurements[J]. Journal of Geophysical Research: Solid Earth, 125(6): 601. doi: 10.1029/2020JB019601. [9] Kano M, Kano Y. 2019. Possible slow slip event beneath the Kii Peninsula, southwest Japan, inferred from historical tilt records in 1973[J]. Earth Planets and Space, 71(1): 1-9. doi: 10.1186/s40623-019-1076-9. [10] Kimura T, Tanaka S, Saito T. 2013. Ground tilt Changesin Japan caused by the 2010 Maule, Chile, earthquake tsunami[J]. Journal of Geophysical Research: Solid Earth, 118(1): 406-415. doi: 10.1029/2012JB009657. [11] Lauro E D, Petrosino S, Ricco C, et al. 2018. Medium and long period ground oscillatory pattern inferred by borehole tiltmetric data: New perspectives for the campi flegrei caldera crustal dynamics[J]. Earth and Planetary Science Letters, 504(1): 21-29. doi: 10.1016/j.jpgl.2018.09.039. [12] 栾威, 申文斌, 贾剑钢. 2015. 利用VP型垂直摆倾斜仪观测数据检测2011日本MW9. 0级地震激发的低频地球自由振荡[J]. 地球物理学报, 58(3): 844-856. doi: 10.6038/cjg20150314.Luan W, Shen W B, Jia J G. 2015. Detection of low-frequency modes of Earth's free oscillation excited by the Japan MW9.0 earthquake using observations of the vertical pendulum tiltmeter[J]. Chinese Journal of Geophysics, 58(3): 844-856 (in Chinese). doi: 10.6038/cjg20150314. [13] 梅尔基奥尔. 1984. 行星地球的固体潮[M]. 杜品仁, 吴庆鹏, 陈益惠, 等译. 北京: 科学出版社, 45-247.Melchior P. 1984. Solid Tide of the Planetary Earth [M]. Translated by Du P R,Wu Q P, Chen Y H, et al. Beijing: Science Press, 45-247 (in Chinese) [14] 孟方杰, 张燕. 2018. 利用不同倾斜仪和应变仪检测地球自由振荡的对比与分析[J]. 中国地震, 34(1): 133-140Meng F J, Zhang Y. 2018. Contrast and analysis of detection of the Earth's free oscillation using different tiltmeter and strainmeter [J]. Earthquake Research in China, 34(1): 133-140 (in Chinese). [15] 孟方杰, 张燕, 赵佳佳. 2018. 利用全台网垂直摆倾斜仪数据检测日本Mw 9.0地震激发的低频自由振荡[J]. 大地测量与地球动力学, 38(6): 650-654Meng F J, Zhang Y, Zhao J J. 2018. Detection of Earth’s low-frequency free oscillation excited by the 2011 Tohoku MW9.0 earthquake using tiltmeter networkin mainland China[J]. Journal of Geodesy and Geodynamics, 38(6): 650-654(in Chinese). [16] Monitoring and Forecdiction Department of China Earthquake Administration. 2003. Digital Observation Technology of Earth Crust Deformation [M]. Beijing: Seismological Press (in Chinese) [17] Okubo M, Ishii H, Yamauchi T. 2004. The 2003 Tokachi-Oki earthquake observed by borehole strainmeter array: Comparison with broadband seismogram[J]. Zisin, 57(2): 105–113. doi: 10.4294/zisin1948.57.2_105 [18] 欧阳祖熙, 张钧, 陈征, 等. 2009. 地壳形变深井综合观测技术的新进展[J]. 国际地震动态, 11: 1-13Ouyang Z X, Zhang J, Chen Z, et al. 2009. New progress in the comprehensive observation technology of crustal deformation and deep well [J]. Recent Developments in World Seismology, 11: 1-13 (in Chinese). [19] Ripepe M, Lacanna G, Pistolesi M, et al. 2021. Ground deformation reveals the scale-invariant conduit dynamics driving explosive Basaltic eruptions[J] . Nature Communications, 12(1): 1683. doi: 10.1038/s41467-021-21722-2. [20] Rosat S, Hinderer J. 2011. Noise levels of superconducting gravimeters: Updated comparison and time stability[J]. Bulletin of the Seismological Society of America, 101(3): 1233-1241. doi: 10.1785/0120100217 [21] Šebela S, Stemberk J, Briestenský M. 2021. Micro-displacement monitoring in caves at the Southern Alps-Dinarides-Southwestern Pannonian Basin junction[J]. Bulletin of Engineering Geology & the Environment, 80(10): 1-21. doi: 10.1007/s10064-021-02382-4. [22] Sekine S, Hirose H, Obara K. 2010. Along-strike variations in short-term slow slip events in the south-west Japan subduction zone[J]. Journal of Geophysical Research: Solid Earth, 124(4): 3853-3880. doi:https://doi.org/ 10.1029/2018JB016738. [23] 孙和平, 周江存, 徐建桥, 等. 2021. 高精度超导重力观测与研究为国家精密测绘和全球地球动力学提供理论基础[J]. 中国科学院院刊, 36(2): 216-223 doi: 10.16418/j.issn.1000-3045.20210202002Sun H P, Zhou J C, Xu J Q, et al. 2021. High-precision superconducting gravimetric observations and investigations provide national surveying and mapping and Earth’s dynamics with theoretical fundamentals[J]. Bulletin of Chinese Academy of Sciences, 36(2): 216-223 (in Chinese). doi: 10.16418/j.issn.1000-3045.20210202002. [24] 孙丽霞, 王赟, 杨军, 等. 2021. 旋转地震学的研究进展[J]. 地球科学, 46(4): 1518-1536. doi: 10.3799/dqkx.2020.113Sun L X, Wang Y, Yang J, et al. 2021. Progress in rotational seismology[J]. Earth Science, 46(4): 1518-1536 (in Chinese). DOI: 10.3799/dqkx.2020.113. [25] 唐九安, 杜锡武. 1997. 固体潮潮汐因子的空间分布特征与机理[J]. 地壳形变与地震, 1: 64-69Tang J A, Du X W. 1997. Spatial distribution characteristics of Earth tides and its mechanism [J]. Crustal Deformation and Earthquake, 1: 64-69 (in Chinese). [26] 王赟, 菅一凡, 贺永胜, 等. 2022. 地下实验室与深地环境下的地球物理观测[J]. 地球物理学报, 65(12): 4527-4542 doi: 10.6038/cjg2022Q0404Wang Y, Jian Y F, He Y S, et al. 2022. Underground laboratories and deep underground geophysical observations[J]. Chinese Journal of Geophysics (in Chinese), 65(12): 4527-4542(in Chinese). doi: 10.6038/cjg2022Q0404. [27] 王赟, 杨亚新, 孙和平, 等. 2023. 深部地下多物理场观测研究——淮南-848米深地试验[J]. 中国科学: 地球科学, 53(1): 55-71. doi: 10.1007/s11430-022-9998-2Wang Y, Yang Y X, Sun H P, et al. 2023. Observation and research of deep underground multi-physical fields—Huainan −848 m deep experiment [J]. Science China Earth Sciences, 66(1): 54–70 (in Chinese). https://doi.org/10.1007/s11430-022-9998-2 [28] 徐纪人, 赵志新. 2009. 深井地球物理观测的最新进展与中国大陆科学钻探长期观测[J]. 地球物理学进展, 24(4): 1176-1182 doi: 10.3969/j.issn.1004-2903.2009.04.003Xu J R, Zhao Z X. 2009. Recent advance of borehole geophysical observation and chinese continental scientific drilling long-term observatory at depth[J]. Progress in Geophysics, 2009, 24(4): 1176-1182(in Chinese). doi: 10.3969/j.issn.1004-2903.2009.04.003. [29] 杨又陵, 裴宏达, 徐道尊, 等. 2002. 新疆竖直摆倾斜仪的观测精度与震兆异常[J]. 西北地震学报, 24(4): 340-345Yang Y L, Pei H D, Xu D Z, et al. 2002. Observation accuracy and seismic precursor anomalies of vertical pendulum tiltmeters in Xinjiang[J]. Northwest Seismological Journal 24(4): 340-345 (in Chinese). [30] 袁曲, 许裕之, 吕品姬, 等. 2019. 宜昌台三类地倾斜仪观测数据的对比研究[J]. 地震工程学报, 41(6): 1536-1544Yuan Q, Xu Y Z, Lü P J, et al. 2019. Comparative study of the observation data from three kinds of ground tilt at Yichang station, China[J]. China Earthquake Engineering Journal, 41 (6): 1536-1544 (in Chinese). [31] Zeng X Z, Yang W C. 2021. Impact of post-earthquake seismic waves on the terrestrial environment[J]. Applied Sciences, 11(14): 6606. doi: 10.3390/app11146606 [32] 张国民, 傅征祥. 2001. 地震预报引论[M]. 北京: 科学出版社.Zhang G M, Fu Z X. 2001. Introduction to Earthquake Forecast [M]. Beijing: Science Press (in Chinese). [33] 张燕, 王迪晋, 赵莹, 等. 2022. 定点形变观测现状及研究进展[J]. 武汉大学学报(信息科学版), 47(6): 830-838Zhang Y, Wang D J, Zhao Y, et al. 2022. Present and progress of fixed-point deformation observation[J]. Geomatics and Information Science of Wuhan University, 47(6): 830-838 (in Chinese). [34] 张雁滨, 蒋骏, 钱家栋, 等. 2002. 地壳介质微形变异常与强震短临前兆[J]. 地震学报, 24(1): 103-108Zhang Y B, Jiang J, Qian J D, et al. 2002. The crustal microdeformation anomaly and the credible precursor [J]. Acta Seismologica Sinica, 24(1): 103-108 (in Chinese). [35] 赵文舟, 温燕林, 陈婧. 2013. 上海深井项目形变观测资料分析[J]. 中国科技信息, 4: 34Zhao W Z, Wen Y L, Chen J. 2013. Analysis of deformation observation data of Shanghai Deep Well Project [J]. China Science and Technology Information, 4: 34 (in Chinese). [36] 中国地震局监测预报司. 2003. 地壳形变数字观测技术[M]. 北京: 地震出版社. [37] 朱荣, 周兆英. 2002. 基于MEMS的姿态测量系统[J]. 测控技术, 21(10): 6-8Zhu R, Zhou Z Y. 2002. A MEMS-based attitude reference system[J]. Measurement & Control Technology, 21 (10): 6-8 (in Chinese). -