• ISSN 2097-1893
  • CN 10-1855/P

南极长城站哨声波监测仪设备及其初步观测

顾旭东 倪彬彬 徐未 王市委 李斌 胡泽骏 何昉 陈相材 胡红桥

引用本文: 顾旭东,倪彬彬,徐未,王市委,李斌,胡泽骏,何昉,陈相材,胡红桥. 2023. 南极长城站哨声波监测仪设备及其初步观测. 地球与行星物理论评(中英文),54(0):1-9
Gu X D, Ni B B, Xu W, Wang S W, Li B, Hu Z - J, He F, Chen X C, Hu H - Q. 2023. Deployment and initial observations of the Wuhan University very low frequency (WHU VLF) wave detection system at the Great Wall Station in Antarctica. Reviews of Geophysics and Planetary Physics, 54(0): 1-9 (in Chinese)

南极长城站哨声波监测仪设备及其初步观测

doi: 10.19975/j.dqyxx.2023-010
基金项目: 国家自然科学基金资助项目(42188101,42025404,42274205,41874195,42074119);国家重点研发计划资助项目(2022YFF0503700);中国科学院先导B计划资助项目(XDB41000000);民用航天技术预研项目(D020308,D020104,D020303);湖北珞珈实验室开放基金资助项目(220100051);上海科委项目(21DZ1206100)
详细信息
    作者简介:

    顾旭东(1979-),男,副教授,主要从事空间物理、甚低频波动探测和科学应用研究. E-mail:guxudong@whu.edu.cn

    通讯作者:

    倪彬彬(1978 -),男,教授,主要从事空间物理和空间天气学方面的研究. E-mail:bbni@whu.edu.cn

    李斌(1983-),男,助理研究员,主要从事极光粒子加速机制和极光精细结构的研究. E-mail:libin@pric.org.cn

  • 中图分类号: P352

Deployment and initial observations of the Wuhan University very low frequency (WHU VLF) wave detection system at the Great Wall Station in Antarctica

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 42188101, 42025404, 42274205, 41874195, 42074119), the National Key R&D Program of China (Grant No. 2022YFF0503700), the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000), and the Pre-research Projects on Civil Aerospace Technologies (Grant Nos. D020308, D020104, D020303), the Open Fund of Hubei Luojia Laboratory (Grant No. 220100051), and the Shanghai Science and Technology Innovation Action Plan (Grant No. 21DZ1206100)
  • 摘要: 在子午工程二期项目的支持下,武汉大学(Wuhan University, WHU)联合中国极地研究中心研制了一套甚低频(very low frequency, VLF)波动探测系统,并在2022年由中国极地研究中心部署于南极洲的中国长城站(Great Wall Station, GWS, 62.22°S, 58.96°W). 该探测系统的动态范围为~110 dB,时间精度为~100 ns,可为空间物理和空间天气研究提供高分辨率的波动观测数据. 本文详细介绍了WHU VLF(子午工程编码:OCHCH_WHWM01)波动探测系统在GWS的初步观测结果,充分验证了系统的优越性能和稳定性. 在过去一年的常规运行中,此系统能精确探测北美和欧洲等区域内各种地基VLF台站信号的动态变化. 初步分析结果表明,在多次X级太阳耀斑爆发期间,GWS观测到的人工VLF台站信号特性与以往的研究结果高度一致. 由于HWU-GWS(HWU为发射台站的名称)路径穿过南大西洋异常(south Atlantic anomaly, SAA)区域,观测结果同时表明,在磁暴期间,HWU VLF信号的扰动与磁层电子沉降在时空关系上具有很强的关联性. 此外,此设备也能观测到闪电激发的宽频带哨声波,在频谱图上呈现特有的清晰色散结构. 因此,在南极独特的地理位置,地基哨声波监测仪的观测结合其它仪器的观测,有利于深入开展与极区哨声波传播、低电离层扰动、地面闪电放电和辐射带粒子沉降等相关的空间天气学研究,对开展全天时空间环境监测具有重要意义.

     

  • 图  1  WHU ELF/VLF波动探测系统设备组成框图

    Figure  1.  Block diagram of the WHU ELF/VLF wave detection system

    图  2  南极长城站哨声波监测仪设备安装图

    Figure  2.  A photograph of the whistler wave monitoring instrument at GWS in Antarctica

    图  3  南极长城站甚低频信号频谱

    Figure  3.  Spectrum of VLF signals detected at GWS in Antarctica

    图  4  南极长城站甚低频台站信号,其中粉色点代表NS通道接收到的信号,蓝色点代表EW通道接收到的信号

    Figure  4.  VLF transmitter signals at GWS in Antarctica: Pink dots represent signals received by the NS channel and blue dots represent signals received by the EW channel

    图  5  南极长城站甚低频信号对太阳耀斑的响应

    Figure  5.  Responses of VLF signals to solar flares at GWS in Antarctica

    图  6  南极长城站甚低频信号对磁暴的响应

    Figure  6.  Responses of VLF signals to a geomagnetic storm at GWS in Antarctica

    图  7  南极长城站闪电激发的哨声波

    Figure  7.  Lightning-induced whistler waves at GWS in Antarctica

    表  1  南极长城站观测到的VLF信号对应的台站信息

    Table  1.   Transmitter information corresponding to VLF signals observed at the GWS in Antarctica

    台站名称频率/kHz发射台站的位置
    纬度/(°)经度/(°)
    VTX18.208.387015 N077.752762 E
    ICV20.2740.923127 N009.731011 E
    FTA20.948.544632 N002.579429 E
    NPM21.421.420166 N158.151140 W
    HWU21.7546.713129 N001.245248 E
    GQD22.154.731799 N002.883033 W
    DHO23.453.078900 N007.615000 E
    NAA24.044.644936 N067.281639 W
    NLK24.848.203487 N121.916827 W
    NML25.246.365990 N098.335638 W
    下载: 导出CSV
  • [1] Barr R, Jones D L, Rodger C. 2000. ELF and VLF radio waves[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 62: 1689–1718. https://doi.org/10.1016/S1364-6826(00)00121-8.
    [2] Belcher S R G, Clilverd M A, Rodger C J, et al. 2021. Solar flare X-ray impacts on long subionospheric VLF paths[J]. Space Weather, 19: e2021SW002820. https://doi.org/10.1029/2021SW002820.
    [3] Bullough K, Tatnall A R L, Denby M. 1976. Man-made ELF/VLF emissions and the radiation belts[J]. Nature, 260: 401–403. doi: 10.1038/260401a0
    [4] Chen Y P, Yang G B, Ni B B, et al. 2016. Development of ground-based ELF/VLF receiver system in Wuhan and its first results[J]. Advances in Space Research, 57: 1871–1880. doi: 10.1016/j.asr.2016.01.023
    [5] Chen Y P, Ni B B, Gu X D, et al. 2017. First observations of low latitude whistlers using WHU ELF/VLF receiver system[J]. Science China Technological Sciences, 60(1): 166-174. doi: 10.1007/s11431-016-6103-5
    [6] Chevalier M W, Peter W B, Inan U S, et al. 2007. Remote sensing of ionospheric disturbances associated with energetic particle precipitation using the South Pole VLF beacon[J]. Journal of Geophysical Research, 112: A11306.https://doi.org/doi: 10.1029/2007JA012425.
    [7] Clilverd M A, Rodger C J, Thomson N R, et al. 2009. Remote sensing space weather events: The AARDDVARK network[J]. Space Weather, 7: S04001. https://doi.org/10.1029/2008SW000412.
    [8] Cohen M B, Inan U S, Paschal E P. 2010. Sensitive broadband ELF/VLF radio reception with the AWESOME instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 48(1): 3–17. https://doi.org/10.1109/TGRS.2009.2028334.
    [9] Cohen M B, Gross N C, Higginson-Rollins M A, et al. 2018. The lower ionospheric VLF/LF response to the 2017 great American solar eclipse observed across the continent[J]. Geophysical Research Letters, 45: 3348–3355. doi: 10.1002/2018GL077351
    [10] Fishman G, Inan U. 1988. Observation of an ionospheric disturbance caused by a gamma-ray burst[J]. Nature, 331: 418–420. https://doi.org/10.1038/331418a0.
    [11] George H E, Rodger C J, Clilverd M A, et al. 2019. Developing a nowcasting capability for X-class solar flares using VLF radiowave propagation changes[J]. Space Weather, 17(12): 1783-1799. https://doi.org/10.1029/2019SW002297.
    [12] Gokani S A, Singh R, Cohen M B, et al. 2015. Very low latitude (L= 1.08) whistlers and correlation with lightningactivity[J]. Journal of Geophysical Research: Space Physics, 120: 6694–6706. doi: 10.1002/2015JA021058.
    [13] Gołkowski M, Renick C, Cohen M B. 2021. Quantification of ionospheric perturbations from lightning using overlapping paths of VLF signal propagation[J]. Journal of Geophysical Research: Space Physics, 126: e2020JA028540.
    [14] Gu X D, Li G J, Pang H, et al. 2021. Statistical analysis of very low frequency atmospheric noise caused by the global lightning using ground-based observations in China[J]. Journal of Geophysical Research: Space Physics, 126: e2020JA029101. doi: 10.1029/2020JA029101.
    [15] 顾旭东, 罗凡, 彭锐, 等. 2021. JJI甚低频台站信号对太阳耀斑事件的响应特性[J]. 地球物理学报, 64(5): 1508-1517 doi: 10.6038/cjg2021O0422

    Gu X D, Luo F, Peng R, et al. 2021. Response characteristics of very low frequency signals from JJI transmitter to solar flare events[J]. Chinese Journal of Geophysics, 64(5): 1508-1517(in Chinese). doi: 10.6038/cjg2021O0422.
    [16] Gu X D, Wang Q, Ni B, et al. 2022a. First results of the wave measurements by the WHU VLF wave detection system at the Chinese Great Wall station in Antarctica[J]. Journal of Geophysical Research: Space Physics, 127: e2022JA030784. https://doi.org/10.1029/2022JA030784.
    [17] Gu X D, Chen H, Wang S, et al. 2022b. Extraction of Alpha transmitter signals from single-station observations using the direction-finding method[J]. Science China Technological Sciences, 65: 1727–1737. https://doi.org/10.1007/s11431-021-2057-2.
    [18] Gu X D, Peng R, Wang S W, et al. 2022c. Responses of the very low frequency transmitter signals during the solar eclipse on Dec 26, 2019 over a North-South propagation path[J]. IEEE Transactions on Geoscience and Remote Sensing, 60: 2000207. doi: 10.1109/TGRS. 2021.3056092.
    [19] Gu X, Yi J, Wang S, et al. 2023. Comparison of VLF signal responses to solar flares along daytime and nighttime propagation paths[J]. Remote Sensing. 15(4): 1018. https://doi.org/10.3390/rs15041018.
    [20] He F, Hu H, Yang H, et al. 2016. Recent progress in Chinese polar upper-atmospheric physics research: Review of research advances supported by the Chinese Arctic and Antarctic expeditions[J]. Advances in Polar Science, 27(4): 219-232. doi: 10.13679/j.advps.2016.4.00219.
    [21] Helliwell R A. 1965. Whistlers and Related Ionospheric Phenomena[M]. Stanford University Press.
    [22] Inan U S, Golkowski M, Casey M K, et al. 2007. Subionospheric VLF observations of transmitter-induced precipitation of inner radiation belt electrons[J]. Geophysical Research Letters, 34(2): 2106. doi: 10.1029/2006GL028494
    [23] Inan U S, Cummer S A, Marshall R A. 2010. A survey of elf and VLF research on lightning-ionosphere interactions and causative discharges[J]. Journal of Geophysical Research, 115: A00E36.
    [24] Klein M E. 2009. Autonomous ultra-low power ELF/VLF receiver system[D]. Stanford University.
    [25] Lessard M R, Weatherwax A T, Spasojevic M, et al. 2009. PENGUIn multi-instrument observations of dayside high-latitude injections during the 23 March 2007 substorm[J]. Journal of Geophysical Research Space Physics, 114: A00C11. doi: 10.1029/2008JA013507.
    [26] Macotela E L, Raulin J-P, Manninen J, et al. 2017. Lower ionosphere sensitivity to solar X-ray flares over a complete solar cycle evaluated from VLF signal measurements[J]. Journal of Geophysical Research: Space Physics, 122: 12370-12377. https://doi.org/10.1002/2017JA024493.
    [27] Maurya A K, Veenadhari B, Singh R, et al. 2012a. Nighttime D region electron density measurements from ELF-VLF tweek radio atmospherics recorded at low latitudes[J]. Journal of Geophysical Research, 117: A11308. https://doi.org/10.1029/2012JA017876.
    [28] Maurya A K, Veenadhari B, Singh R, et al. 2012b. Morphological features of tweeks and nighttime D region ionosphere at tweek reflection height from the observations in the low-latitude Indian sector[J]. Journal of Geophysical Research, 117(A5): A05301. https://doi.org/10.1029/2011JA016976.
    [29] Ni B, Hua M, Gu X, et al. 2022. Artificial modification of Earth’s radiation belts by ground-based very-low-frequency (VLF) transmitters[J]. Science China Earth Sciences, 65(3): 5-27.https://doi: 10.1007/s11430-021-9850-7.
    [30] Peter W B, Chevalier M W, Inan U S. 2006. Perturbations of mid-latitude subionospheric VLF signals associated with lower ionospheric disturbances during major geomagnetic storms[J]. Journal of Geophysical Research, 111: A03301. https://doi.org/10.1029/2005JA011346.
    [31] Raulin J-P, David P C M, Hadano R, et al. 2009. The South America VLF NETwork (SAVNET)[J]. Earth, Moon and Planets, 104(1-4): 247-261. https://doi.org/10.1007/s11038-008-9269-4.
    [32] Richardson D K, Cohen M B. 2021. Seasonal variation of the D-region ionosphere: Very low frequency (VLF) and machine learning models[J]. Journal of Geophysical Research: Space Physics, 126: e2021JA029689.
    [33] Salut M M, Abdullah M, Graf K L, et al. 2012. Long recovery VLF perturbations associated with lightning discharges[J]. Journal of Geophysical Research, 117: A08311.
    [34] Shafer D C, Brown A D, Trabucco W J, et al. 1994. A programmable and low-power ELF/VLF receiver for automatic geophysical observatories[J]. Antarctic Journal of the United States, 29: 361-362.
    [35] Spasojevíc M, Inan U S. 2005. Ground based VLF observations near L = 2.5 during the Halloween 2003 storm[J]. Geophysical Research Letters, 32: L21103. https://doi.org/10.1029/2005GL024377.
    [36] 田茂, 徐继生, 马淑英. 1991. KDX-87 型甚低频宽带定向接收与微机分析系统[J]. 地球物理学报, 34(1): 11-19 doi: 10.3321/j.issn:0001-5733.1991.01.002

    Tian M, Xu J S, Ma S Y. 1991. KDX-87 Rreceiving and analysing system for VLF wide-band direction finding [J]. Chinese Journal of Geophysics, 34(1): 11-19 (in Chinese). doi: 10.3321/j.issn:0001-5733.1991.01.002
    [37] Voss H D, Imhof W L, Walt M, et al. 1984. Lightning-induced electron precipitation[J]. Nature, 312: 740-742. https://doi.org/10.1038/312740a0.
    [38] 王市委, 顾旭东, 罗凡, 等. 2020. 基于NWC甚低频信号的日出效应的观测与分析[J]. 地球物理学报, 63(12): 4300-4311. doi: 10.6038/cjg2020O0358.

    Wang S W, Gu X D, Luo F, et al. 2020. Observations and analyses of the sunrise effect for NWC VLF transmitter signals[J]. Chinese Journal of Geophysics, 63(12): 4300-4311 (in Chinese). doi: 10.6038/cjg2020O0358.
    [39] 王市委, 倪彬彬, 顾旭东, 等. 2022. 东西传播路径上JJI台站甚低频信号的日出效应研究[J]. 地球物理学报, 65(1): 145-156. doi: 10.6038/cjg2021P0052

    Wang S W, Ni B B, Gu X D, et al. 2022. Sunrise effect of very-low-frequency JJI transmitter signal propagating over an east-west path[J]. Chinese Journal of Geophysics , 65(1): 145-156(in Chinese). doi: 10.6038/cjg2021P0052.
    [40] 徐继生, 田茂, 马淑英, 等. 1989. 磁纬20°以下地区哨声多台宽带定向观测及其初步结果[J]. 地球物理学报, 32(2): 125-134 doi: 10.3321/j.issn:0001-5733.1989.02.001

    Xu J S, Tian M, Ma S Y, et al. 1989. Multi-stationed wideband direction finding measurements for whistlers at geomagnetic latitudes below 20° in China and some early results [J]. Chinese Journal of Geophysics, 32(2): 125-134(in Chinese). doi: 10.3321/j.issn:0001-5733.1989.02.001
    [41] 易娟, 顾旭东, 李志鹏, 等. 2019. 基于LWPC和IRI模型的NWC台站信号传播幅度建模分析[J]. 地球物理学报, 62(9): 3223-3234. doi: 10.6038/cjg2019N0190.

    Yi J, Gu X D, Li Z P, et al . 2019. Modeling and analysis of NWC signal propagation amplitude based on LWPC and IRI models[J]. Chinese Journal of Geophysics , 62(9): 3223-3234(in Chinese). doi: 10.6038/cjg2019N0190.
    [42] Yi J, Gu X, Cheng W, et al. 2020. A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters[J]. Earth and Planetary Physics, 4: 238-245. https://doi.org/10.26464/epp2020023.
    [43] Zhou R X, Gu X D, Yang K X, et al. 2020. A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method[J]. Earth and Planetary Physics, 4(2): 120–130. doi: 10.26464/ epp2020018.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  38
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-04-21
  • 录用日期:  2023-04-22
  • 网络出版日期:  2023-05-08

目录

    /

    返回文章
    返回