Deployment and initial observations of the Wuhan University very low frequency (WHU VLF) wave detection system at the Great Wall Station in Antarctica
-
摘要: 在子午工程二期项目的支持下,武汉大学(Wuhan University, WHU)联合中国极地研究中心研制了一套甚低频(very low frequency, VLF)波动探测系统,并在2022年由中国极地研究中心部署于南极洲的中国长城站(Great Wall Station, GWS, 62.22°S, 58.96°W). 该探测系统的动态范围为~110 dB,时间精度为~100 ns,可为空间物理和空间天气研究提供高分辨率的波动观测数据. 本文详细介绍了WHU VLF(子午工程编码:OCHCH_WHWM01)波动探测系统在GWS的初步观测结果,充分验证了系统的优越性能和稳定性. 在过去一年的常规运行中,此系统能精确探测北美和欧洲等区域内各种地基VLF台站信号的动态变化. 初步分析结果表明,在多次X级太阳耀斑爆发期间,GWS观测到的人工VLF台站信号特性与以往的研究结果高度一致. 由于HWU-GWS(HWU为发射台站的名称)路径穿过南大西洋异常(south Atlantic anomaly, SAA)区域,观测结果同时表明,在磁暴期间,HWU VLF信号的扰动与磁层电子沉降在时空关系上具有很强的关联性. 此外,此设备也能观测到闪电激发的宽频带哨声波,在频谱图上呈现特有的清晰色散结构. 因此,在南极独特的地理位置,地基哨声波监测仪的观测结合其它仪器的观测,有利于深入开展与极区哨声波传播、低电离层扰动、地面闪电放电和辐射带粒子沉降等相关的空间天气学研究,对开展全天时空间环境监测具有重要意义.Abstract:
A system for the detection of very low frequency (VLF) electromagnetic waves has been developed by Wuhan University (WHU) with the Polar Research Institute of China (PRIC), and has been successfully deployed by PRIC at the Great Wall Station (GWS, 62.22°S, 58.96°W) in Antarctica, as part of the Meridian Project-Phase II. The system has a dynamic range of ~110 dB and a timing accuracy of ~100 ns, and hence can provide observational data at sufficient resolution to contribute to space physics and space weather research. This paper reports initial measurements of the WHU VLF (Meridian Project-Phase II ID: OCHCH_WHWM01) wave detection system at GWS, to demonstrate performance of the system. Data from nearly one year of routine operation indicate that the system is effective in recording the dynamic change of ground-based VLF transmitter signals from North America and Europe. The characteristics of VLF transmitter signals observed at GWS during X-class solar flares are consistent with results from previous studies. The VLF data exhibited a good correlation in space and time with measurements of magnetospheric electron deposition during geomagnetic storms, as detected in the South Atlantic Anomaly (SAA) region. The WHU VLF system additionally provides data on the wide-band whistler waves as excited by lightning discharge, the spectrum of which exhibits a distinctive dispersion structure. The unique position of GWS in Antarctica provides the opportunity to obtain observational data on VLF waves which can be used to investigate multiple aspects of space physics, including the propagation of whistler waves in polar regions, lower ionosphere disturbance, lightning discharge, and radiation belt electron precipitation from the radiation belts. These measurements are of critical importance in monitoring near-Earth space weather. -
表 1 南极长城站观测到的VLF信号对应的台站信息
Table 1. Transmitter information corresponding to VLF signals observed at the GWS in Antarctica
台站名称 频率/kHz 发射台站的位置 纬度/(°) 经度/(°) VTX 18.2 08.387015 N 077.752762 E ICV 20.27 40.923127 N 009.731011 E FTA 20.9 48.544632 N 002.579429 E NPM 21.4 21.420166 N 158.151140 W HWU 21.75 46.713129 N 001.245248 E GQD 22.1 54.731799 N 002.883033 W DHO 23.4 53.078900 N 007.615000 E NAA 24.0 44.644936 N 067.281639 W NLK 24.8 48.203487 N 121.916827 W NML 25.2 46.365990 N 098.335638 W -
[1] Barr R, Jones D L, Rodger C. 2000. ELF and VLF radio waves[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 62: 1689–1718. https://doi.org/10.1016/S1364-6826(00)00121-8. [2] Belcher S R G, Clilverd M A, Rodger C J, et al. 2021. Solar flare X-ray impacts on long subionospheric VLF paths[J]. Space Weather, 19: e2021SW002820. https://doi.org/10.1029/2021SW002820. [3] Bullough K, Tatnall A R L, Denby M. 1976. Man-made ELF/VLF emissions and the radiation belts[J]. Nature, 260: 401–403. doi: 10.1038/260401a0 [4] Chen Y P, Yang G B, Ni B B, et al. 2016. Development of ground-based ELF/VLF receiver system in Wuhan and its first results[J]. Advances in Space Research, 57: 1871–1880. doi: 10.1016/j.asr.2016.01.023 [5] Chen Y P, Ni B B, Gu X D, et al. 2017. First observations of low latitude whistlers using WHU ELF/VLF receiver system[J]. Science China Technological Sciences, 60(1): 166-174. doi: 10.1007/s11431-016-6103-5 [6] Chevalier M W, Peter W B, Inan U S, et al. 2007. Remote sensing of ionospheric disturbances associated with energetic particle precipitation using the South Pole VLF beacon[J]. Journal of Geophysical Research, 112: A11306.https://doi.org/doi: 10.1029/2007JA012425. [7] Clilverd M A, Rodger C J, Thomson N R, et al. 2009. Remote sensing space weather events: The AARDDVARK network[J]. Space Weather, 7: S04001. https://doi.org/10.1029/2008SW000412. [8] Cohen M B, Inan U S, Paschal E P. 2010. Sensitive broadband ELF/VLF radio reception with the AWESOME instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 48(1): 3–17. https://doi.org/10.1109/TGRS.2009.2028334. [9] Cohen M B, Gross N C, Higginson-Rollins M A, et al. 2018. The lower ionospheric VLF/LF response to the 2017 great American solar eclipse observed across the continent[J]. Geophysical Research Letters, 45: 3348–3355. doi: 10.1002/2018GL077351 [10] Fishman G, Inan U. 1988. Observation of an ionospheric disturbance caused by a gamma-ray burst[J]. Nature, 331: 418–420. https://doi.org/10.1038/331418a0. [11] George H E, Rodger C J, Clilverd M A, et al. 2019. Developing a nowcasting capability for X-class solar flares using VLF radiowave propagation changes[J]. Space Weather, 17(12): 1783-1799. https://doi.org/10.1029/2019SW002297. [12] Gokani S A, Singh R, Cohen M B, et al. 2015. Very low latitude (L= 1.08) whistlers and correlation with lightningactivity[J]. Journal of Geophysical Research: Space Physics, 120: 6694–6706. doi: 10.1002/2015JA021058. [13] Gołkowski M, Renick C, Cohen M B. 2021. Quantification of ionospheric perturbations from lightning using overlapping paths of VLF signal propagation[J]. Journal of Geophysical Research: Space Physics, 126: e2020JA028540. [14] Gu X D, Li G J, Pang H, et al. 2021. Statistical analysis of very low frequency atmospheric noise caused by the global lightning using ground-based observations in China[J]. Journal of Geophysical Research: Space Physics, 126: e2020JA029101. doi: 10.1029/2020JA029101. [15] 顾旭东, 罗凡, 彭锐, 等. 2021. JJI甚低频台站信号对太阳耀斑事件的响应特性[J]. 地球物理学报, 64(5): 1508-1517 doi: 10.6038/cjg2021O0422Gu X D, Luo F, Peng R, et al. 2021. Response characteristics of very low frequency signals from JJI transmitter to solar flare events[J]. Chinese Journal of Geophysics, 64(5): 1508-1517(in Chinese). doi: 10.6038/cjg2021O0422. [16] Gu X D, Wang Q, Ni B, et al. 2022a. First results of the wave measurements by the WHU VLF wave detection system at the Chinese Great Wall station in Antarctica[J]. Journal of Geophysical Research: Space Physics, 127: e2022JA030784. https://doi.org/10.1029/2022JA030784. [17] Gu X D, Chen H, Wang S, et al. 2022b. Extraction of Alpha transmitter signals from single-station observations using the direction-finding method[J]. Science China Technological Sciences, 65: 1727–1737. https://doi.org/10.1007/s11431-021-2057-2. [18] Gu X D, Peng R, Wang S W, et al. 2022c. Responses of the very low frequency transmitter signals during the solar eclipse on Dec 26, 2019 over a North-South propagation path[J]. IEEE Transactions on Geoscience and Remote Sensing, 60: 2000207. doi: 10.1109/TGRS. 2021.3056092. [19] Gu X, Yi J, Wang S, et al. 2023. Comparison of VLF signal responses to solar flares along daytime and nighttime propagation paths[J]. Remote Sensing. 15(4): 1018. https://doi.org/10.3390/rs15041018. [20] He F, Hu H, Yang H, et al. 2016. Recent progress in Chinese polar upper-atmospheric physics research: Review of research advances supported by the Chinese Arctic and Antarctic expeditions[J]. Advances in Polar Science, 27(4): 219-232. doi: 10.13679/j.advps.2016.4.00219. [21] Helliwell R A. 1965. Whistlers and Related Ionospheric Phenomena[M]. Stanford University Press. [22] Inan U S, Golkowski M, Casey M K, et al. 2007. Subionospheric VLF observations of transmitter-induced precipitation of inner radiation belt electrons[J]. Geophysical Research Letters, 34(2): 2106. doi: 10.1029/2006GL028494 [23] Inan U S, Cummer S A, Marshall R A. 2010. A survey of elf and VLF research on lightning-ionosphere interactions and causative discharges[J]. Journal of Geophysical Research, 115: A00E36. [24] Klein M E. 2009. Autonomous ultra-low power ELF/VLF receiver system[D]. Stanford University. [25] Lessard M R, Weatherwax A T, Spasojevic M, et al. 2009. PENGUIn multi-instrument observations of dayside high-latitude injections during the 23 March 2007 substorm[J]. Journal of Geophysical Research Space Physics, 114: A00C11. doi: 10.1029/2008JA013507. [26] Macotela E L, Raulin J-P, Manninen J, et al. 2017. Lower ionosphere sensitivity to solar X-ray flares over a complete solar cycle evaluated from VLF signal measurements[J]. Journal of Geophysical Research: Space Physics, 122: 12370-12377. https://doi.org/10.1002/2017JA024493. [27] Maurya A K, Veenadhari B, Singh R, et al. 2012a. Nighttime D region electron density measurements from ELF-VLF tweek radio atmospherics recorded at low latitudes[J]. Journal of Geophysical Research, 117: A11308. https://doi.org/10.1029/2012JA017876. [28] Maurya A K, Veenadhari B, Singh R, et al. 2012b. Morphological features of tweeks and nighttime D region ionosphere at tweek reflection height from the observations in the low-latitude Indian sector[J]. Journal of Geophysical Research, 117(A5): A05301. https://doi.org/10.1029/2011JA016976. [29] Ni B, Hua M, Gu X, et al. 2022. Artificial modification of Earth’s radiation belts by ground-based very-low-frequency (VLF) transmitters[J]. Science China Earth Sciences, 65(3): 5-27.https://doi: 10.1007/s11430-021-9850-7. [30] Peter W B, Chevalier M W, Inan U S. 2006. Perturbations of mid-latitude subionospheric VLF signals associated with lower ionospheric disturbances during major geomagnetic storms[J]. Journal of Geophysical Research, 111: A03301. https://doi.org/10.1029/2005JA011346. [31] Raulin J-P, David P C M, Hadano R, et al. 2009. The South America VLF NETwork (SAVNET)[J]. Earth, Moon and Planets, 104(1-4): 247-261. https://doi.org/10.1007/s11038-008-9269-4. [32] Richardson D K, Cohen M B. 2021. Seasonal variation of the D-region ionosphere: Very low frequency (VLF) and machine learning models[J]. Journal of Geophysical Research: Space Physics, 126: e2021JA029689. [33] Salut M M, Abdullah M, Graf K L, et al. 2012. Long recovery VLF perturbations associated with lightning discharges[J]. Journal of Geophysical Research, 117: A08311. [34] Shafer D C, Brown A D, Trabucco W J, et al. 1994. A programmable and low-power ELF/VLF receiver for automatic geophysical observatories[J]. Antarctic Journal of the United States, 29: 361-362. [35] Spasojevíc M, Inan U S. 2005. Ground based VLF observations near L = 2.5 during the Halloween 2003 storm[J]. Geophysical Research Letters, 32: L21103. https://doi.org/10.1029/2005GL024377. [36] 田茂, 徐继生, 马淑英. 1991. KDX-87 型甚低频宽带定向接收与微机分析系统[J]. 地球物理学报, 34(1): 11-19 doi: 10.3321/j.issn:0001-5733.1991.01.002Tian M, Xu J S, Ma S Y. 1991. KDX-87 Rreceiving and analysing system for VLF wide-band direction finding [J]. Chinese Journal of Geophysics, 34(1): 11-19 (in Chinese). doi: 10.3321/j.issn:0001-5733.1991.01.002 [37] Voss H D, Imhof W L, Walt M, et al. 1984. Lightning-induced electron precipitation[J]. Nature, 312: 740-742. https://doi.org/10.1038/312740a0. [38] 王市委, 顾旭东, 罗凡, 等. 2020. 基于NWC甚低频信号的日出效应的观测与分析[J]. 地球物理学报, 63(12): 4300-4311. doi: 10.6038/cjg2020O0358.Wang S W, Gu X D, Luo F, et al. 2020. Observations and analyses of the sunrise effect for NWC VLF transmitter signals[J]. Chinese Journal of Geophysics, 63(12): 4300-4311 (in Chinese). doi: 10.6038/cjg2020O0358. [39] 王市委, 倪彬彬, 顾旭东, 等. 2022. 东西传播路径上JJI台站甚低频信号的日出效应研究[J]. 地球物理学报, 65(1): 145-156. doi: 10.6038/cjg2021P0052Wang S W, Ni B B, Gu X D, et al. 2022. Sunrise effect of very-low-frequency JJI transmitter signal propagating over an east-west path[J]. Chinese Journal of Geophysics , 65(1): 145-156(in Chinese). doi: 10.6038/cjg2021P0052. [40] 徐继生, 田茂, 马淑英, 等. 1989. 磁纬20°以下地区哨声多台宽带定向观测及其初步结果[J]. 地球物理学报, 32(2): 125-134 doi: 10.3321/j.issn:0001-5733.1989.02.001Xu J S, Tian M, Ma S Y, et al. 1989. Multi-stationed wideband direction finding measurements for whistlers at geomagnetic latitudes below 20° in China and some early results [J]. Chinese Journal of Geophysics, 32(2): 125-134(in Chinese). doi: 10.3321/j.issn:0001-5733.1989.02.001 [41] 易娟, 顾旭东, 李志鹏, 等. 2019. 基于LWPC和IRI模型的NWC台站信号传播幅度建模分析[J]. 地球物理学报, 62(9): 3223-3234. doi: 10.6038/cjg2019N0190.Yi J, Gu X D, Li Z P, et al . 2019. Modeling and analysis of NWC signal propagation amplitude based on LWPC and IRI models[J]. Chinese Journal of Geophysics , 62(9): 3223-3234(in Chinese). doi: 10.6038/cjg2019N0190. [42] Yi J, Gu X, Cheng W, et al. 2020. A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters[J]. Earth and Planetary Physics, 4: 238-245. https://doi.org/10.26464/epp2020023. [43] Zhou R X, Gu X D, Yang K X, et al. 2020. A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method[J]. Earth and Planetary Physics, 4(2): 120–130. doi: 10.26464/ epp2020018. -