Latitudinal four-peak structure of the nighttime F region ionosphere: Possible contribution of the neutral wind
-
摘要: 欧空局Swarm星座包含三颗飞行在不同地方时的卫星,其为研究夜侧电离层纬向四峰结构随时间的演化提供了很好的机会. 在2017年1月31日夜间,Swarm A和C两颗并排飞行的卫星在黄昏前后(17:55/18:01地方时)的美洲扇区并没有观测到赤道电离异常的两个峰,而Swarm B卫星在约4.5小时后飞行于大致相同的经度扇区,并观测到夜侧电离层呈现出明显的纬向四峰结构. 该观测证明了纬向四峰结构中靠近低纬的两个内峰不是黄昏前后赤道电离异常峰的残余. 在该事件中,位于秘鲁的Jicamarca非相干散射雷达从黄昏至午夜观测到向下的等离子体垂直漂移速度,表明向上的等离子体漂移速度并不是引起夜间纬向四峰结构的必要条件;而位于Arecibo的法布里-珀罗干涉仪观测到中性风显示出东向和南向分量的增强,表明中性风对夜侧纬向四峰结构的形成有着重要作用. SAMI2模型的模拟结果与卫星、非相干散射雷达及法布里-珀罗干涉仪的观测一致. 模拟结果显示夜侧东向与赤道向风为纬向四峰结构的形成提供了有利条件;但当赤道向风过大时,会导致背景电子密度出现显著半球不对称性,从而阻碍夜侧纬向四峰结构的发展.Abstract: In this study, we provide a detailed analysis of the latitudinal four-peak structure of the F region electron density observed by the Swarm B satellite during the night of January 31, 2017. Consisting of three satellites flying at different local times, Swarm provides an opportunity to investigate the temporal evolution of the nighttime latitudinal four-peak structure. For this event, Swarm A/C did not observe the two crests of equatorial ionization anomaly (EIA) at 17:55/18:01 LT, but Swarm B, which flew over the same longitudinal sector approximately 4.5 h later, observed a clear latitudinal four-peak structure. This provides direct evidence that the two inner peaks of the latitudinal four-peak structure are not remnants of the EIA crests from sunset. In addition, simultaneous measurements of the vertical plasma drift from the incoherent scatter radar at Jicamarca and neutral wind from the ground-based Fabry–Perot interferometer (FPI) at Arecibo were compared to reveal the possible driving mechanisms. The observed F region vertical plasma drift was generally downward from sunset throughout the local night of January 31, 2017, which reveals that an enhanced upward plasma drift is not necessary to cause the nighttime latitudinal four-peak structure. The neutral wind measurements from the FPI located at Arecibo showed enhanced eastward and southward components during the night when the latitudinal four-peak structure was observed by Swarm B, both with a difference of approximately 100 m/s compared with the other two days. This suggests that the neutral winds play an important role in the nighttime latitudinal four-peak structure. Further simulations using the SAMI2 (another model of the ionosphere) model support these observations. In general, eastward and equatorward winds from both hemispheres at night provided favorable conditions for the latitudinal four-peak structure. However, when the equatorward wind is too large, a strong hemispheric asymmetry of the background Ne can occur, which prevents the development of the latitudinal four-peak structure at night.
-
Figure 1. (a) Two consecutive orbits of Swarm A (red) and C (blue) on January 31, 2017, as well as one orbit of Swarm B (green) on February 1, 2017. (b) Electron density profiles from the orbits of Swarm A/C on the west side of the Swarm B orbit. (c) Same as (b) but for the orbits of Swarm A/C on the east side of Swarm B
-
[1] Appleton E V. 1946. Two anomalies in the ionosphere[J]. Nature, 157(3995): 691. DOI: 10.1038/157691a0. [2] Arendt P R, Soicher H. 1964. Downward electron flux at 1, 000 km altitude from electron content measurement at mid-latitudes[J]. Nature, 204(4962): 983-984. DOI: 10.1038/204983a0. [3] Balan N, Rao P B. 1987. Latitudinal variations of nighttime enhancements in total electron content[J]. Journal of Geophysical Research: Space Physics, 92(A4): 3436-3440. DOI: 10.1029/JA092iA04p03436. [4] Buchert S. 2018. Langmuir probe level 1b algorithm[BD/OL]. Retrieved from https://earth.esa.int/eogateway/documents/20142/37627/swarm-level-1b-plasma-processor-algorithm.pdf/bae64759-b901-d961-4d18-0a5b317f8c12. [5] Burke W J, Huang C Y, Gentile L C, Bauer L. 2004. Seasonal-longitudinal variability of equatorial plasma bubbles[J]. Annales Geophysicae, 22(9): 3089-3098. DOI: 10.5194/angeo-22-3089-2004. [6] Dang T, Luan X, Lei J, et al. 2016. A numerical study of the interhemispheric asymmetry of the equatorial ionization anomaly in solstice at solar minimum[J]. Journal of Geophysical Research: Space Physics, 121(9): 9099-9110. DOI: 10.1002/2016JA023012. [7] Drob D P, Emmert J T, Crowley G, et al. 2008. An empirical model of the Earth's horizontal wind fields: HWM07[J]. Journal of Geophysical Research: Space Physics, 113(A12): A12304. DOI: 10.1029/2008JA013668. [8] Duncan R A. 1960. The equatorial F-region of the ionosphere[J]. Journal of Atmospheric and Terrestrial Physics, 18(2): 89-100. DOI: 10.1016/0021-9169(60)90081-7. [9] Eccles J V, St Maurice J P, Schunk R W. 2015. Mechanisms underlying the prereversal enhancement of the vertical plasma drift in the low-latitude ionosphere[J]. Journal of Geophysical Research: Space Physics, 120(6): 4950-4970. DOI: 10.1002/2014JA020664. [10] Emmert J T, Fejer B G, Shepherd G G, et al. 2004. Average nighttime F region disturbance neutral winds measured by UARS WINDII: Initial results[J]. Geophysical Research Letters, 31(22): L22807. DOI: 10.1029/2004GL021611. [11] Fejer B G, Hui D, Chau J L, Kudeki E. 2014. Altitudinal dependence of evening equatorial F region vertical plasma drifts[J]. Journal of Geophysical Research: Space Physics, 119(7): 5877-5890. DOI: 10.1002/2014JA019949. [12] Hedin A E, Fleming E L, Manson A H, et al. 1996. Empirical wind model for the upper, middle and lower atmosphere[J]. Journal of Atmospheric and Terrestrial Physics, 58(13): 1421-1447. DOI: 10.1016/0021-9169(95)00122-0. [13] Hodges R R. 1967. Generation of turbulence in the upper atmosphere by internal gravity waves[J]. Journal of Geophysical Research, 72(13): 3455-3458. DOI: 10.1029/JZ072i013p03455. [14] Huba J D, Joyce G, Fedder J A. 2000. Sami2 is another model of the ionosphere (SAMI2): A new low-latitude ionosphere model[J]. Journal of Geophysical Research: Space Physics, 105(A10): 23035-23053. DOI: 10.1029/2000JA000035. [15] Jakowski N, Förster M. 1995. About the nature of the night-time winter anomaly effect (NWA) in the F-region of the ionosphere[J]. Planetary and Space Science, 43(5): 603-612. DOI: 10.1016/0032-0633(94)00115-8. [16] Kelley M C. 2009. The Earth's Ionosphere[M]//Electrodynamics and Plasma Physics (2nd ed. ). New York: Elsevier. [17] Kerr R B. 2013. Data from the CEDAR Madrigal database[BD/OL]. Available from https://w3id.org/cedar?experiment_list=experiments/2013/aif/04jan13&file_list=aif130104g00004.hdf5. [18] Kudeki E, Bhattacharyya S, Woodman R F. 1999. A new approach in incoherent scatter F region E × B drift measurements at Jicamarca[J]. Journal of Geophysical Research: Space Physics, 104(A12): 28145-28162. DOI: 10.1029/1998JA900110. [19] Liang P H. 1947. F2 ionization and geomagnetic latitudes[J]. Nature, 160(4071): 642-643. [20] Lin C H, Liu J Y, Fang T W, et al. 2007. Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC[J]. Geophysical Research Letters, 34(19): L19101. DOI: 10.1029/2007GL030741. [21] Liu H, Stolle C, Förster M, Watanabe S. 2007. Solar activity dependence of the electron density in the equatorial anomaly regions observed by CHAMP[J]. Journal of Geophysical Research: Space Physics, 112(A11): A11311. DOI: 10.1029/2007JA012616. [22] Liu H, Thampi S V, Yamamoto M. 2010. Phase reversal of the diurnal cycle in the midlatitude ionosphere[J]. Journal of Geophysical Research: Space Physics, 115(A1): A01305. DOI: 10.1029/2009JA014689. [23] McDonald S E, Dymond K F, Summers M E. 2008. Hemispheric asymmetries in the longitudinal structure of the low-latitude nighttime ionosphere[J]. Journal of Geophysical Research: Space Physics, 113(A8): A08308. DOI: 10.1029/2007JA012876. [24] Mikhailov A V, Förster M, Leschinskaya T Y. 2000. On the mechanism of the post-midnight winter NmF2 enhancements: Dependence on solar activity[J]. Annales Geophysicae, 18(11): 1422-1434. DOI: 10.1007/s00585-000-1422-y. [25] Namba S, Maeda K I. 1939. Radio Wave Propagation[M]. Corona, Tokyo, 86. [26] Picone J M, Hedin A E, Drob D P, Aikin A C. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 107(A12): 1468. DOI: 10.1029/2002JA009430. [27] Scherliess L, Fejer B G. 1999. Radar and satellite global equatorial F region vertical drift model[J]. Journal of Geophysical Research: Space Physics, 104(A4): 6829-6842. DOI: 10.1029/1999JA900025. [28] Stolle C, Lühr H, Fejer B G. 2008. Relation between the occurrence rate of ESF and the equatorial vertical plasma drift velocity at sunset derived from global observations[J]. Annales Geophysicae, 26(12): 3979-3988. DOI: 10.5194/angeo-26-3979-2008. [29] Wan X, Xiong C, Rodríguez-Zuluaga J, et al. 2018. Climatology of occurrence rate and amplitudes of local time distinguished equatorial plasma depletions observed by Swarm satellite[J]. Journal of Geophysical Research: Space Physics, 123(4): 3014-3026. DOI: 10.1002/2017JA025072. [30] Wang W, Lei J, Burns A G, et al. 2008. Ionospheric electric field variations during a geomagnetic storm simulated by a coupled magnetosphere ionosphere thermosphere (CMIT) model[J]. Geophysical Research Letters, 35(18): L18105. DOI: 10.1029/2008GL035155. [31] Woodman R F. 1970. Vertical drift velocities and east-west electric fields at the magnetic equator[J]. Journal of Geophysical Research, 75(31): 6249-6259. DOI: 10.1029/JA075i031p06249. [32] Xiong C, Park J, Lühr H, et al. 2010. Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity[J]. Annales Geophysicae, 28(9): 1647-1658. DOI: 10.5194/angeo-28-1647-2010. [33] Xiong C, Lühr H, Ma S Y. 2013. The magnitude and inter-hemispheric asymmetry of equatorial ionization anomaly-based on CHAMP and GRACE observations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, (105-106): 160-169. DOI: 10.1016/j.jastp.2013.09.010. [34] Xiong C, Zhou Y-L, Lühr H, Ma S-Y. 2015. Tidal signatures of the thermospheric mass density and zonal wind at midlatitude: CHAMP and GRACE observations[J]. Annales Geophysicae, 33(2): 185-196. DOI: 10.5194/angeo-33-185-2015. [35] Xiong C, Zhou Y-L, Lühr H, Ma S-Y. 2016. Diurnal evolution of the F region electron density local time gradient at low and middle latitudes resolved by the Swarm constellation[J]. Journal of Geophysical Research: Space Physics, 121(9): 9075-9089. DOI: 10.1002/2016JA023034. [36] Xiong C, Lühr H, Sun L, et al. 2019. Long-lasting latitudinal four-peak structure in the nighttime ionosphere observed by the Swarm constellation[J]. Journal of Geophysical Research: Space Physics, 124(11): 9335-9347. DOI: 10.1029/2019JA027096. [37] Xiong C, Jiang H, Yan R, et al. 2022. Solar flux influence on the in-situ plasma density at topside ionosphere measured by Swarm satellites[J]. Journal of Geophysical Research: Space Physics, 127(5): e2022JA030275. DOI: 10.1029/2022JA030275. [38] Xiong C, Lühr H. 2023. Field-aligned scale length of depleted structures associated with post-sunset equatorial plasma bubbles[J]. Journal of Space Weather and Space Climate, 13: 3. DOI: 10.1051/swsc/2023002. [39] Yeh K C, Franke S J, Andreeva E S, Kunitsyn V E. 2001. An investigation of motions of the equatorial anomaly crest[J]. Geophysical Research Letters, 28(24): 4517-4520. DOI: 10.1029/2001GL013897. [40] Yizengaw E, Moldwin M B, Sahai Y, de Jesus R. 2009. Strong postmidnight equatorial ionospheric anomaly observations during magnetically quiet periods[J]. Journal of Geophysical Research: Space Physics, 114(A12): A12308. DOI: 10.1029/2009JA014603. [41] Zhong J, Lei J, Yue X, et al. 2019. Middle-latitudinal band structure observed in the nighttime ionosphere[J]. Journal of Geophysical Research: Space Physics, 124(7): 5857-5873. DOI: 10.1029/2018JA026059. -