• ISSN 2097-1893
  • CN 10-1855/P

子午工程二期宽频地磁波监测仪研制

于向前 和冬华 肖池阶 宗秋刚 施伟红 刘斯 陈鸿飞 王永福 邹鸿

引用本文: 于向前,和冬华,肖池阶,宗秋刚,施伟红,刘斯,陈鸿飞,王永福,邹鸿. 2023. 子午工程二期宽频地磁波监测仪研制. 地球与行星物理论评(中英文),54(0):1-9
Yu X Q, He D H, Xiao C J, Zong Q G, Shi W H, Liu S, Chen H F, Wang Y F, Zou H. 2023. Development of the wideband magnetic field wave monitor for Chinese Meridian Project (Phase II). Reviews of Geophysics and Planetary Physics, 54(0): 1-9 (in Chinese)

子午工程二期宽频地磁波监测仪研制

doi: 10.19975/j.dqyxx.2023-007
基金项目: 中国子午二期项目(8201701679)
详细信息
    作者简介:

    于向前(1983-),男,博士,高级工程师,从事空间磁场探测研究. E-mail:yuxiangqian@pku.edu.cn

    通讯作者:

    肖池阶(1975-),男,教授,主要从事磁层物理研究. E-mail:cjxiao@pku.edu.cn

  • 中图分类号: P352

Development of the wideband magnetic field wave monitor for Chinese Meridian Project (Phase II)

Funds: Supported by the Chinese Meridian Project (Phase II) (Grant No. 8201701679)
  • 摘要: 地球的磁层中存在各种波现象,其频率从mHz延伸到数千Hz. 这些波的研究一直是空间物理学研究的核心问题. 针对目前世界上地磁台站的波监测设备均为各自测量相对变化、缺乏统一标定、无法进行从高纬到低纬联合观测、无法进行多台设备观测数据的统一对比研究的现状,本文综合使用磁阻传感器(探测ULF频段:1 mHz~2 Hz)、巨磁感抗传感器(探测ELF频段:0.2 Hz~2 kHz)和线圈传感器(探测VLF频段:0.2 kHz~10 kHz)研制新一代的宽频地磁波监测仪,将这些监测仪放置在120 ° E子午链附近的黑龙江漠河站(高纬)、北京十三陵站(中纬)、海南乐东站(低纬)等典型区域的地磁台站上,并对各个台站的设备进行统一的时间、振幅和频率标定,结合FY-3E、SMILE等近地空间卫星数据,全面提升对地球磁层的各种波现象的探测能力. 研制的宽频地磁波监测仪的性能测试实验表明,其具有对一定频率(1 mHz~10 kHz)的波的探测能力;其幅度探测范围为:±65000 nT(ULF频段)、±1000 nT(ELF频段)、±100 pT(VLF频段);在量程范围内又具有较低的非线性误差:ULF频段≤0.0446%、ELF频段≤0.51%、VLF频段≤1.18%;噪声水平也较低:RMS(方均根)噪声≤0.5554 nT (ULF频段)、NPS(功率谱)噪声≤0.028 nT/√Hz (ELF频段)、NPS(功率谱)噪声≤0.24 pT/√Hz(VLF频段). 所有这些特点使得所提出的宽频地磁波监测仪能够满足子午工程二期的波探测需求.

     

  • 图  1  宽频地磁波监测仪安装台站、组成结构及探测目标

    Figure  1.  Installation station, composition structure, and detection target of the wideband magnetic field wave monitor

    图  2  宽频地磁波监测仪组成及内部接口

    Figure  2.  Composition and internal interface of the wideband magnetic field wave monitor

    图  3  HMC1001信号处理电路的电路框图(于向前等,2023

    Figure  3.  Circuit diagram of signal processing circuit based on HMC1001 (Yu et al., 2023)

    图  4  研制的磁阻传感器照片

    Figure  4.  Photo of the magnetoresistance sensor

    图  5  AICH信号处理电路的电路框图

    Figure  5.  Schematic of the signal processing circuit based on the AICHI sensor

    图  6  研制的巨磁感抗传感器照片

    Figure  6.  Photo of the giant magnetic reactance sensor

    图  7  研制的线圈传感器照片

    Figure  7.  Photo of the search coil

    图  8  数据采集系统软件构成及硬件接口

    Figure  8.  Software composition and hardware interface of the data acquisition system

    图  9  磁场传感器性能测试实验示意图

    Figure  9.  Schematic diagram of the magnetic field sensor performance test experiment

    图  10  量程、线性度和灵敏度测试结果(ULF频段)

    Figure  10.  Range and nonlinearity test results (ULF frequency band)

    图  11  量程、线性度和灵敏度测试结果(ELF频段)

    Figure  11.  Range and nonlinearity test results (ELF frequency band)

    图  12  量程、线性度和灵敏度测试结果(VLF频段)

    Figure  12.  Range and nonlinearity test results (VLF frequency band)

    图  13  磁场传感器的频率响应曲线(ULF频段)

    Figure  13.  Frequency response curve of the magnetic field sensor (ULF frequency band)

    图  14  磁场传感器的频率响应曲线(ELF频段)

    Figure  14.  Frequency response curve of the magnetic field sensor (ELF frequency band)

    图  15  磁场传感器的频率响应曲线(VLF频段)

    Figure  15.  Frequency response curve of the magnetic field sensor (VLF frequency band)

    图  16  典型的输入磁场(上线)和输出电压(下线)之间的相位关系

    Figure  16.  The phase relationship between typical input magnetic field (upper line) and output voltage (lower line)

    表  1  宽频磁场波动监测仪部署位置清单

    Table  1.   The installation position of the wideband magnetic field wave monitor

    观测站点经度/(°)纬度/(°)海拔/m备注说明
    黑龙江漠河站(黑龙江省漠河县北极镇北极村) 122.4E 53.5N 298 除了安装1套宽频磁场波动监测仪以外,另安装2套超低频磁场波动监测仪,分别位于宽频磁场波动监测仪东西两侧约100 m处.
    北京昌平十三陵站(北京市昌平区十三陵镇德胜口村) 116.2E 40.3N 184 宽频磁场波动监测仪放置在离机房10~15 m附近
    海南乐东站(海南省乐东黎族自治县九所新区山脚村中科院台站) 109.6E 18.3N 51 宽频磁场波动监测仪放置在离机房10~15 m附近
    下载: 导出CSV

    表  3  灵敏度和非线性度测试结果(ELF频段)

    Table  3.   Sensitivities and non-linearity test results (ELF frequency band)

    轴向K/(nT·V−1)零点B0/nT非线性误差/%
    X145.3−2.40.35
    Y222.8−10.30.51
    Z132.3−13.30.47
    下载: 导出CSV

    表  2  灵敏度和非线性度测试结果(ULF频段)

    Table  2.   Sensitivities and non-linearity test results (ULF frequency band)

    轴向K/(nT·V−1)零点B0/nT非线性误差/%
    X26755.615.10.0370
    Y30774.0−1168.60.0233
    Z26363.9−560.50.0446
    下载: 导出CSV

    表  4  灵敏度和非线性度测试结果(VLF频段)

    Table  4.   Sensitivities and non-linearity test results (VLF frequency band)

    轴向K/(pT·V−1)零点B0/pT非线性误差/%
    X46.5−38.50.78
    Y55.9−43.01.18
    Z50.3−36.10.79
    下载: 导出CSV

    表  5  ULF频段的噪声测试结果

    Table  5.   Noise test results (ULF frequency band)

    轴向RMS噪声/nT
    X0.4777
    Y0.5554
    Z0.4760
    下载: 导出CSV

    表  6  ELF频段的噪声测试结果

    Table  6.   Noise test results (ELF frequency band)

    轴向功率谱噪声(NPS)nT/√Hz@50 Hz
    X≤0.028
    Y≤0.027
    Z≤0.018
    下载: 导出CSV

    表  7  VLF频段的噪声测试结果

    Table  7.   Noise test results (VLF frequency band)

    轴向功率谱噪声(NPS)pT/√Hz@0.2~10 k
    X≤0.24
    Y≤0.20
    Z≤0.21
    下载: 导出CSV
  • [1] Archer M O, Horbury T S, Brown P, et al. 2015. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer[J]. Annales Geophysicae, 33: 725–735. doi: 10.5194/angeo-33-725-2015
    [2] Bleier T, Dunson C. 2005. ELF magnetic field monitoring of the San Simeon M6.4 quake from both Quakesat and a ground network[C]// Proceedings of the International Workshop on Seismo-Electromagnetics, Tokyo, Japan, March Issue. 2005.
    [3] Diaz-Michelena M. 2009. Small magnetic sensors for space applications[J]. Sensors, 9: 2271–2288. doi: 10.3390/s90402271
    [4] 葛丽丽, 任琼英, 赵华. 2017. 面向空间应用的高精度磁阻磁强计设计及性能测试[J]. 航天器环境工程, 34(2): 166-170 doi: 10.3969/j.issn.1673-1379.2017.02.010

    Ge L L, Ren Q Y, Zhao H. 2017. Design and performance test of high-precision magnetoresistive magnetometer for space applications [J]. Spacecraft Environment Engineering, 34(2): 166-170 (in Chinese). doi: 10.3969/j.issn.1673-1379.2017.02.010
    [5] Hamada N, Shimode A, Tatematsu S, Yamamoto M. 2014. Test-production of high sensitivity multi-core MI element and its characteristics[C]// Proceedings of the International Workshop on Seismo-Electromagnetics, Tokyo, Japan, March Issue. 2005.
    [6] Honkura Y. 2002. Development of amorphous wire type MI sensors for automobile use[J]. Journal of Magnetism & Magnetic Materials, 249: 375–381.
    [7] Jacobs J, Kato Y, Matsushita S, Troitskaya V. 1964. Classification of geomagnetic micropulsations[J]. Journal of Geophysical Research, 69(1): 180–181. doi: 10.1029/JZ069i001p00180
    [8] Kanno T, Mohri K, Yagi T, et al. 1997. Amorphous wire MI micro sensor using C-MOS IC multivibrator[J]. IEEE Journals & Magazine, 33: 3358–3360.
    [9] Le Contel O, Leroy P, Roux A, et al. 2016. The search-coil magnetometer for MMS[J]. Space Science Reviews, 199: 257-282. doi: 10.1007/s11214-014-0096-9
    [10] Mohri K, Uchiyama T, Shen L P, et al. 2001. Sensitive micro magnetic sensor family utilizing magneto-impedance (MI) and stress-impedance (SI) effects for intelligent measurements and controls[J]. Sensors and Actuators, A, 91: 85–90.
    [11] Mohri K, Uchiyama T, Shen L P, et al. 2002. Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors (MI sensor and SI sensor) for intelligent measurements and controls[J]. Journal of Magnetism & Magnetic Materials, 249: 351–356.
    [12] Moldwin M. 2008. An Introduction to Space Weather[M]. Cambridge: Cambridge University Press.
    [13] Nakayama S, Uchiyama T. 2015. Real-time measurement of biomagnetic vector fields in functional syncytium using amorphous metal[J]. Scientific Reports, 5: 8837. doi: 10.1038/srep08837
    [14] Rae I J, Watt C E J. 2016. ULF Waves Above the Nightside Auroral Oval During Substorm Onset[M]// Low-frequency Waves in Space Plasmas, 99-120.
    [15] Regoli L, Moldwin M B, Pellioni M, et al. 2018. Investigation of a low-cost magneto-inductive magnetometer for space science applications[J]. Geoscientific Instrumentation Methods and Data Systems Discussions, 7: 129–142. doi: 10.5194/gi-7-129-2018
    [16] Séran H C, Fergeau P. 2005. An optimized low-frequency three-axis search coil magnetometer for space research[J]. Review of Scientific Instruments, 76(4): 044502. doi: 10.1063/1.1884026
    [17] 于向前, 李嘉巍, 肖池阶, 等. 2023. 用于空间科学研究的基于磁阻传感器的矢量磁强计[J/OL]. 北京大学学报(自然科学版): 1-9 [2023-02-01]. https://doi.org/10.13209/j.0479-8023.2022.111.

    Yu X Q, Li J W, Xiao C J, et al. 2023. Vector magnetometer for space applications based on a low-resource magnetoresistance [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1-9 [2023-02-01](in Chinese). https://doi.org/10.13209/j.0479-8023.2022.111.
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  23
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-26
  • 修回日期:  2023-04-10
  • 录用日期:  2023-04-21
  • 网络出版日期:  2023-04-26

目录

    /

    返回文章
    返回