Development of the wideband magnetic field wave monitor for Chinese Meridian Project (Phase II)
-
摘要: 地球的磁层中存在各种波现象,其频率从mHz延伸到数千Hz. 这些波的研究一直是空间物理学研究的核心问题. 针对目前世界上地磁台站的波监测设备均为各自测量相对变化、缺乏统一标定、无法进行从高纬到低纬联合观测、无法进行多台设备观测数据的统一对比研究的现状,本文综合使用磁阻传感器(探测ULF频段:1 mHz~2 Hz)、巨磁感抗传感器(探测ELF频段:0.2 Hz~2 kHz)和线圈传感器(探测VLF频段:0.2 kHz~10 kHz)研制新一代的宽频地磁波监测仪,将这些监测仪放置在120 ° E子午链附近的黑龙江漠河站(高纬)、北京十三陵站(中纬)、海南乐东站(低纬)等典型区域的地磁台站上,并对各个台站的设备进行统一的时间、振幅和频率标定,结合FY-3E、SMILE等近地空间卫星数据,全面提升对地球磁层的各种波现象的探测能力. 研制的宽频地磁波监测仪的性能测试实验表明,其具有对一定频率(1 mHz~10 kHz)的波的探测能力;其幅度探测范围为:±65000 nT(ULF频段)、±1000 nT(ELF频段)、±100 pT(VLF频段);在量程范围内又具有较低的非线性误差:ULF频段≤0.0446%、ELF频段≤0.51%、VLF频段≤1.18%;噪声水平也较低:RMS(方均根)噪声≤0.5554 nT (ULF频段)、NPS(功率谱)噪声≤0.028 nT/√Hz (ELF频段)、NPS(功率谱)噪声≤0.24 pT/√Hz(VLF频段). 所有这些特点使得所提出的宽频地磁波监测仪能够满足子午工程二期的波探测需求.Abstract: There are various magnetic field waves with frequencies ranging from mHz to thousands of Hz in the Earth's magnetosphere. These waves can be categorized into three classes depending on their period: ULF (mHz to ~ Hz), ELF (~ Hz to hundreds of Hz), and VLF (hundreds of Hz to thousands of Hz). The regular and continuous ultra-low-frequency (ULF) waves in the magneto-sphere, ranging from 1 mHz to a few Hz, are important to geomagnetic micropulsations. Recently, whistler mode waves generated by lightning and extremely low-frequency (ELF) bursts, which can be attributed to earthquakes, were detected near the surface; their frequencies range from several Hz to a few hundred Hz. The research on the characteristics of ionospheric plasma disturbance caused by the known ground-based very low frequency (VLF) transmitters, whose frequencies range from a few hundred to a few thousand Hz, is of great significance for analyzing changes in the ionospheric environment. These magnetic field waves are crucial for studying various space physical phenomena. As the wave monitoring equipment of global geomagnetic stations measures relative changes and a lack of unified calibration, they cannot conduct joint observations from high to low latitudes and unified comparative studies of the observational data from multiple sensors. The magnetoresistance sensor (ULF: 0.1 mHz–2 Hz), giant magneto-inductance sensor (ELF: 0.2 Hz–2 kHz), and coil sensor (VLF: 0.2–10 kHz) is used to develop a new generation of broadband geomagnetic wave monitors, which are placed on the geomagnetic stations in typical areas such as Mohe (high latitude), Beijing's Ming Tombs (middle latitude), and Sanya Ledong (low latitude), near the 120° meridian chain. Combined with the data of near-Earth space satellites such as FY-3E and SMILE, the observation ability of various wave phenomena in the Earth's magnetosphere will be comprehensively improved. The performance test experiment shows that the developed wave monitor can detect the fluctuating magnetic field at a particular frequency (1 mHz–10 kHz); magnetic field detection ranges of: ± 65000 nT (ULF frequency band), ± 1000 nT (ELF frequency band), and ± 100 pT (VLF band); with low nonlinear errors: ULF frequency band ≤ 0.0446 %, ELF frequency band ≤0.51 %, and VLF frequency band ≤ 1.18 %; and low noise levels: RMS ≤0.5554 nT (ULF frequency band), NPS ≤0.028 nT /√ Hz (ELF frequency band), and NPS ≤0.24 pT/√ Hz (VLF band). These characteristics enable the proposed broadband geomagnetic wave monitor to meet the Chinese Meridian Project (Phase II) magnetic field detection requirements.
-
图 3 HMC1001信号处理电路的电路框图(于向前等,2023)
Figure 3. Circuit diagram of signal processing circuit based on HMC1001 (Yu et al., 2023)
表 1 宽频磁场波动监测仪部署位置清单
Table 1. The installation position of the wideband magnetic field wave monitor
观测站点 经度/(°) 纬度/(°) 海拔/m 备注说明 黑龙江漠河站(黑龙江省漠河县北极镇北极村) 122.4E 53.5N 298 除了安装1套宽频磁场波动监测仪以外,另安装2套超低频磁场波动监测仪,分别位于宽频磁场波动监测仪东西两侧约100 m处. 北京昌平十三陵站(北京市昌平区十三陵镇德胜口村) 116.2E 40.3N 184 宽频磁场波动监测仪放置在离机房10~15 m附近 海南乐东站(海南省乐东黎族自治县九所新区山脚村中科院台站) 109.6E 18.3N 51 宽频磁场波动监测仪放置在离机房10~15 m附近 表 3 灵敏度和非线性度测试结果(ELF频段)
Table 3. Sensitivities and non-linearity test results (ELF frequency band)
轴向 K/(nT·V−1) 零点B0/nT 非线性误差/% X 145.3 −2.4 0.35 Y 222.8 −10.3 0.51 Z 132.3 −13.3 0.47 表 2 灵敏度和非线性度测试结果(ULF频段)
Table 2. Sensitivities and non-linearity test results (ULF frequency band)
轴向 K/(nT·V−1) 零点B0/nT 非线性误差/% X 26755.6 15.1 0.0370 Y 30774.0 −1168.6 0.0233 Z 26363.9 −560.5 0.0446 表 4 灵敏度和非线性度测试结果(VLF频段)
Table 4. Sensitivities and non-linearity test results (VLF frequency band)
轴向 K/(pT·V−1) 零点B0/pT 非线性误差/% X 46.5 −38.5 0.78 Y 55.9 −43.0 1.18 Z 50.3 −36.1 0.79 表 5 ULF频段的噪声测试结果
Table 5. Noise test results (ULF frequency band)
轴向 RMS噪声/nT X 0.4777 Y 0.5554 Z 0.4760 表 6 ELF频段的噪声测试结果
Table 6. Noise test results (ELF frequency band)
轴向 功率谱噪声(NPS)nT/√Hz@50 Hz X ≤0.028 Y ≤0.027 Z ≤0.018 表 7 VLF频段的噪声测试结果
Table 7. Noise test results (VLF frequency band)
轴向 功率谱噪声(NPS)pT/√Hz@0.2~10 k X ≤0.24 Y ≤0.20 Z ≤0.21 -
[1] Archer M O, Horbury T S, Brown P, et al. 2015. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer[J]. Annales Geophysicae, 33: 725–735. doi: 10.5194/angeo-33-725-2015 [2] Bleier T, Dunson C. 2005. ELF magnetic field monitoring of the San Simeon M6.4 quake from both Quakesat and a ground network[C]// Proceedings of the International Workshop on Seismo-Electromagnetics, Tokyo, Japan, March Issue. 2005. [3] Diaz-Michelena M. 2009. Small magnetic sensors for space applications[J]. Sensors, 9: 2271–2288. doi: 10.3390/s90402271 [4] 葛丽丽, 任琼英, 赵华. 2017. 面向空间应用的高精度磁阻磁强计设计及性能测试[J]. 航天器环境工程, 34(2): 166-170 doi: 10.3969/j.issn.1673-1379.2017.02.010Ge L L, Ren Q Y, Zhao H. 2017. Design and performance test of high-precision magnetoresistive magnetometer for space applications [J]. Spacecraft Environment Engineering, 34(2): 166-170 (in Chinese). doi: 10.3969/j.issn.1673-1379.2017.02.010 [5] Hamada N, Shimode A, Tatematsu S, Yamamoto M. 2014. Test-production of high sensitivity multi-core MI element and its characteristics[C]// Proceedings of the International Workshop on Seismo-Electromagnetics, Tokyo, Japan, March Issue. 2005. [6] Honkura Y. 2002. Development of amorphous wire type MI sensors for automobile use[J]. Journal of Magnetism & Magnetic Materials, 249: 375–381. [7] Jacobs J, Kato Y, Matsushita S, Troitskaya V. 1964. Classification of geomagnetic micropulsations[J]. Journal of Geophysical Research, 69(1): 180–181. doi: 10.1029/JZ069i001p00180 [8] Kanno T, Mohri K, Yagi T, et al. 1997. Amorphous wire MI micro sensor using C-MOS IC multivibrator[J]. IEEE Journals & Magazine, 33: 3358–3360. [9] Le Contel O, Leroy P, Roux A, et al. 2016. The search-coil magnetometer for MMS[J]. Space Science Reviews, 199: 257-282. doi: 10.1007/s11214-014-0096-9 [10] Mohri K, Uchiyama T, Shen L P, et al. 2001. Sensitive micro magnetic sensor family utilizing magneto-impedance (MI) and stress-impedance (SI) effects for intelligent measurements and controls[J]. Sensors and Actuators, A, 91: 85–90. [11] Mohri K, Uchiyama T, Shen L P, et al. 2002. Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors (MI sensor and SI sensor) for intelligent measurements and controls[J]. Journal of Magnetism & Magnetic Materials, 249: 351–356. [12] Moldwin M. 2008. An Introduction to Space Weather[M]. Cambridge: Cambridge University Press. [13] Nakayama S, Uchiyama T. 2015. Real-time measurement of biomagnetic vector fields in functional syncytium using amorphous metal[J]. Scientific Reports, 5: 8837. doi: 10.1038/srep08837 [14] Rae I J, Watt C E J. 2016. ULF Waves Above the Nightside Auroral Oval During Substorm Onset[M]// Low-frequency Waves in Space Plasmas, 99-120. [15] Regoli L, Moldwin M B, Pellioni M, et al. 2018. Investigation of a low-cost magneto-inductive magnetometer for space science applications[J]. Geoscientific Instrumentation Methods and Data Systems Discussions, 7: 129–142. doi: 10.5194/gi-7-129-2018 [16] Séran H C, Fergeau P. 2005. An optimized low-frequency three-axis search coil magnetometer for space research[J]. Review of Scientific Instruments, 76(4): 044502. doi: 10.1063/1.1884026 [17] 于向前, 李嘉巍, 肖池阶, 等. 2023. 用于空间科学研究的基于磁阻传感器的矢量磁强计[J/OL]. 北京大学学报(自然科学版): 1-9 [2023-02-01]. https://doi.org/10.13209/j.0479-8023.2022.111.Yu X Q, Li J W, Xiao C J, et al. 2023. Vector magnetometer for space applications based on a low-resource magnetoresistance [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1-9 [2023-02-01](in Chinese). https://doi.org/10.13209/j.0479-8023.2022.111. -