• ISSN 2097-1893
  • CN 10-1855/P

子午工程二期流星雷达样机测试及数据对比分析

陈志青 刘子谦 冯健 胡连欢 燕春晓 袁韦 吴学森 郑兵 周小俊

引用本文: 陈志青,刘子谦,冯健,胡连欢,燕春晓,袁韦,吴学森,郑兵,周小俊. 2023. 子午工程二期流星雷达样机测试及数据对比分析. 地球与行星物理论评(中英文),54(0):1-11
Chen Z Q, Liu Z - Q, Feng J, Hu L H, Yan C X, Yuan W, Wu X S, Zheng B, Zhou X J. 2023. Meteor radar prototype testing and data quality comparison analysis for Chinese Meridian Project (Phase II). Reviews of Geophysics and Planetary Physics, 54(0): 1-11 (in Chinese)

子午工程二期流星雷达样机测试及数据对比分析

doi: 10.19975/j.dqyxx.2023-006
基金项目: 子午工程二期标准规范建设
详细信息
    作者简介:

    陈志青(1978-),男,副研究员,主要从事空间环境地基探测技术研究和工程管理. E-mail:zhiqing@nssc.ac.cn

    通讯作者:

    刘子谦(1984-),男,高级工程师,主要从事磁层物理和空间天气的研究. E-mail:liuziqian@nssc.ac.cn

  • 中图分类号: P352

Meteor radar prototype testing and data quality comparison analysis for Chinese Meridian Project (Phase II)

Funds: Supported by the Construction of Standard Specification of Meridian Project (Phase II)
  • 摘要: 子午工程二期将在分布于全国的10个观测站点建设流星雷达. 为了带动国内空间环境地基观测技术的发展,工程建设项目指挥部布局了流星雷达的国产化专项行动. 为了确保建成后的设备满足使用要求,工程总体组织了设备样机测试,包括设备的技术指标测试和数据质量评估. 根据技术指标测试,发现技术指标满足要求. 获得数据之后,以EMDR流星雷达数据为参考,对样机的数据进行质量评估. 主要对比参数包括有效流星计数、流星数时空分布、扩散系数高度分布、风场随高度的分布和随时间的变化等. 本文主要展示了数据质量评估的结果,揭示了流星雷达观测的一些基本特征和规律,为数据准确性的评估提供参考和借鉴.

     

  • 图  1  流星雷达样机系统组成示意图

    Figure  1.  Composition diagram of the meteor radar prototype system

    图  2  黄陂站和样机测试地点的风场模拟结果(左:黄陂,中:样机测试地点,右:二者之差). EW:风场东西分量;NS:风场南北分量;HP:黄陂;CD:蔡甸;delta:两者之差

    Figure  2.  Wind field simulation results from the Huangpi station and prototype test site (left: Huangpi, middle: prototype test site, right: the difference between the two)

    图  3  发射机馈线端口处的频谱(左)及设备正常工作时的辐射频谱(右)

    Figure  3.  Spectrum generated at the transmitter feeder port (left), and the radiation spectrum for the equipment under normal use (right)

    图  4  样机(a)和EMDR(b)观测到的每日有效流星数量

    Figure  4.  Meteor numbers per day observed by the prototype (a) and EMDR (b)

    图  5  样机(a)和EMDR(b)观测到的有效流星数量时间分布

    Figure  5.  Time distribution of the meteor numbers observed by the prototype (a) and EMDR (b)

    图  6  2021年12月26日,样机和EMDR观测到的有效流星全天空分布(a, b)和数量的方位分布(c, d)

    Figure  6.  Sky scatter distribution of meteors (a, b) and the azimuth distribution of meteor numbers (c, d), observed by the prototype and EMDR on December 26, 2021

    图  7  2021年12月26日,样机(a)和EMDR(b)观测到的有效流星数量高度分布

    Figure  7.  Height distribution of meteor numbers observed by the prototype (a) and EMDR (b) on December 26, 2021

    图  8  2021年12月26日,样机(a)和EMDR(b)解算的扩散系数的高度分布

    Figure  8.  Height distribution of diffusion coefficients calculated by the prototype (a) and EMDR (b) on December 26, 2021

    图  9  样机观测到的纬向风(a)和经向风(b)和EMDR的纬向风和经向风的偏差(样机 - EMDR).

    Figure  9.  Absolute deviation between the zonal (a) and meridional wind (b) observed by the prototype and the zonal and meridional wind observed by EMDR

    图  10  样机观测到的纬向风(a)和经向风(b)和EMDR的纬向风和经向风的相关性

    Figure  10.  Correlation between the zonal (a) and meridional wind (b) observed by the prototype and the zonal wind and meridional wind observed by EMDR

    图  11  2021年12月26日,样机和EMDR观测到的纬向风(a, b)和经向风(d, e),以及二者之间的差(c, f,样机减EMDR)

    Figure  11.  Zonal (a, b) and meridional wind (d, e) observed by the prototype and EMDR, and the difference between them (c, f; the prototype minus EMDR) on December 26, 2021

    图  12  地球公转和自转共同决定流星数分布

    Figure  12.  Earth's revolution and rotation jointly determine the distribution of meteor numbers

    图  13  样机回波幅度距离分布

    Figure  13.  Distance distribution of the prototype echo amplitude

    图  14  样机和EMDR的优化前的回波事件分类结果(a, c)和优化后的结果(b, d)

    Figure  14.  Pre-optimization echo event classification results of the prototype and EMDR (a, c) and post-optimization results (b, d)

    表  1  子午工程流星雷达站点分布

    Table  1.   Distribution of meteor radar stations in the Meridian Project

    站点经度纬度备注
    蒲江站 103.62°E 30.31°N 二期站点
    昌平十三陵站 116.18°E 40.29°N 二期站点
    桂林叠彩站 110.34°E 25.34°N 二期站点
    博罗站 114.48°E 23.49°N 二期站点
    威海文登站 121.79°E 37.18°N 二期站点
    宾川站 100.61°E 25.63°N 二期站点
    那曲色尼站 92.25°E 31.62°N 二期站点
    榆中站 104.22°E 35.98°N 二期站点
    伽师站 76.78°E 39.56°N 二期站点
    库尔勒站 86.32°E 41.62°N 二期站点
    漠河站 122.34°E 53.48°N 一期站点,进口设备
    黄陂站 114.45°E 31.01°N 一期站点,进口设备
    下载: 导出CSV

    表  2  EMDR流星雷达和样机的主要设计指标

    Table  2.   Main design indexes of EMDR meteor radar and the prototype

    EMDR样机
    工作频率 38.9 MHz 39.0 MHz
    峰值功率 20 kW 24 kW
    波束宽度(3 dB) 70° 70°
    接收机带宽 75 kHz 75 kHz
    接收机灵敏度 −100 dBm −100 dBm
    下载: 导出CSV

    表  3  样机主要指标项的测试结果

    Table  3.   Test results of the main prototype indicators

    指标项测试结果
    工作频率(发射) 39 MHz,带宽0.6 MHz
    峰值功率 28.2 kW
    接收机灵敏度 −117.9 dBm
    接收机动态范围 75.9 dB
    接收通道相位一致性 0.068°(补偿后)
    接收通道幅度一致性 0.003 dB(补偿后)
    发射驻波比 通道1:1.07;通道2:1.13
    下载: 导出CSV
  • [1] Cervera M A, Holdsworth D A, Reid I M, Tsutsumi M. 2004. Meteor radar response function: Application to the interpretation of meteor backscatter at medium frequency[J]. Journal of Geophysical Research, 109: A11309. doi: 10.1029/2004JA010450.
    [2] 陈金松. 2005. 武汉流星雷达在空间环境探测中的应用研究[D]. 武汉: 中国科学院武汉物理与数学研究所.

    Chen J S. 2005. Research on the application of Wuhan meteor radar in space environment detection[D]. Wuhan: Wuhan Institute of Physics and Mathematics of Chinese Academy of Sciences (in Chinese).
    [3] Drob D P, Emmert J T, Meriwether J W, et al. 2015. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere[J]. Earth and Space Science, 2(7): 301-319. https://doi.org/10.1002/2014EA000089
    [4] Gong Y, Xue J, Ma Z, et al. 2022. Observations of a strong intraseasonal oscillation in the MLT region during the 2015/2016 winter over Mohe, China[J]. Journal of Geophysical Research: Space Physics, 127: e2021JA030076.
    [5] Hocking W K, Fuller B, Vandepeer B. 2001. Real-time determination of meteor-related parameters utilizing modern digital technology[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 63(2-3): 155-169.
    [6] Holdsworth D A, Reid I M, Cervera M A. 2004. Buckland Park all-sky interferometric meteor radar[J]. Radio Science, 39: RS5009. doi: 10.1029/2003RS003014.
    [7] Jiang G, Xu J, Wang W, Y, et al. 2018. A comparison of quiet time thermospheric winds between FPI observations and model calculations[J]. Journal of Geophysical Research: Space Physics, 123(9): 7789-7805. https://doi.org/10.1029/2018JA025424
    [8] Jones J, Brown P. 1994. The radiant distribution of sporadic meteors[J]. Planetary & Space Science, 42(2): 123-126.
    [9] 刘学富. 2004. 基础天文学[M]. 北京: 高等教育出版社, 148-155.

    Liu X F. 2004. Basic Astronomy[M]. Beijing: Higher Education Press, 148-155 (in Chinese).
    [10] Luo J, Gong Y, Ma Z, et al. 2022. Long-term variation of lunar semidiurnal tides in the MLT region revealed by a meteor radar chain[J]. Journal of Geophysical Research: Space Physics, 127: e2022JA030616.
    [11] Ma Z, Gong Y, Zhang S, et al. 2022. First observational evidence for the role of polar vortex strength in modulating the activity of planetary waves in the MLT region[J]. Geophysical Research Letters, 49: e2021GL096548.
    [12] 潘凌云. 2017. 宽带流星雷达硬件系统设计与实现[D]. 武汉: 武汉大学.

    Pan L Y. 2017. Design and implementation of broadband meteor radar hardware system[D]. Wuhan: Wuhan University (in Chinese)
    [13] Rao S V B, Eswaraiah S, Venkat Ratnam M, et al. 2014. Advanced meteor radar installed at Tirupati: System details and comparison with different radars[J]. Journal of Geophysical Research: Atmospheres, 119(21): 11893-11904. doi: 10.1002/2014JD021781.
    [14] Roper R G. 1975. The measurement of meteor winds over atlanta [J]. Radio Science, 10(3): 363-369. doi: 10.1029/RS010i003p00363
    [15] 沈金成, 宁百齐, 万卫星, 胡连欢. 2012. 全天空流星雷达相位差监测分析方法研究[J]. 空间科学学报, 32(1): 75-84.

    Shen J C, Ning B Q, Wan W X, Hu L H. 2012. Research on phase difference monitoring and analysis method of all-sky meteor radar [J]. Journal of Space Science, 32 (1): 75-84 (in Chinese).
    [16] Skellett A M. 1931. The effect of meteors on radio transmission through the Kennelly-Heaviside layer[J]. Physical Review, 37: 1668. doi: 10.1103/PhysRev.37.1668
    [17] Valentic A, Avery P, Cervera A, et al. 1996. A comparison of meteor radar systems at Buckland park [J]. Radio Science, 31(6): 1313-1329. doi: 10.1029/96RS02028
    [18] Wang C. 2010. New chains of space weather monitoring stations in China[J]. Space Weather, 8: S08001. DOI: 10.1029/2010SW000603
    [19] Wang C, Chen Z Q, Xu J Y. 2020. Introduction to Chinese Meridian Project-Phase II[J]. Journal of Space Science, 40(5): 718-722.
    [20] 杨克俊. 1989. 流星的特性与流星雷达初步设计[J]. 陕西天文台台刊, 12(1-2): 21-33

    Yang K J. 1989. Characteristics of meteor and preliminary design of meteor radar[J]. Journal of Shanxi Observatory, 12(1-2): 21-33(in Chinese).
    [21] Yi W, Xue X, Reid I M, et al. 2021. Climatology of Interhemispheric mesopause temperatures using the high-latitude and middle-latitude meteor radars[J]. Journal of Geophysical Research: Atmospheres, 126: e2020JD034301.
    [22] Younger P T, Astin I, Sandford D J, Mitchell N J. 2009. The sporadic radiant and distribution of meteors in the atmosphere as observed by VHF radar at Arctic, Antarctic and equatorial latitudes[J]. Annals of Geophysics, 27: 2831–2841. https://doi.org/10.5194/angeo-27-2831-2009.
    [23] Younger J P. 2011. Theory and application of VHF meteor radar observation [D]. Adelaide: The university of Adelaide.
    [24] Yu Y, Wan W, Ning B, Liu L, et al. 2013. Tidal wind mapping from observations of a meteor radar chain in December 2011[J]. Journal of Geophysical Research: Space Physics, 118: 2321–2332. doi: 10.1029/2012JA017976.
    [25] Yu Y, Wan W, Ren Z, et al. 2015. Seasonal variations of MLT tides revealed by a meteor radar chain based on Hough mode decomposition[J]. Journal of Geophysical Research: Space Physics, 120: 7030–7048. doi: 10.1002/2015JA021276.
    [26] Zhou X, Yue X, Liu Let al. 2022a. Decadal continuous meteor-radar estimation of the mesopause gravity wave momentum fluxes over Mohe: Capability evaluation and interannual variation[J]. Remote Sensing, 14: 5729. doi: 10.3390/rs14225729
    [27] Zhou X, Yue X, Yu Y, Hu L. 2022b. Day-to-day variability of the MLT DE3 using joint analysis on observations from TIDI-TIMED and a meteor radar meridian chain[J]. Journal of Geophysical Research: Atmospheres, 127: e2021JD035794.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  17
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-18
  • 修回日期:  2023-04-19
  • 录用日期:  2023-04-20
  • 网络出版日期:  2023-05-15

目录

    /

    返回文章
    返回