Meteor radar prototype testing and data quality comparison analysis for Chinese Meridian Project (Phase II)
-
摘要: 子午工程二期将在分布于全国的10个观测站点建设流星雷达. 为了带动国内空间环境地基观测技术的发展,工程建设项目指挥部布局了流星雷达的国产化专项行动. 为了确保建成后的设备满足使用要求,工程总体组织了设备样机测试,包括设备的技术指标测试和数据质量评估. 根据技术指标测试,发现技术指标满足要求. 获得数据之后,以EMDR流星雷达数据为参考,对样机的数据进行质量评估. 主要对比参数包括有效流星计数、流星数时空分布、扩散系数高度分布、风场随高度的分布和随时间的变化等. 本文主要展示了数据质量评估的结果,揭示了流星雷达观测的一些基本特征和规律,为数据准确性的评估提供参考和借鉴.Abstract: The Chinese Meridian Project (Phase Ⅱ) will deploy 10 meteor radar systems in China. To promote the advancement of domestic ground-based observation technologies, the project managing headquarters are engaged in a special campaign for the localization of meteor radar production. To ensure that the domestically manufactured product meets the requirements, prototype testing was carried out, including a technique indicator test and data quality evaluation. According to the results of the field technique indicator test, the prototype fully met the requirements. Further, the data quality was evaluated using the EMDR meteor radar data as a reference. The main comparison parameters included valid meteor count, space-time distribution of meteor number, height distribution of diffusion coefficient, and distribution of wind field at varying height and time. This study mainly explains data quality evaluation results, revealing some basic characteristics and laws of meteor radar observation, in an attempt to testify the capability of the prototype and provide a reference for future meteor radar data quality evaluation.
-
Key words:
- Meridian Project /
- meteor radar /
- prototype testing /
- data quality
-
表 1 子午工程流星雷达站点分布
Table 1. Distribution of meteor radar stations in the Meridian Project
站点 经度 纬度 备注 蒲江站 103.62°E 30.31°N 二期站点 昌平十三陵站 116.18°E 40.29°N 二期站点 桂林叠彩站 110.34°E 25.34°N 二期站点 博罗站 114.48°E 23.49°N 二期站点 威海文登站 121.79°E 37.18°N 二期站点 宾川站 100.61°E 25.63°N 二期站点 那曲色尼站 92.25°E 31.62°N 二期站点 榆中站 104.22°E 35.98°N 二期站点 伽师站 76.78°E 39.56°N 二期站点 库尔勒站 86.32°E 41.62°N 二期站点 漠河站 122.34°E 53.48°N 一期站点,进口设备 黄陂站 114.45°E 31.01°N 一期站点,进口设备 表 2 EMDR流星雷达和样机的主要设计指标
Table 2. Main design indexes of EMDR meteor radar and the prototype
EMDR 样机 工作频率 38.9 MHz 39.0 MHz 峰值功率 20 kW 24 kW 波束宽度(3 dB) 70° 70° 接收机带宽 75 kHz 75 kHz 接收机灵敏度 −100 dBm −100 dBm 表 3 样机主要指标项的测试结果
Table 3. Test results of the main prototype indicators
指标项 测试结果 工作频率(发射) 39 MHz,带宽0.6 MHz 峰值功率 28.2 kW 接收机灵敏度 −117.9 dBm 接收机动态范围 75.9 dB 接收通道相位一致性 0.068°(补偿后) 接收通道幅度一致性 0.003 dB(补偿后) 发射驻波比 通道1:1.07;通道2:1.13 -
[1] Cervera M A, Holdsworth D A, Reid I M, Tsutsumi M. 2004. Meteor radar response function: Application to the interpretation of meteor backscatter at medium frequency[J]. Journal of Geophysical Research, 109: A11309. doi: 10.1029/2004JA010450. [2] 陈金松. 2005. 武汉流星雷达在空间环境探测中的应用研究[D]. 武汉: 中国科学院武汉物理与数学研究所.Chen J S. 2005. Research on the application of Wuhan meteor radar in space environment detection[D]. Wuhan: Wuhan Institute of Physics and Mathematics of Chinese Academy of Sciences (in Chinese). [3] Drob D P, Emmert J T, Meriwether J W, et al. 2015. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere[J]. Earth and Space Science, 2(7): 301-319. https://doi.org/10.1002/2014EA000089 [4] Gong Y, Xue J, Ma Z, et al. 2022. Observations of a strong intraseasonal oscillation in the MLT region during the 2015/2016 winter over Mohe, China[J]. Journal of Geophysical Research: Space Physics, 127: e2021JA030076. [5] Hocking W K, Fuller B, Vandepeer B. 2001. Real-time determination of meteor-related parameters utilizing modern digital technology[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 63(2-3): 155-169. [6] Holdsworth D A, Reid I M, Cervera M A. 2004. Buckland Park all-sky interferometric meteor radar[J]. Radio Science, 39: RS5009. doi: 10.1029/2003RS003014. [7] Jiang G, Xu J, Wang W, Y, et al. 2018. A comparison of quiet time thermospheric winds between FPI observations and model calculations[J]. Journal of Geophysical Research: Space Physics, 123(9): 7789-7805. https://doi.org/10.1029/2018JA025424 [8] Jones J, Brown P. 1994. The radiant distribution of sporadic meteors[J]. Planetary & Space Science, 42(2): 123-126. [9] 刘学富. 2004. 基础天文学[M]. 北京: 高等教育出版社, 148-155.Liu X F. 2004. Basic Astronomy[M]. Beijing: Higher Education Press, 148-155 (in Chinese). [10] Luo J, Gong Y, Ma Z, et al. 2022. Long-term variation of lunar semidiurnal tides in the MLT region revealed by a meteor radar chain[J]. Journal of Geophysical Research: Space Physics, 127: e2022JA030616. [11] Ma Z, Gong Y, Zhang S, et al. 2022. First observational evidence for the role of polar vortex strength in modulating the activity of planetary waves in the MLT region[J]. Geophysical Research Letters, 49: e2021GL096548. [12] 潘凌云. 2017. 宽带流星雷达硬件系统设计与实现[D]. 武汉: 武汉大学.Pan L Y. 2017. Design and implementation of broadband meteor radar hardware system[D]. Wuhan: Wuhan University (in Chinese) [13] Rao S V B, Eswaraiah S, Venkat Ratnam M, et al. 2014. Advanced meteor radar installed at Tirupati: System details and comparison with different radars[J]. Journal of Geophysical Research: Atmospheres, 119(21): 11893-11904. doi: 10.1002/2014JD021781. [14] Roper R G. 1975. The measurement of meteor winds over atlanta [J]. Radio Science, 10(3): 363-369. doi: 10.1029/RS010i003p00363 [15] 沈金成, 宁百齐, 万卫星, 胡连欢. 2012. 全天空流星雷达相位差监测分析方法研究[J]. 空间科学学报, 32(1): 75-84.Shen J C, Ning B Q, Wan W X, Hu L H. 2012. Research on phase difference monitoring and analysis method of all-sky meteor radar [J]. Journal of Space Science, 32 (1): 75-84 (in Chinese). [16] Skellett A M. 1931. The effect of meteors on radio transmission through the Kennelly-Heaviside layer[J]. Physical Review, 37: 1668. doi: 10.1103/PhysRev.37.1668 [17] Valentic A, Avery P, Cervera A, et al. 1996. A comparison of meteor radar systems at Buckland park [J]. Radio Science, 31(6): 1313-1329. doi: 10.1029/96RS02028 [18] Wang C. 2010. New chains of space weather monitoring stations in China[J]. Space Weather, 8: S08001. DOI: 10.1029/2010SW000603 [19] Wang C, Chen Z Q, Xu J Y. 2020. Introduction to Chinese Meridian Project-Phase II[J]. Journal of Space Science, 40(5): 718-722. [20] 杨克俊. 1989. 流星的特性与流星雷达初步设计[J]. 陕西天文台台刊, 12(1-2): 21-33Yang K J. 1989. Characteristics of meteor and preliminary design of meteor radar[J]. Journal of Shanxi Observatory, 12(1-2): 21-33(in Chinese). [21] Yi W, Xue X, Reid I M, et al. 2021. Climatology of Interhemispheric mesopause temperatures using the high-latitude and middle-latitude meteor radars[J]. Journal of Geophysical Research: Atmospheres, 126: e2020JD034301. [22] Younger P T, Astin I, Sandford D J, Mitchell N J. 2009. The sporadic radiant and distribution of meteors in the atmosphere as observed by VHF radar at Arctic, Antarctic and equatorial latitudes[J]. Annals of Geophysics, 27: 2831–2841. https://doi.org/10.5194/angeo-27-2831-2009. [23] Younger J P. 2011. Theory and application of VHF meteor radar observation [D]. Adelaide: The university of Adelaide. [24] Yu Y, Wan W, Ning B, Liu L, et al. 2013. Tidal wind mapping from observations of a meteor radar chain in December 2011[J]. Journal of Geophysical Research: Space Physics, 118: 2321–2332. doi: 10.1029/2012JA017976. [25] Yu Y, Wan W, Ren Z, et al. 2015. Seasonal variations of MLT tides revealed by a meteor radar chain based on Hough mode decomposition[J]. Journal of Geophysical Research: Space Physics, 120: 7030–7048. doi: 10.1002/2015JA021276. [26] Zhou X, Yue X, Liu Let al. 2022a. Decadal continuous meteor-radar estimation of the mesopause gravity wave momentum fluxes over Mohe: Capability evaluation and interannual variation[J]. Remote Sensing, 14: 5729. doi: 10.3390/rs14225729 [27] Zhou X, Yue X, Yu Y, Hu L. 2022b. Day-to-day variability of the MLT DE3 using joint analysis on observations from TIDI-TIMED and a meteor radar meridian chain[J]. Journal of Geophysical Research: Atmospheres, 127: e2021JD035794. -