• ISSN 2097-1893
  • CN 10-1855/P

子午工程二期大气电场仪及其初步观测

李磊 陈涛 王诗涵 提烁 蔡春林 李文 罗静

引用本文: 李磊,陈涛,王诗涵,提烁,蔡春林,李文,罗静. 2024. 子午工程二期大气电场仪及其初步观测. 地球与行星物理论评(中英文),55(1):138-143
Li L, Chen T, Wang S H, Ti S, Cai C L, Li W, Luo J. 2024. Chinese Meridian Project near-surface atmospheric electric field observations. Reviews of Geophysics and Planetary Physics, 55(1): 138-143 (in Chinese)

子午工程二期大气电场仪及其初步观测

doi: 10.19975/j.dqyxx.2023-005
基金项目: 中国科学院战略性先导科技专项(XDA17010301,XDA15052500,XDA15350201);国家自然科学基金资助项目(41874175,41931073)
详细信息
    作者简介:

    李磊(1997-),男,博士研究生,主要从事近地面大气电场的研究. E-mail:lilei@swl.ac.cn

    通讯作者:

    陈涛(1961-),男,研究员,主要从事大气电场、电离层电场、辐射带电场的探测以及空间等离子体波与带电粒子的相互作用、空间天气与全球变化关系等研究. E-mail:tchen@nssc.ac.cn

  • 中图分类号: P353

Chinese Meridian Project near-surface atmospheric electric field observations

Funds: Supported by the Strategic Pioneer Program on Space Science, Chinese Academy of Sciences (Grant Nos. XDA17010301, XDA15052500, XDA15350201), and the National Natural Science Foundation of China (Grant Nos. 41874175, 41931073)
  • 摘要: 大气电场是大气科学和空间物理学科中共同的一个重要电学参量,大气电场的变化代表着全球大气电路和近地面大气电荷分布状态,其变化同时受到气象活动、地质活动和太阳活动影响. 大气电场的平均日变化特点代表着平静时期该地区近地面大气电场的平均值,这对于研究不同纬度地区近地面大气电场由于地质活动或太阳活动引起的扰动具有重要意义. 为实现对日地空间环境全圈层、多要素综合的立体式探测,子午工程在两极、中国多个地区建成了多个大气电场观测台站,本文主要介绍子午工程中的大气电场观测,包括场磨式大气电场仪及其数据格式,展示了子午工程建设的西藏噶尔站2021年11月至2022年10月一年期间的晴天大气电场平均日变化,并对其进行了分析以及与“卡耐基曲线”的比较.

     

  • 图  1  子午工程已建成大气电场观测站分布地图

    Figure  1.  Map of the completed Chinese Meridian Project atmospheric electric field observation stations

    图  2  场磨式大气电场仪EFM 100示意图

    Figure  2.  Schematic diagram of the EFM 100 (atmospheric electric field meter)

    图  3  西藏噶尔站晴天大气电场平均日变化曲线

    Figure  3.  Average daily variation in the fair atmospheric electric field at Tibet Gar Station

    表  1  大气电场数据格式说明

    Table  1.   Description of the atmospheric electric field data formats

    行号数据项中文名数据项英文名数值范围物理单位记录格式
    01Hour0~23hI2
    02冒号Colon/ /A1
    03Minute0~59minI2
    04冒号Colon/ /A1
    05Second0~59sI2
    06电场Electric Field−50~50 kV/m以7个空格为分隔符
    下载: 导出CSV

    表  2  西藏噶尔站2021年11月1日大气电场数据示例

    Table  2.   Example of atmospheric electric field data obtained from the Tibet Gar Station on November 1, 2021

    时间电场时间电场时间电场
    00:00:01 0.49 11:59:59 0.51 18:00:03 0.495
    00:00:02 0.488 12:00:00 0.51
    00:00:03 0.488 12:00:01 0.507 23:59:56 0.45
    00:00:04 0.488 23:59:57 0.45
    00:00:05 0.488 18:00:01 0.505 23:59:58 0.45
    18:00:02 0.502 23:59:59 0.447
    下载: 导出CSV
  • [1] Afreen S, Victor J, Nazir S, et al. 2022. Fair-weather atmospheric electric field measurements at Gulmarg, India[J]. Journal of Earth System Science, 131(1): 1-19. https://doi.org/10.1007/s12040-021-01745-5.
    [2] Anisimov S V, Shikhova N M, Kleimenova N G. 2021. Response of a magnetospheric storm in the atmospheric electric field of the midlatitudes[J]. Geomagnetism and Aeronomy, 61(2): 180-190. doi: 10.1134/S001679322102002X
    [3] 陈奇东, 刘睿, 刘杨, 等. 2020. 低频/甚低频电磁脉冲测量系统研究[J]. 电波科学学报, 35(5): 791-798 doi: 10.13443/j.cjors.2019092001

    Chen Q D, Liu R, Liu Y, et al. 2020. LF/VLF electromagnetic pulse measurement system[J]. Chinese Journal of Radio Science, 35(5): 791-798 (in Chinese). doi: 10.13443/j.cjors.2019092001
    [4] Gurmani S F, Ahmad N, Tacza J, et al. 2018. First seasonal and annual variations of atmospheric electric field at a subtropical station in Islamabad, Pakistan[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 179: 441-449. doi: 10.1016/j.jastp.2018.09.011
    [5] Harrison R G. 2013. The Carnegie Curve[J]. Surveys in Geophysics, 34(2): 209-232. DOI: 10.1007/s10712-012-9210-2.
    [6] Harrison R G, Nicoll K A. 2018. Fair weather criteria for atmospheric electricity measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 179: 239-250. doi: 10.1016/j.jastp.2018.07.008
    [7] 黄钰, 吴安坤, 张淑霞. 2018. 场地环境对大气电场测量的影响及修正[J]. 电子测量技术, 41(1): 35-38

    Huang Y, Wu A K, Zhang S X. 2018. Influence of environmental features on the atmospheric electric field and correction[J]. Electronic Measurement Technology, 41(1): 35-38 (in Chinese).
    [8] Li L, Chen T, Ti S, et al. 2022. Fair-weather near-surface atmospheric electric field measurements at the Zhongshan Chinese Station in Antarctica[J]. Applied Sciences, 12(18): 9248. doi: 10.3390/app12189248
    [9] 李中富. 2018. 基于FPGA数字式大气电场仪的设计[J]. 科技与创新, 22: 136-137 doi: 10.15913/j.cnki.kjycx.2018.22.136

    Li Z F. 2018. Design of digital atmospheric electric field instrument based on FPGA[J]. Technology and Innovation, 22: 136-137(in Chinese). doi: 10.15913/j.cnki.kjycx.2018.22.136
    [10] 卢炳源. 2012. 大气电场数据在雷电预警中的应用研究[D]. 成都: 电子科技大学.

    Lu B Y. 2012. The research on the application of the data of atmospheric electric field in lightning warning[D]. Chengdu: University of Electronic Science and Technology (in Chinese).
    [11] 罗福山, 何渝晖, 张健, 等. 2004. 新型倒装式旋转电场仪[J]. 空间科学学报, 24(6): 470-474

    Luo F S, He Y H, Zhang J, et al. 2004. The new inverted electric field mill[J]. Chinese Journal of Space Science, 24(6): 470-474 (in Chinese).
    [12] 马启明. 2014. 雷电监测原理与技术[M]. 北京: 科学出版社, 3-5.

    Ma Q M. 2014. Principle and Technology of Lightning Monitoring[M]. Beijing: Science Press, 3-5 (in Chinese).
    [13] Mkrtchyan H, Karapetyan G, Aslanyan D. 2020. Atmospheric electric field variations during fair weather and thunderstorms at different altitudes[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 211: 105452. doi: 10.1016/j.jastp.2020.105452
    [14] Smirnov S. 2014. Reaction of electric and meteorological states of the near-ground atmosphere during a geomagnetic storm on 5 April 2010[J]. Earth, Planets and Space, 66(1): 1-8.
    [15] 孙景群. 1987. 大气电学基础[M]. 北京: 气象出版社.

    Sun J Q. 1987. Basics of Atmospheric Electricity [M]. Beijing: China Meteorological Press (in Chinese).
    [16] Tacza J, Raulin J P, Mendonca R R, et al. 2018. Solar effects on the atmospheric electric field during 2010-2015 at low latitudes[J]. Journal of Geophysical Research: Atmospheres, 123(21): 11970-11979. doi: 10.1029/2018JD029121
    [17] Wang C. 2010. New chains of space weather monitoring stations in China[J]. Space Weather, 8: S08001. DOI: 10.1029/2010SW000603.
    [18] Wang C, Chen Z Q, Xu J Y. 2020. Introduction to Chinese Meridian Project-Phase II [J]. Chinese Journal of Space Science, 40(5): 718-722. doi: 10.11728/cjss2020.05.718.
    [19] 吴明江, 杜莉萍, 陈勇斌, 等. 2010. 大气电场的特征及雷电预警技术研究[J]. 气象水文海洋仪器, 27(1): 10-14.

    Wu M J, Du L P, Chen Y B, et al. 2010. Research on the characteristics of atmospheric electric field and lightning early warning technology[J]. Meteorological, Hydrological and Marine Instruments, 27(1): 10-14 (in Chinese).
    [20] 吴亭, 吕伟涛, 刘晓阳, 等. 2009. 北京地区不同天气条件下近地面大气电场特征[J]. 应用气象学报, 20(4): 394-401 doi: 10.3969/j.issn.1001-7313.2009.04.002

    Wu T, Lü W T, Liu X Y, et al. 2009. Characteristics of near-ground atmospheric electric fields under different weather conditions in Beijing[J]. Journal of Applied Meteorological Science, 20(4): 394-401 (in Chinese). doi: 10.3969/j.issn.1001-7313.2009.04.002
    [21] 言穆弘, 肖庆复. 1990.1988年9—11月西太平洋海区大气电场特征分析[J]. 高原气象, V9(4): 395-404

    Yan M H, Xiao Q F. 1990. Analysis of the characteristics of the atmospheric electric field in the western Pacific Ocean from September to November in 1988[J]. Plateau Weather, V9(4): 395-404 (in Chinese).
    [22] Yaniv R, Yair Y, Price C, et al. 2017. Ground-based measurements of the vertical E-field in mountainous regions and the “Austausch” effect[J]. Atmospheric Research, 189: 127-133. doi: 10.1016/j.atmosres.2017.01.018
    [23] 张华明, 张义军, 杨世刚, 等. 2013. 太原地区大气电场及其与大气污染物关系[J]. 环境科学与技术, 36(9): 66-69

    Zhang H M, Zhang Y J, Yang S G, et al. 2013. Atmospheric electric field and its relationship with air pollutants in Taiyuan area[J]. Journal of Environmental Sciences, 36(9): 66-69 (in Chinese).
    [24] 张祎, 张卫斌, 王振会, 等. 2015. 欧亚大陆晴天大气电场变化特征统计分析[J]. 大气科学学报, 38(5): 703-709

    Zhang Y, Zhang W B, Wang Z H, et al. 2015. Analysis of fair-weather atmospheric electric field over Eurasian Continent[J]. Transactions of Atmospheric Sciences, 38(5): 703-709 (in Chinese).
    [25] 张义军, 孟青. 1998. 青藏高原东部地区的大气电特征[J]. 高原气象, V17(2): 135-141

    Zhang Y J, Meng Q. 1998. Atmospheric electricity characteristics in the eastern Qinghai-Tibet Plateau[J]. Plateau Weather, V17(2): 135-141 (in Chinese).
    [26] 周筠珺, 陈成品, 刘黎平, 等. 2000. 青藏高原那曲地区冰雹天气系统中的大气电场[J]. 高原气象, 19(3): 339-347

    Zhou Y J, Chen C P, Liu L P, et al. 2000. Atmospheric electric field in hail weather system in Naqu area of Qinghai-Tibet Plateau[J]. Plateau Weather, 19(3): 339-347(in Chinese).
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  145
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 修回日期:  2023-04-03
  • 录用日期:  2023-04-03
  • 网络出版日期:  2023-04-08
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回