Contemporary crustal deformation in the borderland region between China and Myanmar revealed based on GPS measurements
-
摘要: 中缅边界地区位于缅甸弧东缘—青藏高原东南缘—巽他板块的衔接地带,地质构造复杂,区内多条活动断裂横跨中缅两国. 为了研究中缅边界地区现今地壳形变特征,本文收集处理1998至2020年中国和缅甸的GPS数据,获得了中缅边界地区高空间分辨率的GPS速度场,并采用多尺度球面小波方法计算了多尺度应变率场. 结果表明:(1)印度板块向缅甸块体东侧强烈挤压俯冲作用导致位于缅甸弧的GPS测站以约30 mm/a的速度沿NNE向随着印度板块向青藏高原推挤,缅甸弧地区剪切应变积累明显,主压应变率在弧外侧表现为垂直构造走向的近东西向挤压,在弧内侧与伊洛瓦底江盆地表现为平行构造的近南北向挤压. 实皆断裂处于主应变率与剪应变率的高值区,存在分段活动性:北段两侧的速度呈现明显的差异,剪切应变积累显著,呈现右旋剪切运动和缩短;中段以约20 mm/a的速度向NNW向运动,具有右旋走滑兼拉张特征. (2)川滇块体围绕东喜马拉雅构造结顺时针旋转,GPS速度方向从构造结北侧的近东西向运动偏转到川滇菱形块体为向南或东南运动,并在滇西南地区呈弥散型分布,速率向东南逐渐减小. 其中,小江断裂带总体为左旋走滑. 红河断裂中段具有较低的走滑速率,而北段和南段具有较高的剪切速率. 大盈江断裂呈现出东西向拉张的特点,表现出明显的左旋走滑特征. 龙陵—瑞丽断裂呈右旋走滑兼拉张特征. 南汀河断裂、孟连断裂、景洪—打洛断裂等均处于低剪切状态,以左旋走滑为主. 西北—东南走向的澜沧断裂、无量山断裂则表现出右旋走滑特征,北西走向的龙陵—澜沧断裂带表现为右旋走滑为主兼具拉张性质. (3)实皆断裂、畹町断裂、南汀河断裂、无量山断裂中部等地区应变积累较快,其地震危险性值得关注. 本研究对于认识中缅边界地区的构造动力学特征,评估该区的地震灾害具有科学意义和现实需求.Abstract: The region along the border between China and Myanmar is situated at the intersection of the eastern edge of the Myanmar arc, the southeast edge of the Qinghai Tibet Plateau, and the Sunda Plate. This region is characterized by its complex geological structure and strong tectonic activity. To investigate the contemporary pattern of crustal deformation and the tectonics of the border region, the entire regional GNSS network data from 1998 to 2020 in both countries were analyzed. The multi-scale spherical wavelet algorithm was used to estimate the regional strain rate field for the crust deformation and earthquake risk. The following key findings were obtained: (1) The strong compression and subduction of the Indian plate towards the eastern side of the Myanmar block has caused the GPS stations on the Myanmar arc to move towards the Qinghai-Tibet Plateau in the direction of the Indian plate, at a rate of approximately 30 mm/a. The shear strain accumulation is evident in the Myanmar arc region. The primary compressive stress in the Myanmar arc is nearly east-west compression with a vertical tectonic trend on the outer side of the arc and nearly south-north compression with a parallel structure on the inner side of the arc and the Irrawaddy River basin. The Sagaing fault is situated in a region of high principal and shear strain rates, and its subsection activity has been observed. Significant velocity differences exist between the two sides of the northern segment, with significant shear strain accumulation indicating dextral shear movement and shortening. The middle segment of the Sagaing fault moves towards NNW at a rate of approximately 20 mm/a, characterized by dextral strike-slip movement and tension. (2) The Sichuan-Yunnan block rotates clockwise around the eastern Himalayan tectonic belt, with the GPS velocity direction deflecting from the nearly east-west movement on the northern side of the Himalayan tectonic knot towards the Sichuan-Yunnan rhombus block moving southward or southeastward. The pattern of velocity distribution in the southwestern part of Yunnan is dispersed, with the rate gradually decreasing in a southeastward direction. The Xiaojiang fault zone is generally characterized by sinistral strike-slip movement. The middle segment of the Honghe fault has a low strike-slip rate, while the north and south segments have high shear rates. The Dayingjiang fault in southwestern Yunnan exhibits characteristics of east-west extension and an apparent sinistral strike-slip trend. The Longling-Ruili fault is characterized by dextral strike-slip movement and extension. The NE-trending Nantinghe fault, Menglian fault, and Jinghong-Daluo fault are in a low shear state and are dominated by left lateral strike-slip movement. The NW-SE-trending Lancang fault and Wuliangshan fault are characterized by dextral strike-slip movement, while the NW-trending Longling-Lancang fault zone is characterized by dextral strike-slip movement and tension. The magnitude of the strain rate accumulation is related to seismic activity. (3) Based on these findings, it is important to pay attention to the future seismic risk associated with the Sagaing fault, Wanding fault, Nantinghe fault, and the middle part of Wuliangshan fault, all of which are located in the high strain rate area. The results of this study are of great significance for earthquake disaster assessment and furthering our understanding of the tectonic dynamic characteristics of the borderland between China and Myanmar.
-
图 6 中缅边界地区GPS速度场和应变率场. (a)GPS速度场;其中蓝色箭头表示观测的GPS速度场,红色箭头为多尺度球面小波分解重构的GPS速度场;(b)主应变率和面应变率,其中冷色调背景为压缩,暖色调为拉张;红色箭头为压缩,蓝色为拉张;(c)最大剪应变率;其中红色线段表示右旋断裂,蓝色线段表示左旋断裂;(d)旋转率场;其中冷色调背景为顺时针旋转,暖色调为逆时针旋转
Figure 6. GPS velocity field and strain distribution determined using multi-scale spherical wavelet analysis. (a) GPS velocity field comparison between observed (blue arrow) and reconstructed (red arrow) results. (b) Principal and surface strain rates, with cool colors representing compression and warm colors indicating tension. (c) Maximum shear strain rate, with red lines indicating right-handed fractures and blue lines indicating left-handed fractures. (d) A rotation rate field, with cool colors indicating clockwise rotation and warm colors indicating counterclockwise rotation
-
[1] Aung P S, Satirapod C, Andrei C O. 2016. Sagaing fault slip and deformation in Myanmar observed by continuous GPS measurements[J]. Geodesy and Geodynamics, 7(1): 56-63. doi: 10.1016/j.geog.2016.03.007 [2] Blewitt G, Hammond W, Kreemer C. 2018. Harnessing the GPS data explosion for interdisciplinary science[EB/OL] . EOS, 99: . https://doi.org/10.1029/2018EO104623. Published on 24 September 2018. [3] 陈立德, 罗平, 傅红, 等. . 1997.1995年7月12日云南孟连中缅边界7.3级地震中、短、临预报及前兆异常特征[J]. 地震(01), 1-13Chen L D, Luo P, Fu H, et al. 1997. Medium-short term and impending prediction and its precursory features of M = 7.3 earthquake occurred in Menglian County, Yunnan Province[J]. Earthquake, 17(1):1-13 (in Chinese). [4] Chen Q, Dam T V, Sneeuw N, et al. 2013. Singular Spectrum Analysis for Modeling Seasonal Signals from GPS Time Series[J]. Journal of Geodynamics, 72(12): 25-35 [5] Chen Q F, Wang K L. 2010. The 2008 Wenchuan Earthquake and Earthquake Prediction in China[J]. Bulletin of the Seismological Society of America, 100(5B), 2840–2857 [6] 陈永奇, 伍吉仓. 2007. 利用GPS监测区域地壳形变的理论与方法[J]. 武汉大学学报: 信息科学版, 32(11): 961-966Chen Y Q, Wu J C. 2007. Methodology for monitoring regional crustal deformation using GPS[J]. Geomaties and Information Science of Wuhan University, 32(11): 961-966 (in Chinese). [7] 程佳, 徐锡伟, 甘卫军, 等. 2012. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源[J]. 地球物理学报, 55(4): 1198-1212.Cheng J, Xu X W, Gan W J, et al. 2012. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 55(4): 1198-1212 (in Chinese). [8] 杜义, 张效亮, 黄学猛, 等. 2012. 龙陵—瑞丽断裂北段晚第四纪活动性特征及强震复发间隔[J]. 震灾防御技术, 7(3): 215-226Du Y, Zhang X L, Huang X M, et al. 2012. Strong Earthquake Occurrence Interval along the Northern Segment of Longling-Ruili Fault and Its Late Quaternary Activity[J]. Technology for Earthquake Disaster Prevention, 7(3): 215-226 (in Chinese). [9] Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 112(B8): 582–596. [10] 顾国华. 2005. GPS观测得到的中国大陆地壳垂直运动[J]. 地震, 25(3): 1-8Gu G H. 2005. Vertical crustal movement obtained from GPS observation in China's mainland[J]. Earthquake, 25(3): 1-8 (in Chinese). [11] 顾国华. 2007. GNSS(GPS)观测研究地壳运动的新进展[J]. 国际地震动态, 7(7): 9-15Gu G H. 2007. Recent progress in researches on crustal movements through GNSS (GPS) observations[J]. Recent Developments in World Seismology, 7(7): 9-15 (in Chinese). [12] 虢顺民, 周瑞琦.1999. 滇西南龙陵—澜沧断裂带: 大陆地壳上一条新生的破裂带[J]. 科学通报, 44(19) : 2118-2121.Guo S M, Zhou R Q. 1999 Longling-lancang fault zone in southwest Yunnan: A new fracture zone in continental crust [J]. Scientific Bulletin, 44(19) : 2118-2121(in Chinese). [13] Hao M, Li Y, Zhuang W. 2019. Crustal movement and strain distribution in East Asia revealed by GPS observations[J]. Scientific Reports, 9(1): 16797. doi: 10.1038/s41598-019-53306-y [14] 江在森, 方颖, 武艳强, 等. 2009. 汶川8.0级地震前区域地壳运动与变形动态过程[J]. 地球物理学报, 52(2): 505-518.Jiang Z S, Fang Y, Wu Y Q, et al. 2009. The dynamic process of regional crustal movement and deformation before Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics, 52(2): 505-518 (in Chinese). [15] 江在森, 武艳强. 2012. 地壳形变与强震地点预测问题与认识[J]. 地震, 32: 8-21.Jiang Z S, Wu Y Q. 2012. Crustal deformation and location forecast of strong earthquakes: Understandings and Questions[J]. Earthquake, 32: 8-21 (in Chinese). [16] Kreemer C, Blewitt G, Klein E C. 2014. A geodetic plate motion and global strain rate model[J]. Geochemistry, Geophysics, Geosystems, 15: 3849-3889. [17] Le Dain A Y, Tapponnier P, Molnar P. . 1984. Active faulting and tectonics of Burma and surrounding regions[J]. Journal of Geophysical Research, 89(B1): 453-472 doi: 10.1029/JB089iB01p00453 [18] 李新仁, 周喜林, 严城民, 等. 2017. 缅甸大地构造单元的划分与特征[J]. 地 质 与 资 源, 26(1): 99-104Li X R, Zhou X L, Yan C M, et al. 2017. Divison and characteristics of the geotectonic units of Myanmar[J]. Geology and Resources, 26(1): 99-104 (in Chinese). [19] 罗平, 陈立德. 1981. 缅甸地震与我国云南西部地震的相关性[J]. 地震研究, 4(1): 87-92Luo P, Chen L D. 1981. The correlations of the earthquakes in Burma and in western Yunan, China[J]. Jounal of Sesmological Research, 4(1): 87-92 (in Chinese). [20] M7专项工作组. 2012. 中国大陆大地震中-长期危险性研究[M]. 北京: 地震出版社.M7 Special Working Group. 2012. Study on the Mid-to Long-term Potential of Large Earthquakes on the Chinese Content [M]. Beijing: Seismological Press (in Chinese). [21] Mallick R, Lindsey E O, Feng L J, et al. 2019. Active convergence of the India-Burma-Sunda plates revealed by a new continuous GPS network[J]. Journal of Geophysical Research: Solid Earth, 124(3): 3155-3171. doi: 10.1029/2018JB016480 [22] Maurin T, Masson F, Rangin C, et al. 2010. First global positioning system results in northern Myanmar: Constant and localized slip rate along the Sagaing fault[J]. Geology, 38(7): 591-594. doi: 10.1130/G30872.1 [23] Panda D, Kundu B, Vineet K G, et al. 2018. Crustal deformation, spatial distribution of earthquakes and along strike segmentation of the Sagaing fault, Myanmar[J]. Journal of Asian Earth Sciences, 166: 89-94. doi: 10.1016/j.jseaes.2018.07.029 [24] 乔学军, 王琪, 杜瑞林. 2004. 川滇地区活动地块现今地壳形变特征[J]. 地球物理学报, 47(5): 805-811Qiao X J, Wang Q, Du R L. 2004. Characteristics of current crustal deformation of active blocks in the Sichuan-Yunnan region[J]. Chinese Journal of Geophysics, 47(5): 805-811(in Chinese). [25] Rangin C, Maurin T, Masson F. 2013. Combined effects of Eurasia/Sunda oblique convergence and east-Tibetan crustal flow on the active tectonics of Burma[J]. Journal of Asian Earth Sciences, 76(0): 185-194. [26] 邵延秀, 袁道阳, 梁明剑. 2015. 滇西南地区龙陵—澜沧断裂带地震危险性评价[J]. 地震学报, 37(6): 1011-1023Shao Y X, Yuan D Y, Liang M J. 2015. Seismic risk assessment of Longling-Lancang fault zone, southwestern Yunnan[J]. Acta Seismologica Sinica, 37(06): 1011-1023(in Chinese). [27] Steckler M, Mondal D, Akhter S, et al. 2016. Locked and loading megathrust linked to active subduction beneath the Indo-Burman ranges[J]. Nature Geoscience, 9(8), : 615–618. doi: 10.1038/ngeo2760 [28] Su X N, Yao L B, Wu W W, et al. 2018. Crustal deformation on the northeastern Margin of the Tibetan Plateau from continuous GPS observations[J]. Remote Sensing, 11(1): 34. doi: 10.3390/rs11010034 [29] Sun H Y, He H L, Wei Z Y, et al. 2017. Late Quaternary paleoearthquakes along the northern segment of the Nantinghe fault on the southeastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 138: 258-271. doi: 10.1016/j.jseaes.2017.02.023 [30] Sun J Z, Yu Y X, Li Y Q. 2018. Stochastic finite-fault simulation of the 2017 Jiuzhaigou earthquake in China[J]. Earth, Planets and Space, 70(1): 128. [31] Sun Y, Niu F L, Liu H F, et al. 2012. Crustal structure and deformation of the SE Tibetan Plateau revealed by receiver function data[J]. Earth and Planetary Science Letters. 349-350: 186-197. [32] Tape C, Musé P, Simons M, et al. 2009. Multiscale estimation of GPS velocity fields[J]. Geophysical Journal International, 179(2): 945-971. doi: 10.1111/j.1365-246X.2009.04337.x [33] Vigny C, Socquet A, Rangin C, et al. 2003. Present-day crustal deformation around Sagaing fault, Myanmar[J]. Journal of Geophysical Research, 108(B11): 25-33 [34] Wang H, Liu M, Cao J L, et al. 2011. Slip rates and seismic moment deficits on major active faults in Mainland China[J]. Journal of Geophysical Research: Solid Earth, 116(B2): 1-17. [35] Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774 [36] Wang Q, Zhang P Z, Freymueller J F, et al. 2001. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 294(5542): 574-577. doi: 10.1126/science.1063647 [37] Wang Y, Lin Y-N N, Simons M, et al. 2014a. Shallow rupture of the 2011 Tarlay earthquake (MW6.8), eastern Myanmar[J]. Bulletin of the Seismological Society of America, 104(6): 2904-2914. doi: 10.1785/0120120364 [38] Wang Y, Sieh K, Soe Thura T, et al. 2014b. Active tectonics and earthquake potential of the Myanmar region[J]. Journal of Geophysical Research: Solid Earth, 119(4): 3767-3822. doi: 10.1002/2013JB010762 [39] 王岩, 洪敏, 邵德胜, 等. 2018. 基于GPS资料研究云南地区地壳形变动态特征[J]. 地震研究, 41(3): 368-374 doi: 10.3969/j.issn.1000-0666.2018.03.004Wang Y, Hong M, Shao D S, et al. 2018. Study on dynamic characteristics of crustal deformation in Yunnan area using GPS[J]. Jounal of Sesmological Research, 41(3): 368-374(in Chinese). doi: 10.3969/j.issn.1000-0666.2018.03.004 [40] 王阎昭, 王恩宁, 沈正康, 等. 2008. 基于 GPS 资料约束反演川滇地区主要断裂现今活动速率[J]. 中国科学: D 辑, 38(5): 582-597Wang Y Z, Wang E N, Shen Z K, et al. 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China[J]. Science in China (Seris D), 38(5): 582-597(in Chinese). [41] 吴梦初, 延军平. 2013. 滇西及缅甸MS≥6.8级地震时空对称性研究[J]. 高原地震, 25(4): 10-16Wu M C, Yan X J. 2013. The space-time symmetry of the earthquake disasters (MS≥6.8) in western Yunan and Myanmar[J]. Plateau Earthquake Research, 25(4): 10-16(in Chinese). [42] Wu W W, Wu J C, Meng G J. 2018. A study of rank defect and network effect in processing the CMONOC network on Bernese[J]. Remote Sensing, 10(3): 357. doi: 10.3390/rs10030357 [43] 向宏发, 虢顺民, 徐锡伟, 等. 2000. 川滇南部地区活动地块划分与现今运动特征初析[J]. 地震地质, 22(3): 253-264Xiang H F, Guo S M, Xu X W, et al. 2000. Active block division and present-day motion features of the south region of Sichuan-Yunnan Province[J]. Seismology and Geology, 22(3): 253-264(in Chinese). [44] Xu C, Xu X W, Dai F C, et al. 2012. Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China[J]. Computers & Geosciences, 46: 317-329. [45] Xu X W, Wen X Z, Zheng R Z, et al. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China[J]. Science in China, 46(OctS): 210-226. [46] 徐锡伟, 闻学泽, 郑荣章, 等. 2003. 青藏高原及周边现今构造变形的运动学[J]. 中国科学: 地球科学, 33(S1): 151-162Xu X W, Wen X Z, Zhen R Z, et al. 2003. Kinematisc of present day tectonic deformation of the Tibetan Plateau and its vicinities[J]. Science in China (Seris D), 33(S1): 151-162 (in Chinese). [47] 臧阳, 韩颜颜, 孟令媛. 2020. 缅甸弧强震对川滇地区主要断裂的应力影响[J]. 地震研究, 43(2): 320-330 doi: 10.3969/j.issn.1000-0666.2020.02.014Zang Y, Han Y Y, Meng L Y. 2020. Stress influence on major faults in the Sichuan-Yunnan region by strong earthquakes near the Burma arc[J]. Jounal of Sesmological Research, 43(2): 320-330 (in Chinese). doi: 10.3969/j.issn.1000-0666.2020.02.014 [48] Zhang H S, Teng J W, Tian X B, et al. 2012. Lithospheric thickness and upper-mantle deformation beneath the NE Tibetan Plateau inferred from S receiver functions and SKS splitting measurements[J]. Geophysical Journal International, 191(3): 1285-1294. [49] Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812 doi: 10.1130/G20554.1 [50] 赵国强, 孙汉荣, 任雳, 等. 2013. 中国地壳运动观测网络 GPS 基准站时间序列分析与研究[J]. 国际地震动态, 4: 19-29Zhao G Q, Sun H R, Ren L, et al. 2013. Analysis and research of time series for GPS fiducial stations from the crustal movement Observation network of China[J]. Recent Developments in World Seismology, 4: 19-29(in Chinese). [51] Zheng T Y, He Y M, Lin D, et al. 2020. Direct structural evidence of Indian continental subduction beneath Myanmar[J]. Nature Communications, 11(1): 1944. doi: 10.1038/s41467-020-15746-3 [52] 周辉, 冯光财, 李志伟, 等. 2013. 利用InSAR资料反演缅甸MW6.8地震断层滑动分布[J]. 地球物理学报, 56(9): 3011-3021Zhou H, Feng G C, Li Z W, et al. 2013. The fault slip distribution of the Myanmar MW6.8 earthquake inferred from InSAR measurements[J]. Chinese Journal of Geophysics, 56(9): 3011-3021(in Chinese). [53] 周瑞琦, 虢顺民, 何蔚. 1998 . 龙陵—澜沧断裂带双震型强震活动破裂模型讨论[J]. 地震地质, 20(3):70-76.Zhou R Q, Guo S M, He W. 1998. Discussion on the double seismic type strong earthquake activity rupture model of the Longling-Lancang fault zone [J] Seismology and Geology, 20(3):70-76(in Chinese). -