• ISSN 2097-1893
  • CN 10-1855/P

利用GPS数据研究中缅边界地区现今地壳形变特征

邹芳 孟国杰 吴伟伟 Myo Thant 赵倩 赵国强

引用本文: 邹芳,孟国杰,吴伟伟,Myo Thant,赵倩,赵国强. 2023. 利用GPS数据研究中缅边界地区现今地壳形变特征. 地球与行星物理论评(中英文),54(6):587-599
Zou F, Meng G J, Wu W W, Myo T, Zhao Q, Zhao G Q. 2023. Contemporary crustal deformation in the borderland region between China and Myanmar revealed based on GPS measurements. Reviews of Geophysics and Planetary Physics, 54(6): 587-599 (in Chinese)

利用GPS数据研究中缅边界地区现今地壳形变特征

doi: 10.19975/j.dqyxx.2022-084
基金项目: 国家重点研发计划资助项目(2019YFE0108900);国家自然科学基金面上资助项目(41874024,42274017);国家自然科学青年基金资助项目(42204012);中国地震局地震预测研究所基本科研业务费专项(CEAIEF20220404)
详细信息
    作者简介:

    邹芳(1990-),女,副研究员,主要从事空间大地测量与地壳形变研究. E-mail:fangz070720@126.com

    通讯作者:

    孟国杰(1968-),男,研究员,主要从事地壳形变、构造活动和地震预测方法研究. E-mail:mgj@ief.ac.cn

  • 中图分类号: P227.1

Contemporary crustal deformation in the borderland region between China and Myanmar revealed based on GPS measurements

Funds: National Key R&D Program of China (Grant No. 2019YFE0108900), the National Natural Science Foundation of China (Grant Nos. 41874024, 42274017), the National Natural Science Foundation for Young Scientists of China (Grant No. 42204012), and the Fundamental Research Program of IEF, CEA (Grant No. CEAIEF20220404)
  • 摘要: 中缅边界地区位于缅甸弧东缘—青藏高原东南缘—巽他板块的衔接地带,地质构造复杂,区内多条活动断裂横跨中缅两国. 为了研究中缅边界地区现今地壳形变特征,本文收集处理1998至2020年中国和缅甸的GPS数据,获得了中缅边界地区高空间分辨率的GPS速度场,并采用多尺度球面小波方法计算了多尺度应变率场. 结果表明:(1)印度板块向缅甸块体东侧强烈挤压俯冲作用导致位于缅甸弧的GPS测站以约30 mm/a的速度沿NNE向随着印度板块向青藏高原推挤,缅甸弧地区剪切应变积累明显,主压应变率在弧外侧表现为垂直构造走向的近东西向挤压,在弧内侧与伊洛瓦底江盆地表现为平行构造的近南北向挤压. 实皆断裂处于主应变率与剪应变率的高值区,存在分段活动性:北段两侧的速度呈现明显的差异,剪切应变积累显著,呈现右旋剪切运动和缩短;中段以约20 mm/a的速度向NNW向运动,具有右旋走滑兼拉张特征. (2)川滇块体围绕东喜马拉雅构造结顺时针旋转,GPS速度方向从构造结北侧的近东西向运动偏转到川滇菱形块体为向南或东南运动,并在滇西南地区呈弥散型分布,速率向东南逐渐减小. 其中,小江断裂带总体为左旋走滑. 红河断裂中段具有较低的走滑速率,而北段和南段具有较高的剪切速率. 大盈江断裂呈现出东西向拉张的特点,表现出明显的左旋走滑特征. 龙陵—瑞丽断裂呈右旋走滑兼拉张特征. 南汀河断裂、孟连断裂、景洪—打洛断裂等均处于低剪切状态,以左旋走滑为主. 西北—东南走向的澜沧断裂、无量山断裂则表现出右旋走滑特征,北西走向的龙陵—澜沧断裂带表现为右旋走滑为主兼具拉张性质. (3)实皆断裂、畹町断裂、南汀河断裂、无量山断裂中部等地区应变积累较快,其地震危险性值得关注. 本研究对于认识中缅边界地区的构造动力学特征,评估该区的地震灾害具有科学意义和现实需求.

     

  • 图  1  区域构造背景

    Figure  1.  Tectonic setting of the border region between China and Myanmar

    图  2  (a)GPS站点分布;(b)GPS速度场(相对于欧亚板块)

    Figure  2.  (a) Distribution of the GPS sites in the study area. (b) GPS velocity fields with respect to the Eurasia reference frame

    图  3  融合后的速度场. 其中蓝色箭头表示本文的GPS速度场,红色箭头为前人研究的GPS速度场

    Figure  3.  Merged GPS velocity field. Blue arrows represent the GPS velocity field results from this study, while red arrows represent the results from previous research

    图  4  由GPS站点分布确定的球面小波最大分解尺度

    Figure  4.  Maximum resolved scale of a spherical wavelet based on GPS site locations

    图  5  中缅边界地区不同分解尺度下的最大剪应变率场. (a)q=3~6;(b)q=7;(c)q=8;(d)q=3~8

    Figure  5.  Maximum shear strain at different scales (q) calculated by multi-scale spherical wavelet analysis in the borderland between China and Myanmar: (a) q = 3-6, (b) q = 7, (c) q = 8, and (d) q = 3-8

    图  6  中缅边界地区GPS速度场和应变率场. (a)GPS速度场;其中蓝色箭头表示观测的GPS速度场,红色箭头为多尺度球面小波分解重构的GPS速度场;(b)主应变率和面应变率,其中冷色调背景为压缩,暖色调为拉张;红色箭头为压缩,蓝色为拉张;(c)最大剪应变率;其中红色线段表示右旋断裂,蓝色线段表示左旋断裂;(d)旋转率场;其中冷色调背景为顺时针旋转,暖色调为逆时针旋转

    Figure  6.  GPS velocity field and strain distribution determined using multi-scale spherical wavelet analysis. (a) GPS velocity field comparison between observed (blue arrow) and reconstructed (red arrow) results. (b) Principal and surface strain rates, with cool colors representing compression and warm colors indicating tension. (c) Maximum shear strain rate, with red lines indicating right-handed fractures and blue lines indicating left-handed fractures. (d) A rotation rate field, with cool colors indicating clockwise rotation and warm colors indicating counterclockwise rotation

  • [1] Aung P S, Satirapod C, Andrei C O. 2016. Sagaing fault slip and deformation in Myanmar observed by continuous GPS measurements[J]. Geodesy and Geodynamics, 7(1): 56-63. doi: 10.1016/j.geog.2016.03.007
    [2] Blewitt G, Hammond W, Kreemer C. 2018. Harnessing the GPS data explosion for interdisciplinary science[EB/OL] . EOS, 99: . https://doi.org/10.1029/2018EO104623. Published on 24 September 2018.
    [3] 陈立德, 罗平, 傅红, 等. . 1997.1995年7月12日云南孟连中缅边界7.3级地震中、短、临预报及前兆异常特征[J]. 地震(01), 1-13

    Chen L D, Luo P, Fu H, et al. 1997. Medium-short term and impending prediction and its precursory features of M = 7.3 earthquake occurred in Menglian County, Yunnan Province[J]. Earthquake, 17(1):1-13 (in Chinese).
    [4] Chen Q, Dam T V, Sneeuw N, et al. 2013. Singular Spectrum Analysis for Modeling Seasonal Signals from GPS Time Series[J]. Journal of Geodynamics, 72(12): 25-35
    [5] Chen Q F, Wang K L. 2010. The 2008 Wenchuan Earthquake and Earthquake Prediction in China[J]. Bulletin of the Seismological Society of America, 100(5B), 2840–2857
    [6] 陈永奇, 伍吉仓. 2007. 利用GPS监测区域地壳形变的理论与方法[J]. 武汉大学学报: 信息科学版, 32(11): 961-966

    Chen Y Q, Wu J C. 2007. Methodology for monitoring regional crustal deformation using GPS[J]. Geomaties and Information Science of Wuhan University, 32(11): 961-966 (in Chinese).
    [7] 程佳, 徐锡伟, 甘卫军, 等. 2012. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源[J]. 地球物理学报, 55(4): 1198-1212.

    Cheng J, Xu X W, Gan W J, et al. 2012. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 55(4): 1198-1212 (in Chinese).
    [8] 杜义, 张效亮, 黄学猛, 等. 2012. 龙陵—瑞丽断裂北段晚第四纪活动性特征及强震复发间隔[J]. 震灾防御技术, 7(3): 215-226

    Du Y, Zhang X L, Huang X M, et al. 2012. Strong Earthquake Occurrence Interval along the Northern Segment of Longling-Ruili Fault and Its Late Quaternary Activity[J]. Technology for Earthquake Disaster Prevention, 7(3): 215-226 (in Chinese).
    [9] Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 112(B8): 582–596.
    [10] 顾国华. 2005. GPS观测得到的中国大陆地壳垂直运动[J]. 地震, 25(3): 1-8

    Gu G H. 2005. Vertical crustal movement obtained from GPS observation in China's mainland[J]. Earthquake, 25(3): 1-8 (in Chinese).
    [11] 顾国华. 2007. GNSS(GPS)观测研究地壳运动的新进展[J]. 国际地震动态, 7(7): 9-15

    Gu G H. 2007. Recent progress in researches on crustal movements through GNSS (GPS) observations[J]. Recent Developments in World Seismology, 7(7): 9-15 (in Chinese).
    [12] 虢顺民, 周瑞琦.1999. 滇西南龙陵—澜沧断裂带: 大陆地壳上一条新生的破裂带[J]. 科学通报, 44(19) : 2118-2121.

    Guo S M, Zhou R Q. 1999 Longling-lancang fault zone in southwest Yunnan: A new fracture zone in continental crust [J]. Scientific Bulletin, 44(19) : 2118-2121(in Chinese).
    [13] Hao M, Li Y, Zhuang W. 2019. Crustal movement and strain distribution in East Asia revealed by GPS observations[J]. Scientific Reports, 9(1): 16797. doi: 10.1038/s41598-019-53306-y
    [14] 江在森, 方颖, 武艳强, 等. 2009. 汶川8.0级地震前区域地壳运动与变形动态过程[J]. 地球物理学报, 52(2): 505-518.

    Jiang Z S, Fang Y, Wu Y Q, et al. 2009. The dynamic process of regional crustal movement and deformation before Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics, 52(2): 505-518 (in Chinese).
    [15] 江在森, 武艳强. 2012. 地壳形变与强震地点预测问题与认识[J]. 地震, 32: 8-21.

    Jiang Z S, Wu Y Q. 2012. Crustal deformation and location forecast of strong earthquakes: Understandings and Questions[J]. Earthquake, 32: 8-21 (in Chinese).
    [16] Kreemer C, Blewitt G, Klein E C. 2014. A geodetic plate motion and global strain rate model[J]. Geochemistry, Geophysics, Geosystems, 15: 3849-3889.
    [17] Le Dain A Y, Tapponnier P, Molnar P. . 1984. Active faulting and tectonics of Burma and surrounding regions[J]. Journal of Geophysical Research, 89(B1): 453-472 doi: 10.1029/JB089iB01p00453
    [18] 李新仁, 周喜林, 严城民, 等. 2017. 缅甸大地构造单元的划分与特征[J]. 地 质 与 资 源, 26(1): 99-104

    Li X R, Zhou X L, Yan C M, et al. 2017. Divison and characteristics of the geotectonic units of Myanmar[J]. Geology and Resources, 26(1): 99-104 (in Chinese).
    [19] 罗平, 陈立德. 1981. 缅甸地震与我国云南西部地震的相关性[J]. 地震研究, 4(1): 87-92

    Luo P, Chen L D. 1981. The correlations of the earthquakes in Burma and in western Yunan, China[J]. Jounal of Sesmological Research, 4(1): 87-92 (in Chinese).
    [20] M7专项工作组. 2012. 中国大陆大地震中-长期危险性研究[M]. 北京: 地震出版社.

    M7 Special Working Group. 2012. Study on the Mid-to Long-term Potential of Large Earthquakes on the Chinese Content [M]. Beijing: Seismological Press (in Chinese).
    [21] Mallick R, Lindsey E O, Feng L J, et al. 2019. Active convergence of the India-Burma-Sunda plates revealed by a new continuous GPS network[J]. Journal of Geophysical Research: Solid Earth, 124(3): 3155-3171. doi: 10.1029/2018JB016480
    [22] Maurin T, Masson F, Rangin C, et al. 2010. First global positioning system results in northern Myanmar: Constant and localized slip rate along the Sagaing fault[J]. Geology, 38(7): 591-594. doi: 10.1130/G30872.1
    [23] Panda D, Kundu B, Vineet K G, et al. 2018. Crustal deformation, spatial distribution of earthquakes and along strike segmentation of the Sagaing fault, Myanmar[J]. Journal of Asian Earth Sciences, 166: 89-94. doi: 10.1016/j.jseaes.2018.07.029
    [24] 乔学军, 王琪, 杜瑞林. 2004. 川滇地区活动地块现今地壳形变特征[J]. 地球物理学报, 47(5): 805-811

    Qiao X J, Wang Q, Du R L. 2004. Characteristics of current crustal deformation of active blocks in the Sichuan-Yunnan region[J]. Chinese Journal of Geophysics, 47(5): 805-811(in Chinese).
    [25] Rangin C, Maurin T, Masson F. 2013. Combined effects of Eurasia/Sunda oblique convergence and east-Tibetan crustal flow on the active tectonics of Burma[J]. Journal of Asian Earth Sciences, 76(0): 185-194.
    [26] 邵延秀, 袁道阳, 梁明剑. 2015. 滇西南地区龙陵—澜沧断裂带地震危险性评价[J]. 地震学报, 37(6): 1011-1023

    Shao Y X, Yuan D Y, Liang M J. 2015. Seismic risk assessment of Longling-Lancang fault zone, southwestern Yunnan[J]. Acta Seismologica Sinica, 37(06): 1011-1023(in Chinese).
    [27] Steckler M, Mondal D, Akhter S, et al. 2016. Locked and loading megathrust linked to active subduction beneath the Indo-Burman ranges[J]. Nature Geoscience, 9(8), : 615–618. doi: 10.1038/ngeo2760
    [28] Su X N, Yao L B, Wu W W, et al. 2018. Crustal deformation on the northeastern Margin of the Tibetan Plateau from continuous GPS observations[J]. Remote Sensing, 11(1): 34. doi: 10.3390/rs11010034
    [29] Sun H Y, He H L, Wei Z Y, et al. 2017. Late Quaternary paleoearthquakes along the northern segment of the Nantinghe fault on the southeastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 138: 258-271. doi: 10.1016/j.jseaes.2017.02.023
    [30] Sun J Z, Yu Y X, Li Y Q. 2018. Stochastic finite-fault simulation of the 2017 Jiuzhaigou earthquake in China[J]. Earth, Planets and Space, 70(1): 128.
    [31] Sun Y, Niu F L, Liu H F, et al. 2012. Crustal structure and deformation of the SE Tibetan Plateau revealed by receiver function data[J]. Earth and Planetary Science Letters. 349-350: 186-197.
    [32] Tape C, Musé P, Simons M, et al. 2009. Multiscale estimation of GPS velocity fields[J]. Geophysical Journal International, 179(2): 945-971. doi: 10.1111/j.1365-246X.2009.04337.x
    [33] Vigny C, Socquet A, Rangin C, et al. 2003. Present-day crustal deformation around Sagaing fault, Myanmar[J]. Journal of Geophysical Research, 108(B11): 25-33
    [34] Wang H, Liu M, Cao J L, et al. 2011. Slip rates and seismic moment deficits on major active faults in Mainland China[J]. Journal of Geophysical Research: Solid Earth, 116(B2): 1-17.
    [35] Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774
    [36] Wang Q, Zhang P Z, Freymueller J F, et al. 2001. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 294(5542): 574-577. doi: 10.1126/science.1063647
    [37] Wang Y, Lin Y-N N, Simons M, et al. 2014a. Shallow rupture of the 2011 Tarlay earthquake (MW6.8), eastern Myanmar[J]. Bulletin of the Seismological Society of America, 104(6): 2904-2914. doi: 10.1785/0120120364
    [38] Wang Y, Sieh K, Soe Thura T, et al. 2014b. Active tectonics and earthquake potential of the Myanmar region[J]. Journal of Geophysical Research: Solid Earth, 119(4): 3767-3822. doi: 10.1002/2013JB010762
    [39] 王岩, 洪敏, 邵德胜, 等. 2018. 基于GPS资料研究云南地区地壳形变动态特征[J]. 地震研究, 41(3): 368-374 doi: 10.3969/j.issn.1000-0666.2018.03.004

    Wang Y, Hong M, Shao D S, et al. 2018. Study on dynamic characteristics of crustal deformation in Yunnan area using GPS[J]. Jounal of Sesmological Research, 41(3): 368-374(in Chinese). doi: 10.3969/j.issn.1000-0666.2018.03.004
    [40] 王阎昭, 王恩宁, 沈正康, 等. 2008. 基于 GPS 资料约束反演川滇地区主要断裂现今活动速率[J]. 中国科学: D 辑, 38(5): 582-597

    Wang Y Z, Wang E N, Shen Z K, et al. 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China[J]. Science in China (Seris D), 38(5): 582-597(in Chinese).
    [41] 吴梦初, 延军平. 2013. 滇西及缅甸MS≥6.8级地震时空对称性研究[J]. 高原地震, 25(4): 10-16

    Wu M C, Yan X J. 2013. The space-time symmetry of the earthquake disasters (MS≥6.8) in western Yunan and Myanmar[J]. Plateau Earthquake Research, 25(4): 10-16(in Chinese).
    [42] Wu W W, Wu J C, Meng G J. 2018. A study of rank defect and network effect in processing the CMONOC network on Bernese[J]. Remote Sensing, 10(3): 357. doi: 10.3390/rs10030357
    [43] 向宏发, 虢顺民, 徐锡伟, 等. 2000. 川滇南部地区活动地块划分与现今运动特征初析[J]. 地震地质, 22(3): 253-264

    Xiang H F, Guo S M, Xu X W, et al. 2000. Active block division and present-day motion features of the south region of Sichuan-Yunnan Province[J]. Seismology and Geology, 22(3): 253-264(in Chinese).
    [44] Xu C, Xu X W, Dai F C, et al. 2012. Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China[J]. Computers & Geosciences, 46: 317-329.
    [45] Xu X W, Wen X Z, Zheng R Z, et al. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China[J]. Science in China, 46(OctS): 210-226.
    [46] 徐锡伟, 闻学泽, 郑荣章, 等. 2003. 青藏高原及周边现今构造变形的运动学[J]. 中国科学: 地球科学, 33(S1): 151-162

    Xu X W, Wen X Z, Zhen R Z, et al. 2003. Kinematisc of present day tectonic deformation of the Tibetan Plateau and its vicinities[J]. Science in China (Seris D), 33(S1): 151-162 (in Chinese).
    [47] 臧阳, 韩颜颜, 孟令媛. 2020. 缅甸弧强震对川滇地区主要断裂的应力影响[J]. 地震研究, 43(2): 320-330 doi: 10.3969/j.issn.1000-0666.2020.02.014

    Zang Y, Han Y Y, Meng L Y. 2020. Stress influence on major faults in the Sichuan-Yunnan region by strong earthquakes near the Burma arc[J]. Jounal of Sesmological Research, 43(2): 320-330 (in Chinese). doi: 10.3969/j.issn.1000-0666.2020.02.014
    [48] Zhang H S, Teng J W, Tian X B, et al. 2012. Lithospheric thickness and upper-mantle deformation beneath the NE Tibetan Plateau inferred from S receiver functions and SKS splitting measurements[J]. Geophysical Journal International, 191(3): 1285-1294.
    [49] Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812 doi: 10.1130/G20554.1
    [50] 赵国强, 孙汉荣, 任雳, 等. 2013. 中国地壳运动观测网络 GPS 基准站时间序列分析与研究[J]. 国际地震动态, 4: 19-29

    Zhao G Q, Sun H R, Ren L, et al. 2013. Analysis and research of time series for GPS fiducial stations from the crustal movement Observation network of China[J]. Recent Developments in World Seismology, 4: 19-29(in Chinese).
    [51] Zheng T Y, He Y M, Lin D, et al. 2020. Direct structural evidence of Indian continental subduction beneath Myanmar[J]. Nature Communications, 11(1): 1944. doi: 10.1038/s41467-020-15746-3
    [52] 周辉, 冯光财, 李志伟, 等. 2013. 利用InSAR资料反演缅甸MW6.8地震断层滑动分布[J]. 地球物理学报, 56(9): 3011-3021

    Zhou H, Feng G C, Li Z W, et al. 2013. The fault slip distribution of the Myanmar MW6.8 earthquake inferred from InSAR measurements[J]. Chinese Journal of Geophysics, 56(9): 3011-3021(in Chinese).
    [53] 周瑞琦, 虢顺民, 何蔚. 1998 . 龙陵—澜沧断裂带双震型强震活动破裂模型讨论[J]. 地震地质, 20(3):70-76.

    Zhou R Q, Guo S M, He W. 1998. Discussion on the double seismic type strong earthquake activity rupture model of the Longling-Lancang fault zone [J] Seismology and Geology, 20(3):70-76(in Chinese).
  • 加载中
图(6)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  187
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 修回日期:  2023-02-22
  • 录用日期:  2023-03-13
  • 网络出版日期:  2023-03-24
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回