• ISSN 2097-1893
  • CN 10-1855/P

曲靖非相干散射雷达观测研究进展与展望

苗建苏 丁宗华 代连东 杨嵩 吴健

引用本文: 苗建苏,丁宗华,代连东,杨嵩,吴健. 2024. 曲靖非相干散射雷达观测研究进展与展望. 地球与行星物理论评(中英文),55(1):66-76
Miao J S, Ding Z H, Dai L D, Yang S, Wu J. 2024. Progress and prospects based on Qujing incoherent scatter radar measurements. Reviews of Geophysics and Planetary Physics, 55(1): 66-76 (in Chinese)

曲靖非相干散射雷达观测研究进展与展望

doi: 10.19975/j.dqyxx.2022-082
基金项目: 国家重点研发计划资助项目(2022YFF0503901)
详细信息
    作者简介:

    苗建苏(1966-),男,高级工程师. 主要从事电离层探测技术研究. E-mail:miaoqingdao@163.com

    通讯作者:

    丁宗华(1978-),男,研究员. 主要从事电离层探测与电波传播研究. E-mail:zhdingmou@163.com

  • 中图分类号: P352

Progress and prospects based on Qujing incoherent scatter radar measurements

Funds: Supported by the National Key Research and Development Program (Grant No. 2022YFF0503901)
  • 摘要: 本文介绍了我国曲靖非相干散射雷达的主要技术方案,结合实测数据分析表明该雷达具备了电离层电子密度与等离子体温度观测、空间碎片凝视探测与月球二维成像探测等能力,可用于研究电离层F层气候学特征、电子密度暴时变化与异常增强等天气事件、E-F谷区结构与变化、约3 cm以上尺寸空间碎片的分布特征与模型、月球不同区域的散射回波特性等. 下一步将重点开展低电离层与北驼峰结构及演化过程、电离层暴时与扰动特性观测.

     

  • 图  1  电离层散射功率剖面(a)与功率谱(b)示例

    Figure  1.  Examples of ionospheric echo profile (a) and power spectra (b)

    图  2  磁静日电离层电子密度观测. (a)2月26日;(b)11月1日;(c)11月7日;(d)11月8日

    Figure  2.  Examples of electron density under quiet geomagnetic conditions. (a) February 26; (b) November 1; (c) November 7; (d) November 8

    图  3  磁暴期间电离层电子密度观测

    Figure  3.  Examples of electron density during the geomagnetic storm event in April 2015

    图  4  曲靖地区日间不同地方时的电子密度剖面对比

    Figure  4.  Comparison of the daytime electron density profiles at different local times in Qujing

    图  5  方位固定、仰角扫描探测的功率剖面(a)与子午链不同台站foF2变化(b)

    Figure  5.  Examples of the echo profile with the fixed azimuth and scanning elevation (a) and the ionospheric foF2 at different sites along the meridian chain (b)

    图  6  最大电子密度、峰值高度、电子温度与离子温度的日变化

    Figure  6.  Daily variations in NmF2, hmF2, Te and Ti

    图  7  空间碎片穿越雷达波束期间的回波(a)与距离(b)变化

    Figure  7.  Variations in the echo amplitude and range of space debris when passing through the beam

    图  8  曲靖(a)与EISCAT(b)非相干散射雷达实测空间碎片高度变化

    Figure  8.  Space debris height distribution of Qujing (a) and EISCAT ISR (b)

    图  9  曲靖上空不同高度的空间碎片等效尺寸(a)与径向速度(b)分布

    Figure  9.  Effective size (a) and radial velocity (b) distribution of space debris with orbital height

    图  10  曲靖非相干散射雷达月球回波-时延变化(a)与月球回波二维像(b)

    Figure  10.  Echo-delay variation (a) and two-dimensional image (b) by Qujing ISR

  • [1] Campbell B A, Campbell D B, Margot J L, et al. 2007. Focused 70-cm wavelength radar mapping of the Moon[J]. IEEE Transactions on Geoscience and Remote Sensing, 45(12): 4032-4042. doi: 10.1109/TGRS.2007.906582
    [2] 代连东, 丁宗华, 赵振维, 等. 2015. 非相干散射雷达的空间碎片参数统计分析[J]. 空间科学学报, 35(4): 495-501 doi: 10.11728/cjss2015.04.495

    Dai L D, Ding Z H, Zhao Z W, et al. 2015. The statistical analysis of space debris's parameters based on the incoherent sScattering radar[J]. Chinese Journal of Space Science, 35(4): 495-501(in Chinese). doi: 10.11728/cjss2015.04.495
    [3] 丁宗华, 代连东, 董明玉, 等. 2014a. 非相干散射雷达进展: 从传统体制到EISCAT_3D[J]. 地球物理学进展, 29(5): 2376-2381

    Ding Z H, Dai L D, Dong M Y, et al. 2014a. Progress of the incoherent scattering radar: From the traditional radar to the latest EISCAT 3D[J]. Progress in Geophysics, 29(5): 2376-2381(in Chinese).
    [4] 丁宗华, 鱼浪, 代连东, 等. 2014b. 曲靖非相干散射雷达功率剖面的初步观测与分析[J]. 地球物理学报, 57(11): 3564-3569

    Ding Z H, Yu L, Dai L, et al. 2014b. The preliminary measurement and analysis of the power profiles by the Qujing incoherent scatter radar[J]. Chinese Journal of Geophysics, 57: 3564-3569(in Chinese).
    [5] 丁宗华, 代连东, 许正文, 等. 2017. 基于空间监视雷达散射回波的电离层电子密度探测方法[J]. 装备环境工程, 14(7): 24-28

    Ding Z H, Dai L D, Xu Z W, et al. 2017. The ionospheric electron density measurement based on the scattered echo from the space surveillance radar[J]. Equipment Environmental Engineering, 14(7): 24-28(in Chinese).
    [6] Ding Z H, Wu J, Xu B, et al. 2018. The Qujing incoherent scatter radar: System description and preliminary measurements[J]. Earth, Planets and Space, 70: 87. DOI: 10.1186/s40623-018-0859-8.
    [7] 丁宗华, 杨嵩, 江海, 等. 2018. 曲靖非相干散射雷达的空间碎片数据分析[J]. 空间碎片研究, 18(1): 12-19

    Ding Z H, Yang S, Jiang H, et al. 2018. The data analysis of the space debris observation by the Qujing incoherent scatter radar[J]. Space Debris Research, 18(1): 12-19 (in Chinese).
    [8] 丁宗华, 代连东, 杨嵩, 等. 2020. 曲靖非相干散射雷达电离层F区日间电子温度变化特征初步分析[J]. 地球物理学报, 63(4): 1282-1293 doi: 10.6038/cjg2020N0191

    Ding Z H, Dai L D, Yang S, et al. 2020. Preliminary analysis of the ionospheric electron temperature variations of F layer in daytime using the Qujing incoherent scatter radar measurements[J]. Chinese Journal of Geophysics, 63(4): 1282-1293 (in Chinese). doi: 10.6038/cjg2020N0191
    [9] 丁宗华, 代连东, 杨嵩, 等. 2022. 曲靖非相干散射雷达电离层E-F谷区电子密度日间变化特征初步分析[J]. 电波科学学报, 37(3): 357-363

    Ding Z H, Dai L D, Yang S, et al. 2022. Preliminary analysis of daytime electron density in the ionospheric E-F valley based on the Qujing incoherent scatter radar observations[J]. Chinese Journal of Radio Science, 37(3): 357-363 (in Chinese).
    [10] Evans J V. 1969. Theory and practice of ionosphere study by Thomson scatter radar[J]. Proceedings of the IEEE, 57(4): 494-530.
    [11] Gordon W E. 1958. Incoherent scatter of radio waves by free electrons with applications to space exploration by radar[J]. Proceedings of the Institute of Radio Engineers, 46(11): 1824-1829.
    [12] 李鸣远, 王永辉, 尹翰林, 等. 2021. 基于三亚非相干散射雷达的月球正面南北半球拼接成像研究[J]. 地球与行星物理论评, 52(4): 450-458 doi: 10.19975/j.dqyxx.2021-014

    Li M Y, Wang Y H, Yin H L, et al. 2021. A mosaic imaging study of the northern and southern hemispheres of the nearside of the Moon based on the Sanya incoherent scatter radar[J]. Reviews of Geophysics and Planetary Physics, 52(4): 450-458 (in Chinese). doi: 10.19975/j.dqyxx.2021-014
    [13] Liu L B, Ding Z H, Le H J, et al. 2020a. New features of the enhancements in electron density at low latitudes[J]. Journal of Geophysical Research: Space Physics, 125: e2019JA027539. doi. org/10.1029/2019JA027539.
    [14] Liu L B, Ding Z H, Zhang R L, et al. 2020b. A case study of the enhancements in ionospheric electron density and its longitudinal gradient at Chinese low latitudes[J]. Journal of Geophysical Research: Space Physics, 124: e2019JA027751. doi. org/ 10.1029/2019JA027751.
    [15] Markkanen J, Lehtinen M, M. Landgraf. 2005. Real-time space debris monitoring with EISCAT[J].Advances in space research, 35(7), 1197-1209.
    [16] Otsuka Y, Kawamura S, Balan N, et al. 1998. Plasma temperature variations in the ionosphere over the middle and upper atmosphere radar[J]. Journal of Geophysical Research: Space Physics, 103(A9): 20705-20713. doi: 10.1029/98JA01748
    [17] Sato T, Ikeda K, Kimura I, et al. 1994. Shape of space debris estimated from radar cross section variation[J]. Journal of spacecraft and rocket, 31(4): 665-670. doi: 10.2514/3.26493
    [18] Stacy N J, Campbell D B, Ford P G. 1997. Arecibo radar mapping of the Lunar poles: A search for ice deposits[J]. Science, 276: 1527-1531. doi: 10.1126/science.276.5318.1527
    [19] Vierinen J, Lehtinen M. 2009. 32-cm wavelength radar mapping of the Moon[C]//The 2009 European Radar Conference, Rome, Italy, IEEE, 1-4.
    [20] Wannberg G, Wolf I, Vanhainen L G, et al. 1997. The EISCAT Svalbard radar: A case study in modern incoherent scatter radar system design[J]. Radio Science, 32(6): 2283-2307. doi: 10.1029/97RS01803
    [21] 杨嵩, 丁宗华, 许正文, 等. 2018. 曲靖上空空间碎片姿态、分布和散射特性的统计分析[J]. 电波科学学报, 33(6): 648-654 doi: 10.13443/j.cjors.2017112301

    Yang S, Ding Z H, Xu Z W, et al. 2018. Statistical analysis of space debris by incoherent scatter radar in Qujing[J]. Chinese Journal of Radio Science, 33(6): 648-654 (in Chinese). doi: 10.13443/j.cjors.2017112301
    [22] 杨嵩, 丁宗华, 苗建苏, 等. 2022. 曲靖非相干散射雷达月球探测初步结果[J]. 雷达科学与技术, 20(1): 15-22 doi: 10.3969/j.issn.1672-2337.2022.01.003

    Yang S, Ding Z H, Miao J S, et al. 2022. Preliminary lunar observation by Qujing incoherent scatter radar[J]. Radar Science and Technology, 20(1): 15-22 (in Chinese). doi: 10.3969/j.issn.1672-2337.2022.01.003
  • 加载中
图(10)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  131
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-22
  • 修回日期:  2023-02-06
  • 录用日期:  2023-02-17
  • 网络出版日期:  2023-03-07
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回