[1]
|
Campbell B A, Campbell D B, Margot J L, et al. 2007. Focused 70-cm wavelength radar mapping of the Moon[J]. IEEE Transactions on Geoscience and Remote Sensing, 45(12): 4032-4042. doi: 10.1109/TGRS.2007.906582
|
[2]
|
代连东, 丁宗华, 赵振维, 等. 2015. 非相干散射雷达的空间碎片参数统计分析[J]. 空间科学学报, 35(4): 495-501 doi: 10.11728/cjss2015.04.495Dai L D, Ding Z H, Zhao Z W, et al. 2015. The statistical analysis of space debris's parameters based on the incoherent sScattering radar[J]. Chinese Journal of Space Science, 35(4): 495-501(in Chinese). doi: 10.11728/cjss2015.04.495
|
[3]
|
丁宗华, 代连东, 董明玉, 等. 2014a. 非相干散射雷达进展: 从传统体制到EISCAT_3D[J]. 地球物理学进展, 29(5): 2376-2381Ding Z H, Dai L D, Dong M Y, et al. 2014a. Progress of the incoherent scattering radar: From the traditional radar to the latest EISCAT 3D[J]. Progress in Geophysics, 29(5): 2376-2381(in Chinese).
|
[4]
|
丁宗华, 鱼浪, 代连东, 等. 2014b. 曲靖非相干散射雷达功率剖面的初步观测与分析[J]. 地球物理学报, 57(11): 3564-3569Ding Z H, Yu L, Dai L, et al. 2014b. The preliminary measurement and analysis of the power profiles by the Qujing incoherent scatter radar[J]. Chinese Journal of Geophysics, 57: 3564-3569(in Chinese).
|
[5]
|
丁宗华, 代连东, 许正文, 等. 2017. 基于空间监视雷达散射回波的电离层电子密度探测方法[J]. 装备环境工程, 14(7): 24-28Ding Z H, Dai L D, Xu Z W, et al. 2017. The ionospheric electron density measurement based on the scattered echo from the space surveillance radar[J]. Equipment Environmental Engineering, 14(7): 24-28(in Chinese).
|
[6]
|
Ding Z H, Wu J, Xu B, et al. 2018. The Qujing incoherent scatter radar: System description and preliminary measurements[J]. Earth, Planets and Space, 70: 87. DOI: 10.1186/s40623-018-0859-8.
|
[7]
|
丁宗华, 杨嵩, 江海, 等. 2018. 曲靖非相干散射雷达的空间碎片数据分析[J]. 空间碎片研究, 18(1): 12-19Ding Z H, Yang S, Jiang H, et al. 2018. The data analysis of the space debris observation by the Qujing incoherent scatter radar[J]. Space Debris Research, 18(1): 12-19 (in Chinese).
|
[8]
|
丁宗华, 代连东, 杨嵩, 等. 2020. 曲靖非相干散射雷达电离层F区日间电子温度变化特征初步分析[J]. 地球物理学报, 63(4): 1282-1293 doi: 10.6038/cjg2020N0191Ding Z H, Dai L D, Yang S, et al. 2020. Preliminary analysis of the ionospheric electron temperature variations of F layer in daytime using the Qujing incoherent scatter radar measurements[J]. Chinese Journal of Geophysics, 63(4): 1282-1293 (in Chinese). doi: 10.6038/cjg2020N0191
|
[9]
|
丁宗华, 代连东, 杨嵩, 等. 2022. 曲靖非相干散射雷达电离层E-F谷区电子密度日间变化特征初步分析[J]. 电波科学学报, 37(3): 357-363Ding Z H, Dai L D, Yang S, et al. 2022. Preliminary analysis of daytime electron density in the ionospheric E-F valley based on the Qujing incoherent scatter radar observations[J]. Chinese Journal of Radio Science, 37(3): 357-363 (in Chinese).
|
[10]
|
Evans J V. 1969. Theory and practice of ionosphere study by Thomson scatter radar[J]. Proceedings of the IEEE, 57(4): 494-530.
|
[11]
|
Gordon W E. 1958. Incoherent scatter of radio waves by free electrons with applications to space exploration by radar[J]. Proceedings of the Institute of Radio Engineers, 46(11): 1824-1829.
|
[12]
|
李鸣远, 王永辉, 尹翰林, 等. 2021. 基于三亚非相干散射雷达的月球正面南北半球拼接成像研究[J]. 地球与行星物理论评, 52(4): 450-458 doi: 10.19975/j.dqyxx.2021-014Li M Y, Wang Y H, Yin H L, et al. 2021. A mosaic imaging study of the northern and southern hemispheres of the nearside of the Moon based on the Sanya incoherent scatter radar[J]. Reviews of Geophysics and Planetary Physics, 52(4): 450-458 (in Chinese). doi: 10.19975/j.dqyxx.2021-014
|
[13]
|
Liu L B, Ding Z H, Le H J, et al. 2020a. New features of the enhancements in electron density at low latitudes[J]. Journal of Geophysical Research: Space Physics, 125: e2019JA027539. doi. org/10.1029/2019JA027539.
|
[14]
|
Liu L B, Ding Z H, Zhang R L, et al. 2020b. A case study of the enhancements in ionospheric electron density and its longitudinal gradient at Chinese low latitudes[J]. Journal of Geophysical Research: Space Physics, 124: e2019JA027751. doi. org/ 10.1029/2019JA027751.
|
[15]
|
Markkanen J, Lehtinen M, M. Landgraf. 2005. Real-time space debris monitoring with EISCAT[J].Advances in space research, 35(7), 1197-1209.
|
[16]
|
Otsuka Y, Kawamura S, Balan N, et al. 1998. Plasma temperature variations in the ionosphere over the middle and upper atmosphere radar[J]. Journal of Geophysical Research: Space Physics, 103(A9): 20705-20713. doi: 10.1029/98JA01748
|
[17]
|
Sato T, Ikeda K, Kimura I, et al. 1994. Shape of space debris estimated from radar cross section variation[J]. Journal of spacecraft and rocket, 31(4): 665-670. doi: 10.2514/3.26493
|
[18]
|
Stacy N J, Campbell D B, Ford P G. 1997. Arecibo radar mapping of the Lunar poles: A search for ice deposits[J]. Science, 276: 1527-1531. doi: 10.1126/science.276.5318.1527
|
[19]
|
Vierinen J, Lehtinen M. 2009. 32-cm wavelength radar mapping of the Moon[C]//The 2009 European Radar Conference, Rome, Italy, IEEE, 1-4.
|
[20]
|
Wannberg G, Wolf I, Vanhainen L G, et al. 1997. The EISCAT Svalbard radar: A case study in modern incoherent scatter radar system design[J]. Radio Science, 32(6): 2283-2307. doi: 10.1029/97RS01803
|
[21]
|
杨嵩, 丁宗华, 许正文, 等. 2018. 曲靖上空空间碎片姿态、分布和散射特性的统计分析[J]. 电波科学学报, 33(6): 648-654 doi: 10.13443/j.cjors.2017112301Yang S, Ding Z H, Xu Z W, et al. 2018. Statistical analysis of space debris by incoherent scatter radar in Qujing[J]. Chinese Journal of Radio Science, 33(6): 648-654 (in Chinese). doi: 10.13443/j.cjors.2017112301
|
[22]
|
杨嵩, 丁宗华, 苗建苏, 等. 2022. 曲靖非相干散射雷达月球探测初步结果[J]. 雷达科学与技术, 20(1): 15-22 doi: 10.3969/j.issn.1672-2337.2022.01.003Yang S, Ding Z H, Miao J S, et al. 2022. Preliminary lunar observation by Qujing incoherent scatter radar[J]. Radar Science and Technology, 20(1): 15-22 (in Chinese). doi: 10.3969/j.issn.1672-2337.2022.01.003
|