Review of Bayesian finite-fault source model inversion
-
摘要: 精确的有限断层破裂分布模型对于研究震源物理机制、评估地震灾害等具有重要意义. 目前,有限断层反演通常采用线性最小二乘方法,但该方法存在一定局限性:(1) 不易评估完全的参数空间,因而不利于评估非高斯分布的参数不确定性;(2)为了提高反演稳定性,在反演中通常施加断层滑移平滑约束(正则化),但平滑强度的确定具有一定主观性;(3)断层几何设置不同使得反演结果不尽相同;(4)难以顾及地球速度模型不确定等. 与之对应,通过确定参数概率密度分布,贝叶斯反演提供了所有参数总体最优解,同时刻画不同参数之间协方差大小,可以有效克服上述问题. 特别是过去十余年间,随着计算机算力飞速提升,贝叶斯反演得到了越来越多应用. 通过阐释贝叶斯有限断层反演理论与技术,本文试图梳理近年来贝叶斯有限断层反演成果,最后展望贝叶斯有限断层反演发展趋势.Abstract: A finite-fault earthquake slip model can characterize the kinematics of rupture, which is essential for earthquake mechanism studies and seismic hazard assessments. The finite-fault model of an earthquake can be inverted from a wide range of geodetic measurements and seismic recordings. The linear least squares method minimizes misfits between observations and forward modeling and is a common approach in finite-fault inversion problems. This method may not yield the most plausible finite-fault model and has four main limitations. First, total parameter spaces are challenging to explore, and non-Gaussian parameter uncertainties cannot be evaluated. Second, to improve the stability of the fault slip inversion, fault slip smoothing operators (regularization techniques) are usually applied; however, determining the strength of smoothing a fault slip distribution is subjective. Third, the fault geometry needs to be predetermined, and different fault geometry settings can result in varying inversion results. Fourth, it is difficult to account for uncertainties in forward modeling because of imprecise Earth velocity models. In contrast, Bayesian inversion determines the probability density distribution of the model parameters, providing a globally optimized solution to all model parameters and characterizing trade-offs between pairs of model parameters. Therefore, the Bayesian approach effectively overcomes the problems encountered in linear inversion. With the rapid improvement in computer technology, Bayesian inversion has become highly developed, especially in the past decade. This review reports the results of recent Bayesian finite-fault inversion studies and explains the theory and methodology of Bayesian finite-fault inversion.
-
图 2 基于贝叶斯推断的2011年东日本大地震破裂分布. 背景颜色表示滑移值大小,黑色箭头表示滑移方向. 等值线表示地震破裂前端,间隔为10 s(修改自Minson et al., 2014)
Figure 2. The 2011 Tohoku-oki Japan earthquake rupture distribution based on Bayesian inference. The background color represents the size of the slip value, and the black arrows indicate the direction of the slip. The contour lines represent the front end of the earthquake rupture, with a spacing of 10 s (modified from Minson et al., 2014)
图 3 在三维弹性结构下,不考虑或考虑弹性结构不确定性的滑移反演结果对比. (a)目标滑移模型. 当真实地壳结构具有沿走向划分的不均匀分布时,(b)和(c)分别显示了不考虑和考虑弹性结构不确定性的滑移分布估计值和相应的标准差. 当真实地壳结构具有沿与走向垂直划分的不均匀分布时,(d)和(e)分别显示了不考虑和考虑弹性结构不确定性的滑移分布估计值和相应的标准差. 真实地壳结构和假定地壳结构的示意图采用颜色编码,颜色越浅表示介质越接近(修改自Ragon and Simons, 2021)
Figure 3. Comparison of the inversion results for the slip without or with considering the uncertainty of the elastic structure under the three-dimensional elastic structure. (a) The target slip model. When the true crustal structure has a heterogenous distribution along the strike direction, (b) and (c) show the estimated slip distribution and corresponding standard deviation, respectively, without and with considering the uncertainty in the elastic structure. When the true crustal structure has a heterogenous distribution perpendicular to the strike direction, (d) and (e) show the estimated slip distribution and corresponding standard deviation, respectively, without and with considering the uncertainty in the elastic structure. The illustrations of the true and assumed crustal structures are coded by grayscale, with the light gray indicating the compliant earth medium (modified from Ragon and Simons, 2021)
图 4 基于贝叶斯推断的断层几何和滑移分布同步反演. (a)由(b )所示的断层滑移分布正演合成的50个三分量位移测站分布,三角形测站和正方形测站分别具有1 cm 和 2 cm的噪声水平;(c)基于图(a)中合成的观测值,采用贝叶斯反演获得的断层几何和滑移分布;(d)在图(c)中4个截面A、B、C和D处,贝叶斯推断的断层倾斜估计值(红色)与输入参考值(蓝色) 的对比(修改自Wei et al., 2023)
Figure 4. The simultaneous inversion of fault geometry and slip distribution based on Bayesian inference. (a) The distribution of 50 three-component displacement stations synthesized from the forward-modeled fault slip distribution is shown in (b), with triangle stations and square stations having noise levels of 1 cm and 2 cm, respectively; (c) the fault geometry and slip distribution obtained using Bayesian inversion from the observation values synthesized in (a); and (d) the comparison of Bayesian inferred fault dip estimates (red) with input reference values (blue) at four planes, A, B, C and D, in (c) (modified from Wei et al., 2023)
-
[1] Agata R, Ichimura T, Hori T, et al. 2018. An adjoint-based simultaneous estimation method of the asthenosphere's viscosity and afterslip using a fast and scalable finite-element adjoint solver[J]. Geophysical Journal International, 213(1): 461-474. doi: 10.1093/gji/ggx561 [2] Agata R, Kasahara A, Yagi Y. 2021. A Bayesian inference framework for fault slip distributions based on ensemble modelling of the uncertainty of underground structure: With a focus on uncertain fault dip[J]. Geophysical Journal International, 225(2): 1392-1411. doi: 10.1093/gji/ggab033 [3] Agata R, Nakata R, Kasahara A, et al. 2022. Bayesian multi-model estimation of fault slip distribution for slow slip events in southwest Japan: Effects of prior constraints and uncertain underground structure[J]. Journal of Geophysical Research: Solid Earth, 127(8): e2021JB023712. [4] Amey R M J, Hooper A, Walters R J. 2018. A Bayesian method for incorporating self-similarity into earthquake slip inversions[J]. Journal of Geophysical Research: Solid Earth, 123(7): 6052-6071. doi: 10.1029/2017JB015316 [5] Bagnardi M, Hooper A. 2018. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach[J]. Geochemistry, Geophysics, Geosystems, 19(7): 2194-2211. [6] Barbot S, Agram P, De Michele M. 2013. Change of apparent segmentation of the San Andreas fault around Parkfield from space geodetic observations across multiple periods[J]. Journal of Geophysical Research: Solid Earth, 118(12): 6311-6327. doi: 10.1002/2013JB010442 [7] Barnhart W D, Lohman R B. 2010. Automated fault model discretization for inversions for coseismic slip distributions[J]. Journal of Geophysical Research, 115(B10): B10419. doi: 10.1029/2010JB007545 [8] Beck J L, Zuev K M. 2013. Asymptotically independent Markov sampling: A new MCMC scheme for Bayesian inference[J]. International Journal for Uncertainty Quantification, 3(5): 445-474. doi: 10.1615/Int.J.UncertaintyQuantification.2012004713 [9] Belabbès S, Wicks C, Çakir Z, Meghraoui M. 2009. Rupture parameters of the 2003 Zemmouri (MW6.8), Algeria, earthquake from joint inversion of interferometric synthetic aperture radar, coastal uplift, and GPS[J]. Journal of Geophysical Research, 114(B3): B03406. [10] Benavente R, Dettmer J, Cummins P R, Sambridge M. 2019. Efficient Bayesian uncertainty estimation in linear finite fault inversion with positivity constraints by employing a log-normal prior[J]. Geophysical Journal International, 217(1): 469-484. doi: 10.1093/gji/ggz044 [11] Bletery Q, Cavalié O, Nocquet J-M, Ragon T. 2020. Distribution of interseismic coupling along the north and east Anatolian faults inferred from InSAR and GPS data[J]. Geophysical Research Letters, 47: e2020GL087775. [12] Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D. 2015. Weight uncertainty in ueural uetwork[C]//The 32nd International Conference on Machine Learning, Proceedings of Machine Learning Research. [13] Brooks B A, Minson S E, Glennie C L, et al. 2017. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy[J]. Science Advances, 3(7): e1700525. doi: 10.1126/sciadv.1700525 [14] Chen K, Avouac J P, Aati S, et al. 2020. Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the eastern California shear zone[J]. Nature Communications, 11(1): 22. doi: 10.1038/s41467-019-13750-w [15] Chen K, Avouac J P, Geng J, et al. 2022. The 2021 MW7.4 Madoi earthquake: An archetype bilateral slip-pulse rupture arrested at a splay fault[J]. Geophysical Research Letters, 49(2): e2021GL095243. [16] Cochran E S, Li Y-G, Shearer P M, et al. 2009. Seismic and geodetic evidence for extensive, long-lived fault damage zones[J]. Geology, 37(4): 315-318. doi: 10.1130/G25306A.1 [17] Cruz-Atienza V M, Tago J, Villafuerte C, et al. 2021. Short-term interaction between silent and devastating earthquakes in Mexico[J]. Nature Communications, 12(1): 2171. doi: 10.1038/s41467-021-22326-6 [18] Dal Zilio L, Jolivet R, Dinther Y. 2020. Segmentation of the main Himalayan thrust illuminated by Bayesian inference of interseismic coupling[J]. Geophysical Research Letters, 47(4): e2019GL086424. [19] Dor O, Ben-Zion Y, Rockwell T K, Brune J. 2006. Pulverized rocks in the Mojave section of the San Andreas fault zone[J]. Earth and Planetary Science Letters, 245(3-4): 642-654. doi: 10.1016/j.jpgl.2006.03.034 [20] Duputel Z, Agram P S, Simons M, et al. 2014. Accounting for prediction uncertainty when inferring subsurface fault slip[J]. Geophysical Journal International, 197(1): 464-482. doi: 10.1093/gji/ggt517 [21] Dutta R, Jónsson S, Vasyura-Bathke H. 2021. Simultaneous Bayesian estimation of Non-Planar fault geometry and Spatially-Variable slip[J]. Journal of Geophysical Research: Solid Earth, 126(7): e2020JB020441. [22] Feigl K L, Sarti F, Vadon H, et al. 2002. Estimating slip distribution for the Izmit mainshock from coseismic GPS, ERS-1, RADARSAT, and SPOT measurements[J]. Bulletin of the Seismological Society of America, 92(1): 138-160. doi: 10.1785/0120000830 [23] Feng G, Hetland E A, Ding X, et al. 2010. Coseismic fault slip of the 2008 MW7.9 Wenchuan earthquake estimated from InSAR and GPS measurements[J]. Geophysical Research Letters, 37(1): L01302. [24] Fialko Y, Simons M, Agnew D. 2001. The complete (3-D) surface displacement field in the epicentral area of the 1999 MW7.1 Hector mine earthquake, California, from space geodetic observations[J]. Geophysical Research Letters, 28(16): 3063-3066. doi: 10.1029/2001GL013174 [25] Fuis G S, Bauer K, Goldman M R, et al. 2017. Subsurface geometry of the San Andreas fault in southern California: Results from the salton seismic imaging project (SSIP) and strong ground motion expectations[J]. Bulletin of the Seismological Society of America, 107(4): 1642-1662. [26] Fukahata Y, Nishitani A, Matsu'ura M. 2004. Geodetic data inversion using ABIC to estimate slip history during one earthquake cycle with viscoelastic slip-response functions[J]. Geophysical Journal International, 156(1): 140-153. doi: 10.1111/j.1365-246X.2004.02122.x [27] Fukahata Y, Wright T J. 2008. A non-linear geodetic data inversion using ABIC for slip distribution on a fault with an unknown dip angle[J]. Geophysical Journal International, 173(2): 353-364. doi: 10.1111/j.1365-246X.2007.03713.x [28] Fukuda J, Johnson K M. 2008. A fully Bayesian inversion for spatial distribution of fault slip with objective smoothing[J]. Bulletin of the Seismological Society of America, 98(3): 1128-1146. doi: 10.1785/0120070194 [29] Fukuda J, Johnson K M. 2010. Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters[J]. Geophysical Journal International, 181(3): 1441-1458. [30] Gallovič F, Valentová Ľ, Ampuero J P, Gabriel A A. 2019. Bayesian dynamic finite-fault inversion: 1. Method and synthetic test[J]. Journal of Geophysical Research: Solid Earth, 124: 6949–6969. doi: 10.1029/2019JB017510 [31] Gallovič F, Zahradník J, Plicka V, et al. 2020. Complex rupture dynamics on an immature fault during the 2020 MW 6.8 Elazığ earthquake, Turkey[J]. Communications Earth and Environment, 1(1): 40. doi: 10.1038/s43247-020-00038-x [32] Giba M, Walsh J J, Nicol A. 2012. Segmentation and growth of an obliquely reactivated normal fault[J]. Journal of Structural Geology, 39: 253-267. doi: 10.1016/j.jsg.2012.01.004 [33] Hanks T C, Kanamori H. 1979. A moment magnitude scale[J]. Journal of Geophysical Research, 84(B5): 2348-2350. doi: 10.1029/JB084iB05p02348 [34] Hartzell S, Liu P, Mendoza C, et al. 2007. Stability and uncertainty of finite-fault slip inversions: Application to the 2004 Parkfield, California, earthquake[J]. Bulletin of the Seismological Society of America, 97(6): 1911-1934. doi: 10.1785/0120070080 [35] He L, Feng G, Wu X, et al. 2021. Coseismic and early postseismic slip models of the 2021 MW 7.4 Maduo earthquake (Western China) estimated by space-based geodetic data[J]. Geophysical Research Letters, 48(24): e2021GL095860. [36] Heimann S, Vasyura-Bathke H, Sudhaus H, et al. 2019. A Python framework for efficient use of pre-computed Green's functions in seismological and other physical forward and inverse source problems[J]. Solid Earth, 10(6): 1921-1935. doi: 10.5194/se-10-1921-2019 [37] Herman M W, Govers R. 2020. Locating fully locked asperities along the south America subduction megathrust: A new physical interseismic inversion approach in a Bayesian framework[J]. Geochemistry, Geophysics, Geosystems, 21: e2020GC009063. [38] Huang M H, Fielding E J, Dickinson H, et al. 2017. Fault geometry inversion and slip distribution of the 2010 MW7.2 El Mayor-Cucapah earthquake from geodetic data[J]. Journal of Geophysical Research: Solid Earth, 122(1): 607-621. [39] Jian H, Gong W, Li Y, Wang L. 2022. Bayesian inference of fault slip and coupling along the Tuosuo Lake segment of the Kunlun fault, China[J]. Geophysical Research Letters, 49: e2021GL096882. [40] Jiang G, Xu C, Wen Y, et al. 2013. Inversion for coseismic slip distribution of the 2010 MW 6.9 Yushu earthquake from InSAR data using angular dislocations[J]. Geophysical Journal International, 194(2): 1011-1022. doi: 10.1093/gji/ggt141 [41] Jiang G, Xu X, Chen G, et al. 2015. Geodetic imaging of potential seismogenic asperities on the Xianshuihe-Anninghe-Zemuhe fault system, southwest China, with a new 3-D viscoelastic interseismic coupling model[J]. Journal of Geophysical Research: Solid Earth, 120(3): 1855-1873. doi: 10.1002/2014JB011492 [42] Jin Z, Fialko Y. 2021. Coseismic and early postseismic deformation due to the 2021 M7.4 Maduo (China) earthquake[J]. Geophysical Research Letters, 48(21): e2021GL095213. [43] Johnson K M, Fukuda J. 2010. New methods for estimating the spatial distribution of locked asperities and stress-driven interseismic creep on faults with application to the San Francisco bay area, California[J]. Journal of Geophysical Research, 115: B12408. doi: 10.1029/2010JB007703 [44] Jolivet R, Lasserre C, Doin M P, et al. 2012. Shallow creep on the Haiyuan fault (Gansu, China) revealed by SAR interferometry[J]. Journal of Geophysical Research: Solid Earth, 117(B6): B06401. [45] Kaneko Y, Fialko Y. 2011. Shallow slip deficit due to large strike-slip earthquakes in dynamic rupture simulations with elasto-plastic off-fault response[J]. Geophysical Journal International, 186(3): 1389-1403. doi: 10.1111/j.1365-246X.2011.05117.x [46] Klinger Y. 2010. Relation between continental strike-slip earthquake segmentation and thickness of the crust[J]. Journal of Geophysical Research, 115(B7): B07306. [47] Kuang W, Yuan C, Zhang J. 2021. Real-time determination of earthquake focal mechanism via deep learning[J]. Nature Communications, 12(1): 1432. doi: 10.1038/s41467-021-21670-x [48] Li Y-G, Vidale J E, Cochran E S. 2004. Low-velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves[J]. Geophysical Research Letters, 31(12): L12S06. [49] 李志伟, 许文斌, 胡俊, 等. 2022. InSAR 部 分 地 学 参 数 反 演[J]. 测绘学报, 51(7): 1458-1475Li Z W, Xu W B, Hu J, et al. 2022. Partial geoscience parameters inversion from InSAR observation[J]. Acta Geodaetica et Cartographica Sinica, 51(7): 1458-1475 (in Chinese). [50] Luo H, Wang T. 2022. Strain partitioning on the western Haiyuan fault system revealed by the adjacent 2016 MW5.9 and 2022 MW6.7 Menyuan earthquakes[J]. Geophysical Research Letters, 49(16): e2022GL099348. [51] Lyu M, Chen K, Xue C, et al. 2022. Overall subshear but locally supershear rupture of the 2021 MW 7.4 Maduo earthquake from high-rate GNSS waveforms and three-dimensional InSAR deformation[J]. Tectonophysics, 839: 229542. doi: 10.1016/j.tecto.2022.229542 [52] Maerten F, Resor P, Pollard D, Maerten L. 2005. Inverting for slip on three-dimensional fault surfaces using angular dislocations[J]. Bulletin of the Seismological Society of America, 95(5): 1654-1665. doi: 10.1785/0120030181 [53] Mai P M, Beroza G C. 2002. A spatial random field model to characterize complexity in earthquake slip[J]. Journal of Geophysical Research, 107(B11): 2308. [54] Marchandon M, Hollingsworth J, Radiguet M. 2021. Origin of the shallow slip deficit on a strike slip fault: Influence of elastic structure, topography, data coverage, and noise[J]. Earth and Planetary Science Letters, 554: 116696. doi: 10.1016/j.jpgl.2020.116696 [55] Melgar D, Fan W, Riquelme S, et al. 2016. Slip segmentation and slow rupture to the trench during the 2015, MW 8.3 Illapel, Chile earthquake[J]. Geophysical Research Letters, 43(3): 961-966. doi: 10.1002/2015GL067369 [56] Minson S E, Simons M, Beck J L. 2013. Bayesian inversion for finite fault earthquake source models I—Theory and algorithm[J]. Geophysical Journal International, 194(3): 1701-1726. doi: 10.1093/gji/ggt180 [57] Minson S E, Simons M, Beck J L, et al. 2014. Bayesian inversion for finite fault earthquake source models – II: The 2011 great Tohoku-oki, Japan earthquake[J]. Geophysical Journal International, 198(2): 922-940. doi: 10.1093/gji/ggu170 [58] Moral P D, Doucet A, Jasra A. 2006. Sequential Monte Carlo samplers[J]. Journal of the Royal Statistical Society. Series B, 68(3): 411-436. [59] Moreno M S, Bolte J, Klotz J, Melnick D. 2009. Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake[J]. Geophysical Research Letters, 36(16): L16310. doi: 10.1029/2009GL039276 [60] Murray J R, Minson S E, Svarc J L. 2014. Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data[J]. Journal of Geophysical Research: Solid Earth, 119: 6023–6047. doi: 10.1002/2014JB010966 [61] Perrin C, Manighetti I, Ampuero J-P, et al. 2016. Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth[J]. Journal of Geophysical Research: Solid Earth, 121(5): 3666-3685. doi: 10.1002/2015JB012671 [62] Ragon T, Sladen A, Simons M. 2018. Accounting for uncertain fault geometry in earthquake source inversions – I: Theory and simplified application[J]. Geophysical Journal International, 214(2): 1174-1190. doi: 10.1093/gji/ggy187 [63] Ragon T, Simons M. 2021. Accounting for uncertain 3-D elastic structure in fault slip estimates[J]. Geophysical Journal International, 224(2): 1404-1421. [64] Ragon T, Simons M, Bletery Q, et al. 2021. A stochastic view of the 2020 Elazığ MW 6.8 earthquake (Turkey)[J]. Geophysical Research Letters, 48(3): e2020GL090704. [65] Reilinger R E, Ergintav S, Bürgmann R, et al. 2000. Coseismic and postseismic fault slip for the 17 August 1999, M = 7.5, Izmit, Turkey earthquake[J]. Science, 289(5484): 1519-1524. doi: 10.1126/science.289.5484.1519 [66] Resor P G, Pollard D D, Wright T J, Beroza G C. 2005. Integrating high-precision aftershock locations and geodetic observations to model coseismic deformation associated with the 1995 Kozani-Grevena earthquake, Greece[J]. Journal of Geophysical Research: Solid Earth, 110(B9): B09402. [67] Rijsingen E M, Calais E, Jolivet R, et al. 2021. Inferring interseismic coupling along the Lesser Antilles Arc: A Bayesian approach[J]. Journal of Geophysical Research: Solid Earth, 126: e2020JB020677. [68] Rousset B, Fu Y, Bartlow N, Bürgmann R. 2019. Weeks-long and years-long slow slip and tectonic tremor episodes on the south Central Alaska megathrust[J]. Journal of Geophysical Research: Solid Earth, 124(12): 13392-13403. doi: 10.1029/2019JB018724 [69] Smith J D, Ross Z E, Azizzadenesheli K, Muir J B. 2022. HypoSVI: Hypocentre inversion with Stein variational inference and physics informed neural networks[J]. Geophysical Journal International, 228(1): 698-710. [70] 孙凯, 孟国杰, 洪顺英, 等. 2021. 联 合 InSAR 和 GPS 研 究 鲜 水 河 断 裂 带 炉 霍 — 道 孚 段 震间运动特征[J]. 地 球 物 理 学 报, 64: 2278-2296Sun K, Meng G J, Hong S Y, et al. 2021. Interseismic movement along the Luhuo-Daofu section of the Xianshuihe Fault from InSAR and GPS observations[J]. Chinese Journal of Geophysics, 64: 2278-2296 (in Chinese). [71] Tomita F, Iinuma T, Agata R, Hori T. 2021. Development of a trans-dimensional fault slip inversion for geodetic data[J]. Journal of Geophysical Research: Solid Earth, 126(5): e2020JB020991. [72] Usman M, Furuya M. 2015. Complex faulting in the Quetta syntaxis: Fault source modeling of the October 28, 2008 earthquake sequence in Baluchistan, Pakistan, based on ALOS/PALSAR InSAR data[J]. Earth, Planets and Space, 67(1): 142. [73] Vasyura-Bathke H, Dettmer J, Steinberg A, et al. 2020. The Bayesian earthquake analysis tool[J]. Seismological Research Letters, 91(2A): 1003-1018. doi: 10.1785/0220190075 [74] Wan Y, Shen Z-K, Bürgmann R, et al. 2017. Fault geometry and slip distribution of the 2008 MW7.9 Wenchuan, China earthquake, inferred from GPS and InSAR measurements[J]. Geophysical Journal International, 208(2): 748-766. doi: 10.1093/gji/ggw421 [75] 王迪晋, 王东振, 赵斌, 等. 2022.2021年青海玛多 MW7.4地震 GNSS同震形变场及其断层滑动分布[J]. 地球物理学报, 65(2): 537-551Wang D J, Wang D Z, Zhao B, et al. 2022.2021 Qinghai Madoi MW 7.4 earthquake coseismic deformation field and fault-slip distribution using GNSS observations[J].Chinese Journal of Geophysics,65(2):537-551(in Chinese). [76] Wei G, Chen K, Meng H. 2023. Bayesian iInversion of finite-fault earthquake slip model using geodetic data, solving for non-planar fault geometry, variable slip, and data weighting[J]. Journal of Geophysical Research: Solid Earth, 128(2): e2022JB025225. [77] Wei M, Sandwell D, Fialko Y. 2009. A silent MW4.7 slip event of October 2006 on the Superstition Hills fault, southern California[J]. Journal of Geophysical Research, 114(B7): B07402. [78] Xu C, Liu Y, Wen Y, Wang R. 2010. Coseismic slip distribution of the 2008 MW7.9 Wenchuan earthquake from joint inversion of GPS and InSAR data[J]. Bulletin of the Seismological Society of America, 100(5B): 2736-2749. doi: 10.1785/0120090253 [79] 许才军, 王晓航, 温扬茂, 李伟. 2022. 地震大地测量确定凹凸体研究进展与展望[J]. 武汉大学学报(信息科学版), 47(10): 1701-1712Xu C J, Wang X H, Wen Y M, Li W. 2022. Progress and prospects of seismic geodetic determination of asperities[J]. Geomatics and Information Science of Wuhan University, 47(10): 1701-1712(in Chinese). [80] Xu W. 2017. Finite-fault slip model of the 2016 MW7.5 Chiloé earthquake, southern Chile, estimated from Sentinel-1 data[J]. Geophysical Research Letters, 44(10): 4774-4780. doi: 10.1002/2017GL073560 [81] Xu X, Tong X, Sandwell D T, et al. 2016. Refining the shallow slip deficit[J]. Geophysical Journal International, 204(3): 1843-1862. doi: 10.1093/gji/ggv563 [82] Yue H, Shen Z K, Zhao Z, et al. 2022. Rupture process of the 2021 M7.4 Maduo earthquake and implication for deformation mode of the Songpan-Ganzi terrane in Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 119(23): e2116445119. doi: 10.1073/pnas.2116445119 [83] Zhang X, Feng W, Du H, et al. 2022. Supershear rupture during the 2021 MW7.4 Maduo, China, earthquake[J]. Geophysical Research Letters, 49(6): e2022GL097984. [84] Zhang Y, Zhang G, Hetland E A, et al. 2018. Source fault and slip distribution of the 2017 MW 6.5 Jiuzhaigou, China, earthquake and its tectonic implications[J]. Seismological Research Letters, 89(4): 1345-1353. doi: 10.1785/0220170255 [85] Zhao X, Xu C, Zhou L, et al. 2022. A new method applied for the determination of relative weight ratios under the tensor flow platform when estimating coseismic slip distribution[J]. Journal of Geophysical Research: Solid Earth, 127(12): e2022JB024843. -