• ISSN 2097-1893
  • CN 10-1855/P

InSAR揭示的青藏高原近期正断型地震形变特征与指示意义

邱江涛 孙建宝

引用本文: 邱江涛,孙建宝. 2023. InSAR揭示的青藏高原近期正断型地震形变特征与指示意义. 地球与行星物理论评(中英文),54(0):1-12
Qiu J T, Sun J B. 2023. Characteristics of normal-fault earthquake deformation in the Qinghai-Tibet Plateau revealed by InSAR. Reviews of Geophysics and Planetary Physics, 54(0): 1-12 (in Chinese)

InSAR揭示的青藏高原近期正断型地震形变特征与指示意义

doi: 10.19975/j.dqyxx.2022-079
基金项目: 西藏拉萨地球物理国家野外科学观测研究站项目资助(NORSLS20-09)
详细信息
    作者简介:

    邱江涛(1988-),男,博士研究生,高级工程师,主要从事InSAR地震与地壳形变方面的研究. E-mail:jiangtao_q@sina.com

  • 中图分类号: P228, P315

Characteristics of normal-fault earthquake deformation in the Qinghai-Tibet Plateau revealed by InSAR

Funds: Supported by the Lhasa, Tibet Geophysical National Field Scientific Observation and Research Station Project (Grant No. NORSLS20-09)
  • 摘要: 正断层在青藏高原的隆升扩展演化中发挥了重要作用. 本文使用InSAR技术处理Sentinel-1 SAR影像数据获得了2020至2021年发生在青藏高原内部3次正断型地震的同震形变场. 基于Okada弹性位错模型和形变场信息反演了断层几何参数和断层面滑动分布,精确地确定了发震断层位置. 研究结果显示高原内部的这些正断型地震均以正断层活动方式为主,但还兼有一定的走滑运动;发震断层主要为倾角<60°的次级隐伏断层,且均为浅源地震,滑动分布主要集中在12 km以上. 结合地球物理资料,我们分析认为正断型地震广泛分布在青藏高原中部和南部弥散型地块内,不局限于半地堑构造相关地区,并且正断型地震的发生更依赖于伸展环境中的重力势能. 伴随正断层活动的走滑运动也反映了青藏高原内部物质向东运移的运动学和动力学特征.

     

  • 图  1  青藏高原及周边地区的地震活动与构造分布图. 地震数据(红色圆点)和3个正断型地震的震源机制解来自国家地震科学数据中心https://data.earthquake.cn/index.html,断层数据(灰色细线为断层迹线,蓝线是地块边界,浅蓝色为块体边界)来自地震活动断层探察数据中心 https://activefault-datacenter.cn

    Figure  1.  Seismic activity and tectonic distribution map of the Qinghai-Tibet Plateau and its surrounding areas

    图  2  定日地震震中附近地形与构造图

    Figure  2.  Topography and tectonic map near the epicenter of the Dingri earthquake

    图  3  定日地震InSAR形变场和模拟结果. 第一行为升轨A12的结果,第二行为降轨D121的结果. (a, e)分别为未解缠的原始干涉图;(b, f)分别为转为地表位移的同震形变图;(c, g)分别为模拟的形变场;(d, h)分别为观测值与模拟值的残差. 正值表示远离卫星的运动,负值表示靠近卫星的运动,红线表示模拟断层的地表迹线,灰线表示已知的断层迹线

    Figure  3.  Interferometric synthetic aperture radar (InSAR) coseismic deformation fields and fitting results of the Dingri earthquake in ascending and descending orbits

    图  4  定日地震断层滑动分布图

    Figure  4.  Fault-slip distribution of the Dingri earthquake

    图  5  比如地震震中附近地形与构造图

    Figure  5.  Topography and tectonic map near the epicenter of the Biru earthquake

    图  6  比如地震InSAR形变场和模拟结果. 第一行为升轨A143的结果,第二行为降轨D77的结果. (a, e)分别为未解缠的原始干涉图;(b, f)分别为转为地表位移的同震形变图;(c, g)分别为模拟的形变场;(d, h)分别为观测值与模拟值的残差. 正值表示远离卫星的运动,负值表示靠近卫星的运动,红线表示模拟断层的地表迹线,灰线表示已知的断层迹线

    Figure  6.  InSAR coseismic deformation fields and fitting results of the Biru earthquake in ascending and descending orbits

    图  7  比如地震同震滑动分布图

    Figure  7.  Fault-slip distribution of the Biru earthquake

    图  8  双湖地震震中附近地形与构造图

    Figure  8.  Topography and tectonic map near the epicenter of the Shuanghu earthquake

    图  9  双湖地震InSAR形变场和模拟结果. 第一行为升轨A114的结果,第二行为降轨D121的结果. (a, e)分别为未解缠的原始干涉图;(b, f)分别为转为地表位移的同震形变图;(c, g)分别为模拟的形变场;(d, h)分别为观测值与模拟值的残差. 正值表示远离卫星的运动,负值表示靠近卫星的运动,红线表示模拟断层的地表迹线,灰线表示已知的断层迹线

    Figure  9.  InSAR coseismic deformation fields and fitting results of the Shuanghu earthquake in ascending and descending orbits

    图  10  双湖地震同震滑动分布图

    Figure  10.  Fault-slip distribution of the Shuanghu earthquake

    表  1  2020年3月20日定日地震震源参数

    Table  1.   Focal parameters of the 2020-03-20 Dingri earthquake

    机构震级震源位置断层面解1断层面解2
    经度/(°)纬度/(°)深度/km走向/倾向/滑动角/(°)走向/倾向/滑动角/(°)
    CENS MS5.9 87.42 28.63 10 160/47/-97
    USGS MW5.5 87.308 28.590 10 180/ 42/ -77 343 /49/ -101
    GCMT MW5.7 87.42 28.51 12 184/ 47 /-77 345/45/-103
    IPGP MW5.6 87.321 28.601 7 207/ 59/-75 360/34/-114
    本文 MW5.1~5.3 87.40 28.68 3 319/44/-76
    下载: 导出CSV

    表  2  覆盖2020年3月20日定日地震的Sentinel-1影像信息

    Table  2.   Sentinel-1 image information covering the 2020-03-20 Dingri earthquake

    飞行方向轨道号主影像日期辅影像日期空间基线/m时间基线/天
    升轨122020-03-082020-03-20−19.2812
    降轨1212020-03-162020-03-2826.8612
    下载: 导出CSV

    表  3  2021年3月19日比如地震震源参数

    Table  3.   Focal parameters of the 2021-03-19 Biru earthquake

    机构震级震源位置断层面解1断层面解2
    经度/(°)纬度/(°)深度/km走向/倾向/滑动角/(°)走向/倾向/滑动角/(°)
    CENS MS6.1 92.74 31.94 10 12/42/-121
    USGS MW5.7 92.915 31.925 8 17/ 37/ -113 225 /56/ -74
    GCMT MW5.8 92.92 31.84 19.4 7/43/-103 232/ 56 /-61
    IPGP MW5.7 92.899 31.906 10 353/50/-144 238/ 63 /-47
    本文 MW5.6~5.7 92.88 31.95 6 229/54/-99
    下载: 导出CSV

    表  4  覆盖2021年3月19日比如地震的Sentinel-1影像信息

    Table  4.   Sentinel-1 image information covering the 2021-03-19 Biru earthquake

    飞行方向轨道号主影像日期辅影像日期空间基线/m时间基线/天
    升轨1432021-03-122021-03-24−24.5912
    降轨772021-03-072021-03-19−42.3712
    下载: 导出CSV

    表  5  2021年3月30日双湖地震震源参数

    Table  5.   Focal parameters of the 2021-03-30 Shuanghu earthquake

    机构震级震源位置断层面解1断层面解2
    经度/(°)纬度/(°)深度/km走向/倾向/滑动角/(°)走向/倾向/滑动角/(°)
    CENS MS5.8 87.68 34.38 10 203/39/-72
    USGS MW5.5 87.692 34.355 8 48/51/-48 173/55/-129
    GCMT MW5.7 87.70 34.32 16.7 34/42/-62 178/54/-113
    IPGP MW5.65 87.719 34.352 8 360/34/-114 207/59/-75
    本文 MW5.5~5.6 87.68 34.36 4 47/54/-56
    下载: 导出CSV

    表  6  覆盖2021年3月30日双湖地震的Sentinel-1影像信息

    Table  6.   Sentinel-1 image information covering the 2021-03-30 Shuanghu earthquake

    飞行方向轨道号主影像日期辅影像日期空间基线/m时间基线/天
    升轨1142021-03-222021-04-0313.1212
    降轨1212021-03-232021-04-04−21.3912
    下载: 导出CSV
  • [1] 陈立军. 2013. 青藏高原的地震构造与地震活动[J]. 地震研究, 36(1): 123-131

    Chen L J. 2013. Seismotectonic and seismic activity of Qinghai-Tibet Plateau[J]. Journal of Seismological Research, 36(1): 123-131 (in Chinese).
    [2] Doglioni C, Carminati E, Petricca P, et al. 2015. Normal fault earthquakes or graviquakes[J]. Scientific Reports, 5(1): 1-12. doi: 10.9734/JSRR/2015/14076
    [3] Elliott J R, Walters R J, England P C, et al. 2010. Extension on the Tibetan Plateau: Recent normal faulting measured by InSAR and body wave seismology[J]. Geophysical Journal International, 183(2): 503-535. doi: 10.1111/j.1365-246X.2010.04754.x
    [4] 冯万鹏, 许力生, 许忠淮, 等. 2009. 利用 InSAR 资料反演 2008 年西藏改则 MW6.4 和 MW5.9 地震的断层参数[J]. 地球物理学报, 52(4): 983-993 doi: 10.3969/j.issn.0001-5733.2009.04.015

    Feng W P, Xu L S, Xu Z H, et al. 2009. Source parameters of the 2008 Gêrzê MW6.4 and MW5.9 earthquakes from InSAR measurements[J]. Chinese Journal of Geophysics, 52(4): 983-993 (in Chinese) doi: 10.3969/j.issn.0001-5733.2009.04.015
    [5] 冯万鹏, 许力生, 李振洪. 2010.2008年10月当雄MW6.3级地震断层参数的InSAR反演及其构造意义[J]. 地球物理学报, 53(5): 1134-1142

    Feng W P, Xu L S, Li Z H. 2010. Fault parameters of the October 2008 Damxung MW6.3 earthquake from InSAR inversion and its tectonic implication[J]. Chinese Journal of Geophysics, 53(5): 1134-1142 (in Chinese).
    [6] Gao R, Chen C, Lu Z, et al. 2013. New constraints on crustal structure and Moho topography in central Tibet revealed by SinoProbe deep seismic reflection profiling[J]. Tectonophysics, 606: 160-170.
    [7] Goldstein R M, Werner C L. 1998. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 25(21): 4035-4038. doi: 10.1029/1998GL900033
    [8] 贺日政, 高锐. 2003. 西藏高原南北向裂谷研究意义[J]. 地球物理学进展, 18(1): 35-43

    He R Z, Gao R. 2003. Some significances of studying north-southern rift in Tibet Plateau[J]. Progress in Geophysics, 18(1): 35-43 (in Chinese).
    [9] He Z, Li Y, Li Y, et al. 2022. The surface process and seismogenic structure of the 2021 MS6.1 Biru, central Tibet earthquake[J]. Seismological Research Letters, 93 (4): 1976–1991. doi: 10.1785/0220210177.
    [10] 洪顺英, 董彦芳, 孟国杰, 等. 2018.2008 年 10 月西藏当雄 MW6.3 地震震后形变提取与余滑反演[J]. 地球物理学报, 61(12): 4827-4837

    Hong S Y, Dong Y F, Meng G J, et al. 2018. Postseismic deformation extraction and after slip inversion of the October 2008 Damxung MW6.3 earthquake[J]. Chinese Journal of Geophysics, 61(12): 4827-4837 (in Chinese).
    [11] 李承涛, 李琦, 谭凯, 等. 2021.2020 年西藏尼玛 MW6.3 地震 InSAR 同震形变特征与破裂滑动分布[J]. 地球物理学报, 64(7): 2297-2310 doi: 10.6038/cjg2021O0363

    Li C T, Li Q, Tan K, et al. 2021. Coseismic deformation characteristics of the 2020 Nima, Xizang MW6.3 earthquake from Sentinel-1A/B InSAR data and rupture slip distribution[J]. Chinese Journal of Geophysics, 64(7): 2297-2310 (in Chinese). doi: 10.6038/cjg2021O0363
    [12] 李海兵, 潘家伟, 孙知明, 等. 2021. 大陆构造变形与地震活动——以青藏高原为例[J]. 地质学报, 95(1): 194-213 doi: 10.19762/j.cnki.dizhixuebao.2021051

    Li H B, Pan J W, Sun Z M, et al. 2021. Continental tectonic deformation and seismic activity: A case study from the Tibetan Plateau[J]. Acta Geologica Sinica, 95(1): 194-213 (in Chinese). doi: 10.19762/j.cnki.dizhixuebao.2021051
    [13] Li K, Li Y, Tapponnier P, et al. 2021. Joint InSAR and field constraints on faulting during the MW 6.4, July 23, 2020, Nima/Rongma earthquake in central Tibet[J]. Journal of Geophysical Research: Solid Earth, 126(9): e2021JB022212.
    [14] 李永华, 田小波, 吴庆举, 等. 2006. 青藏高原 INDEPTH-Ⅲ 剖面地壳厚度与泊松比: 地质与地球物理含义[J]. 地球物理学报, 49(4): 1037-1044.

    Li Y H, Tian X B, Wu Q J, et al. 2006. The Poisson ratio and crustal structure of the central Qinghai-Xizang inferred from INDEPTH- Ⅲ teleseismic waveforms: Geological and geophysical implications[J]. Chinese Journal of Geophysics, 2006, 49(4): 1037-1044 (in Chinese).
    [15] Li Y L, Wang B S, He R Z, et al. 2018. Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the central Tibetan Plateau[J]. Earth and Planetary Physics, 2(5): 406-419.
    [16] Liu X, Xie L, Li Y, et al. 2022. Role of the Nyainrong microcontinent in seismogenic mechanism and stress partitioning: Insights from the 2021 Nagqu MW5.7 earthquake[J]. Remote Sensing, 14(15): 3834. doi: 10.3390/rs14153834
    [17] 刘洋, 许才军, 温扬茂, 等. 2020. 杂多 MW5.9 级地震断层滑动的 InSAR 反演及边界元分析[J]. 武汉大学学报(信息科学版), 45(11): 1678-1686

    Liu Y, Xu C, Wen Y, et al. 2020. InSAR inversion and boundary element analysis of the Zadoi MW5.9 earthquake fault slip[J].Geomatics and Information Science of Wuhan University,45(11):1678-1686 (in Chinese).
    [18] Massonnet D, Feigl K L. 1998. Radar interferometry and its application to changes in the Earth's surface[J]. Reviews of Geophysics, 36(4): 441-500. doi: 10.1029/97RG03139
    [19] Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75: 1135-1154. doi: 10.1785/BSSA0750041135
    [20] 潘桂棠, 王立全, 尹福光, 等. 2022. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质, 42(2): 151-175 .

    Pan G T, Wang L Q, Yin F G, et al. 2022. Researches on geological-tectonic evolution of Tibetan Plateau: A review, recent advances, and directions in the future[J]. Sedimentary Geology and Tethyan Geology, 42(2), 151-175 (in Chinese).
    [21] 邱江涛, 刘雷, 刘传金, 等. 2019.2008 年仲巴地震形变及其揭示的构造运动[J]. 地震地质, 41(2): 481-498 doi: 10.3969/j.issn.0253-4967.2019.02.014

    Qiu J T, Liu L, Liu C J, et al. 2019. The deformation of the 2008 Zhongba earthquake and the tectonic movement revealed[J]. Seismology and Egology, 41(2): 481-498 (in Chinese). doi: 10.3969/j.issn.0253-4967.2019.02.014
    [22] Sun J, Shen Z, Xu X, et al. 2008. Synthetic normal faulting of the 9 January 2008 Nima (Tibet) earthquake from conventional and along-track SAR interferometry[J]. Geophysical Research Letters, 35(22): 113-130.
    [23] Sun J, Johnson K M, Cao Z, et al. 2011. Mechanical constraints on inversion of coseismic geodetic data for fault slip and geometry: Example from InSAR observation of the 6 October 2008 MW 6.3 Dangxiong-Yangyi (Tibet) earthquake[J]. Journal of Geophysical Research: Solid Earth, 116(B1): B01406.
    [24] Taylor M, Yin A, Ryerson F J, et al. 2003. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 22(4): 1044.
    [25] Taylor M, Yin A. 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 5(3): 199-214. doi: 10.1130/GES00217.1
    [26] Wang C, Dai J, Zhao X, et al. 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review[J]. Tectonophysics, 621: 1-43. doi: 10.1016/j.tecto.2014.01.036
    [27] 王家庆, 张国宏, 单新建, 等. 2016.2008 年西藏改则地震多视角 InSAR 成果的三维形变解算及初步分析[J]. 地震地质, 38(4): 978-986 doi: 10.3969/j.issn.0253-4967.2016.04.014

    Wang J Q, Zhang G H, Shan X J, et al. 2016. Three-dimensional deformation of the 2008 Gaize earthquakes resolved from InSAR measurements by multiple view angles and its tectonic implications[J]. Seismology and Geology, 38(4): 978-986 (in Chinese ). doi: 10.3969/j.issn.0253-4967.2016.04.014
    [28] 王金烁, 刘传金. 2019. 利用InSAR技术研究2016年西藏定结MW5.3地震发震构造[J]. 大地测量与地球动力学, 39(12): 1228-1232

    Wang J S, Liu C J. 2019. Seismogenic structure of 2016 Dinggyê MW5.3 earthquake, Tibet, inferred from InSAR observations[J]. Journal of Geodesy and Geodynamics, 39(12): 1228-1232 (in Chinese ).
    [29] 王金烁, 赵宁远. 2020. 利用InSAR技术研究2018年西藏谢通门MW5.6地震发震构造[J]. 地震工程学报, 42(2): 384-390

    Wang J S, Zhao N Y. 2020. Seismogenic Structure of 2018 Xietongmen, Tibet MW5.6 earthquake inferred from InSAR data[J]. China Earthquake Engineering Journal, 42(2): 384-390 (in Chinese).
    [30] Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125: e2019JB018774.
    [31] Wang R, Diao F, Hoechner A. 2013. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]//EGU General Assembly Conference Abstracts. EGU2013-2411.
    [32] 王永哲, 陈石, 陈鲲. 2021. InSAR数据约束的2020年西藏定日MW5.7地震源模型及构造意义[J]. 地震, 41(1): 116-128

    Wang Y Z, Chen S, Chen K. 2021. Source model and tectonic implications of the 2020 Dingri MW5.7 earthquake constrained by InSAR data[J]. Earthquake, 41(1): 116-128 (in Chinese ).
    [33] Werner C, Wegmueller U, Strozzi T, et al. 2000. Gamma SAR and interferometric processing software[C]//Proceedings of the ers-envisat symposium, Gothenburg, Sweden, 1620: 1620.
    [34] 吴蔚, 刘启元, 贺日政, 等. 2017. 羌塘盆地中部地区地壳 S 波速度结构及构造意义[J]. 地球物理学报, 60(3): 941-952. doi: 10.6038/cjg20170309

    Wu W, Liu Q Y, He R Z, et al. 2017. Waveform inversion of S-wave velocity model in the central Qiangtang in north Tibet and its geological implications[J]. Chinese Journal of Geophysics, 60(3): 941-952 (in Chinese). doi: 10.6038/cjg20170309.
    [35] 吴中海, 赵希涛, 吴珍汉, 等. 2005. 西藏安多—错那湖地堑的第四纪地质、断裂活动及其运动学特征分析[J]. 第四纪研究, 25(4): 490-502 doi: 10.3321/j.issn:1001-7410.2005.04.013

    Wu Z H, Zhao X T, Wu Z H, et al. 2005. Active faults and their kinematic feature at the Amdo-Tsona graben, central Xizang[J]. Quaternary Sciences, 25(4): 490-502 (in Chinese). doi: 10.3321/j.issn:1001-7410.2005.04.013
    [36] 熊维, 谭凯, 刘刚, 等. 2015.2015年尼泊尔MW7.9地震对青藏高原活动断裂同震、震后应力影响[J]. 地球物理学报, 58(11): 4305-4316 doi: 10.6038/cjg20151135

    Xiong W, Tan K, Liu G, et al. 2015. Coseismic and postseismic Coulomb stress changes on surrounding major faults caused by the 2015 Nepal MW7.9 earthquake[J]. Chinese Journal of Geophysics. 58(11): 4305-4316 (in Chinese). doi: 10.6038/cjg20151135
    [37] 徐晶, 李海艳, 邵志刚, 等. 2016. 基于库仑应力变化分析2015年尼泊尔MS8.1地震对中国大陆的影响[J]. 地震, 36(1): 69-77

    Xu J, Li H Y, Shao Z G, et al. 2016. Effects of the 2015 Nepal MS8.1 earthquake on Mainland China based on Coulomb stress changes[J]. Earthquake, 36(1): 69-77 (in Chinese).
    [38] 徐心悦. 2019. 藏南申扎—定结断裂系卡达正断裂晚第四纪活动性及其环境效应[D]. 北京: 中国地震局地质研究所.

    Xu X Y. 2019. Late Quaternary activity and its environmental effects of the N-S trend Kharta fault in Xainza-Dinggye rift, southern Tibet[D]. Beijing: Institute of Geology, China Earthquake Administration (in Chinese).
    [39] 许志琴, 杨经绥, 侯增谦, 等. 2016. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 43(1): 1-42 doi: 10.3969/j.issn.1000-3657.2016.01.001

    Xu Z Q, Yang J S, Hou Z Q, et al. 2016. The progress in the study of continental dynamics of the Tibetan Plateau[J]. Geology in China, 43(1): 1-42 (in Chinese). doi: 10.3969/j.issn.1000-3657.2016.01.001
    [40] 杨攀新, 陈正位, 任金卫, 等. 2011. 西藏中部格仁错断裂带活动特征及分段研究[J]. 地震学报, 33(3): 362-372 doi: 10.3969/j.issn.0253-3782.2011.03.009

    Yang P X, Chen, Z W, Ren J W, et al. 2011. Activity and segmentation of gyaring co fault zone in central Qingzang plateau[J]. Acta Seismologica Sinica, 33(3): 362-372 (in Chinese). doi: 10.3969/j.issn.0253-3782.2011.03.009
    [41] Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211
    [42] 袁伏全, 黄浩, 孙世瑞, 等. 2021.2021年西藏比如MS6.1地震震源机制解与发震构造分析[J]. 地震地磁观测与研究, 42(S1): 186-188

    Yuan F Q, Huang H, Sun S R, et al. 2021. Focal mechanism solution and focal depth determination of Xizang Biru MS6.1 earthquake in 2021[J]. Seismological and Geomagnetic Observation and Research, 42(S1): 186-188 (in Chinese).
    [43] 曾思红, 胡祥云, 李建慧. 2017. 羌塘地块中部南北向断裂的构造特征及其动力学意义[J]. 地球物理学报, 60(6): 2172-2180

    Zeng S H, Hu X Y, Li J H. 2017. Structural characteristics and their dynamic implications for the north-south trending rifts in central Qiangtang terrane, Tibetan Plateau[J]. Chinese Journal of Geophysics, 60(6): 2172-2180 (in Chinese).
    [44] 张贝, 程惠红, 石耀霖. 2015.2015年4月25日尼泊尔MS8.1大地震的同震效应[J]. 地球物理学报, 58(5): 1794-1803

    Zhang B, Cheng H H, Shi Y L. 2015. Calculation of the co-seismic effect of MS8.1 earthquake, Apirl 25, 2015, Nepal[J]. Chinese Journal of Geophysics, 58(5): 1794-1803 (in Chinese).
    [45] 张进江, 郭磊, 丁林. 2002. 申扎—定结正断层体系中、南段构造特征及其与藏南拆离系的关系[J]. 科学通报, 47(10): 738-743 doi: 10.1360/csb2002-47-10-738

    Zhang J J, Guo L, Ding L. 2002. Structural characteristics of the middle and southern segments of the shenzha-dingjie normal fault system and their relationship with the detachment system in southern Tibet[J]. Chinese Science Bulletin, 47(10): 738-743 (in Chinese). doi: 10.1360/csb2002-47-10-738
    [46] 张进江. 2007. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 26(6): 639-649

    Zhang J J. 2007. A review on the extensional structures in the northern Himalaya and southern Tibet[J]. Geological Bulletin of China, 26(6): 639-649 (in Chinese).
    [47] Zhang P Z, Shen Z, Wang M, et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812.
    [48] 张胜业, 魏胜, 王家映, 等. 1996. 西藏羌塘盆地大地电磁测深研究[J]. 地球科学: 中国地质大学学报, 21(2): 198-202.

    Zhang S Y, Wei S, Wang J Y, et al. 1996. Magnetotelluric sounding in the Qiangtang basin of Xizang (Tibet)[J]. Earth Science-Journal of China University of Geosciences, 21(2): 198-202 (in Chinese).
    [49] 张小涛, 姜祥华, 薛艳, 等. 2020.2020年3月20日西藏定日MS5.9地震总结[J]. 地震地磁观测与研究, 41(4): 193-203

    Zhang X T, Jiang X H, Xue Y, et al. 2020. Summary of the Dingri MS5.9 earthquake in Tibet on March 20, 2020[J]. Seismological and Geomagnetic Observation and Research, 41(4): 193-203 (in Chinese).
    [50] 张玉修. 2007. 班公湖—怒江缝合带中西段构造演化[D]. 广州: 中国科学院研究生院(广州地球化学研究所).

    Zhuang Y X. 2007. Tectonic evolution of the middle-western Bangong-Nujiang suture, Tibet[D]. Guangzhou: Graduate School of China Academy of Sciences (in Chinese).
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  16
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-14
  • 录用日期:  2023-02-14
  • 修回日期:  2023-02-10
  • 网络出版日期:  2023-02-21

目录

    /

    返回文章
    返回