Coseismic and postseismic fault slip characteristics of the 2020 MW6.3 Nima earthquake
-
摘要: 2020年尼玛MW6.3地震发生在青藏高原羌塘块体依布茶卡地堑北部. 震中区域地质构造、地形地貌复杂,近场地面观测台站、数据较少. 合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar, InSAR)技术具有全天侯、大范围、高空间分辨率等监测优势,能够弥补近场地面形变观测的不足. 然而,已有研究对该次地震发震断层、同震及震后断层滑动特征的观点存在差异,且仅采用运动学模型提取震后断层余滑特征. 本文利用哨兵1号(Sentinel-1)卫星升、降轨合成孔径雷达(Synthetic Aperture Radar, SAR)影像和差分干涉测量技术提取该次地震不同视角的同震形变场,基于弹性半空间位错模型反演地震同震断层几何及滑动分布,采用应力驱动的震后余滑模型对震后断层滑动进行建模分析,并且探讨了地震发震断层及断裂带摩擦属性特征. 结果表明,升、降轨InSAR同震形变场在震中区域连续光滑、整体呈NNE-SSW走向,断层南东侧区域形变均较为显著且沿视线向以下降为主. 同震断层破裂以正断为主,兼有左旋走滑分量,走向角为31.43º,倾角为45.79º,同震断层滑动主要位于地下3.58~10.75 km,最大滑动量为1.33 m,矩震级为MW6.33. 应力驱动的震后余滑模型能够较好地解释尼玛MW6.3地震近6个月的InSAR震后形变场,震后余滑主要发生在同震断层显著滑动区域南西段的上侧、下侧及南西侧,最大值为47.2 cm. 尼玛MW6.3地震发震断层可能为位于依布茶卡—日干配错断裂中部、倾向SEE的正断层,发震断裂带摩擦属性可能非均匀.Abstract: The 2020 MW6.3 Nima earthquake occurred in the northern Yibug Caka graben on the Qiangtang Block of the Tibetan Plateau. The epicentral area has complex geological structures, topography, and geomorphology, and there are few near-field ground observation stations and data. Interferometric Synthetic Aperture Radar (InSAR) has all-weather, wide ranging and high spatial resolution monitoring advantages, which can make up for the shortage of near-field ground deformation observations. However, previous studies have obtained different viewpoints regarding the seismogenic fault and coseismic and postseismic fault slip characteristics of this event. In addition, only the kinematic model has been used to extract the postseismic fault afterslip characteristics. In this study, we used ascending and descending Sentinel-1 Synthetic Aperture Radar (SAR) images and differential interferometry technology to extract the coseismic deformation fields at different viewing angles. The coseismic fault geometry and slip distribution were then inverted based on an elastic half-space dislocation model. The stress-driven postseismic afterslip model was used to model and analyze the postseismic fault slip. Finally, the earthquake seismogenic fault and the friction property characteristics of seismogenic fault zone were discussed. The ascending and descending InSAR coseismic deformation fields were continuous and smooth around the epicenter, trending NNE-SSW overall. The deformation on the southeastern side of the fault was relatively significant, and mainly decreased along the line-of-sight direction. The coseismic fault rupture was mainly normal, with a sinistral strike-slip component. The strike angle was 31.43°, and the dip angle was 45.79°. The coseismic fault slip was mainly located at 3.58-10.75 km underground, with a maximum slip of 1.33 m, and the moment magnitude was MW6.33. The stress-driven postseismic afterslip model could better explain the almost six-month InSAR postseismic deformation field of this event. The postseismic afterslip mainly occurred on the upper, lower and southwestern sides of the southwestern segment of the significant slip area of coseismic fault, with a maximum afterslip of 47.2 cm. The seismogenic fault of this event might be a normal fault located in the middle of the Yibug Caka-Riganpei Co fault and dipping SEE, and the friction property of the seismogenic fault zone might be uneven.
-
Key words:
- MW6.3 Nima earthquake /
- coseismic /
- postseismic /
- fault slip /
- stress-driven
-
图 1 (a)尼玛MW6.3地震区域的主要构造特征,黑色实线表示断裂,红色震源球表示来自美国地质调查局(USGS)、全球矩心矩张量(GCMT)的地震震源机制解,蓝色方框表示SAR观测范围;(b)黑色方框表示图(a)中显示的区域
Figure 1. (a) Major tectonic characteristics of the MW6.3 Nima earthquake zone. Black solid lines represent faults. Red beach balls represent focal mechanisms from the United States Geological Survey (USGS) and Global Centroid Moment Tensor (GCMT). Blue boxes represent the Synthetic Aperture Radar (SAR) observation coverages. (b) Black box indicates the region shown in (a)
图 2 尼玛MW6.3地震InSAR同震形变场、基于同震断层滑动分布模型的拟合及残差形变场,(a)、(d)、(g)对应于升轨012;(b)、(e)、(h)对应于降轨121;(c)、(f)、(i)对应于降轨019. 蓝色实线表示本文确定的同震断层滑动分布模型地表迹线
Figure 2. Interferometric Synthetic Aperture Radar (InSAR) coseismic deformation field of the MW6.3 Nima earthquake, as well as fitted and residual deformation fields based on the coseismic fault slip distribution model. (a), (d), and (g) are for ascending track 012; (b), (e), and (h) are for descending track 121; and (c), (f), and (i) are for descending track 019. Blue lines denote the surface traces of the coseismic fault slip distribution model determined in this study
图 4 (a)尼玛MW6.3地震InSAR震后形变场(数据来自于Yang et al., 2022),黑色、紫色实线分别表示几何模型1、2的地表迹线,虚线方框表示计算拟合残差的空间范围;基于震后断层余滑分布模型的拟合及残差形变场,(b)、(c)对应于几何模型1,(d)、(e)对应于几何模型2
Figure 4. (a) InSAR postseismic deformation field of the MW6.3 Nima earthquake (data from Yang et al., 2022). Black and purple solid lines denote the surface traces of geometric modes 1 and 2, respectively. Dashed box denotes the spatial coverage of the fitted residual calculation. Fitted and residual deformation fields based on the postseismic fault afterslip distribution model. (b) and (c) are for geometric mode 1; (d) and (e) are for geometric mode 2
图 5 不同震后余滑模型参数对应的拟合残差RMS. (a)几何模型1(
$ \varphi =0.2 $ );(b)几何模型2($ \varphi =0.4 $ ). 黑色圆圈表示较优模型参数Figure 5. Root Mean Square (RMS) values of fitted residual corresponding to different postseismic afterslip model parameters. (a) is for geometric mode 1 (
$ \varphi =0.2 $ ); (b) is for geometric mode 2 ($ \varphi =0.4 $ ). Black circles denote the preferred model parameters表 1 尼玛MW6.3地震震源参数
Table 1. Source parameters of the MW6.3 Nima earthquake
经度/纬度/(º) 长度/km 顶深/底深/km 走向/倾角/(º) 滑动角/滑动量/[(º)/m] 地震矩/(1018 N·m)/MW USGS 86.86/33.14 - 11.5a) 20/61 −91/- -/6.27 GCMT 86.87/33.10 - 16.8a) 10/48 −88/- -/6.4 Gao等(2022)b) - 13.1 - 28.8/49.4 −78.6/1.2 -/6.28 Hu等(2022)b) - 12.6 - 31.3/51.6 −70.5/2.63 -/6.3 冀宗童等(2021)b) - 12.3 - 28.4/48.3 −81.34/1.06 3.59/6.3 李承涛等(2021)b) - 13.2 - 30.41/49.52 −71.27/1.47 -/6.3 Li等(2021)b) - - - 28/48 −87/- -/6.4 梁世川等(2022)b) - 12.38 - 207/33.1 −96.31/2 -/- Yang等(2022)b) - 13.2 - 30/48.3 −80.2/1.2 -/6.3 本研究c) 86.827/33.209 12.81 4.68/9.32 31.43/45.79 −75.77/1.22 3.03/6.29 0.001/0.001 0.11 0.07/0.06 0.42/0.42 0.92/0.04 0.02/0.002 a) 矩心深度;b) 均匀滑动模型结果;c) 基于均匀滑动模型反演确定的震源参数,下面行的数值表示上面行对应参数值的误差 表 2 干涉像对参数
Table 2. Parameters of the interferometric pairs
轨道 升、降轨 主影像日期 辅影像日期 时间基线/d 空间基线/m 012 升轨 2020-07-18 2020-07-30 12 −84.9 121 降轨 2020-07-14 2020-07-26 12 108.8 019 降轨 2020-07-13 2020-07-25 12 43.9 -
[1] Barbot S, Fialko Y, Bock Y. 2009. Postseismic deformation due to the MW 6.0 2004 Parkfield earthquake: stress-driven creep on a fault with spatially variable rate-and-state friction parameters[J]. Journal of Geophysical Research, 114(B7): B07405. [2] Barbot S, Fialko Y. 2010a. Fourier-domain Green's function for an elastic semi-infinite solid under gravity, with applications to earthquake and volcano deformation[J]. Geophysical Journal International, 182(2): 568-582. doi: 10.1111/j.1365-246X.2010.04655.x [3] Barbot S, Fialko Y. 2010b. A unified continuum representation of post-seismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow[J]. Geophysical Journal International, 182(3): 1124-1140. doi: 10.1111/j.1365-246X.2010.04678.x [4] Elliott J, Michele M, Gupta H. 2020. Earth observation for crustal tectonics and earthquake hazards[J]. Surveys in Geophysics, 41: 1355-1389. doi: 10.1007/s10712-020-09608-2 [5] Farr T, Rosen P, Caro E, et al. 2007. The shuttle radar topography mission[J]. Reviews of Geophysics, 45: RG2004. [6] Gao H, Liao M, Liang X, et al. 2022. Coseismic and postseismic fault kinematics of the July 22, 2020, Nima (Tibet) MS 6.6 earthquake: Implications of the forming mechanism of the active N-S-Trending grabens in Qiangtang, Tibet[J]. Tectonics, 41(3): e2021TC006949. [7] Goldstein R, Zebker H, Werner C. 1988. Satellite radar interferometry: two-dimensional phase unwrapping[J]. Radio Science, 23(4): 713-720. doi: 10.1029/RS023i004p00713 [8] Goldstein R, Werner C. 1998. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 25(21): 4035-4038. doi: 10.1029/1998GL900033 [9] Hu X, He P, Zhang J. 2022. Source mechanism of the 2020 MW 6.3 Nima earthquake derived from Bayesian inversions with InSAR observations: insight into E-W extensional activity in the central Tibet[J]. Advances in Space Research, 70(7): 1721-1736. doi: 10.1016/j.asr.2022.06.065 [10] 冀宗童, 张永志, 王思佳. 2021.2020年西藏尼玛MS 6.6地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学进展, 36(6): 2312-2319 doi: 10.6038/pg2021EE0489Ji Z T, Zhang Y Z, Wang S J. 2021. Coseismic deformation field and fault slip distribution inversion of the MS 6.6 Nima, Xizang earthquake by Sentinel-1A InSAR data[J]. Progress in Geophysics, 36(6): 2312-2319 (in Chinese). DOI: 10.6038/pg2021EE0489. [11] Jónsson S, Zebker H, Segall P, et al. 2002. Fault slip distribution of the 1999 MW 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements[J]. Bulletin of the Seismological Society of America, 92(4): 1377-1389. doi: 10.1785/0120000922 [12] 李承涛, 李琦, 谭凯, 等. 2021.2020年西藏尼玛MW 6.3地震InSAR同震形变特征与破裂滑动分布[J]. 地球物理学报, 64(7): 2297-2310 doi: 10.6038/cjg2021O0363Li C T, Li Q, Tan K, et al. 2021. Coseismic deformation characteristics of the 2020 Nima, Xizang MW 6.3 earthquake from Sentinel-1A/B InSAR data and rupture slip distribution[J]. Chinese Journal of Geophysics, 64(7): 2297-2310 (in Chinese). DOI: 10.6038/cjg2021O0363. [13] Li K, Li Y, Tapponnier P, et al. 2021. Joint InSAR and field constraints on faulting during the MW 6.4, July 23, 2020, Nima/Rongma earthquake in central Tibet[J]. Journal of Geophysical Research: Solid Earth, 126(9): e2021JB022212. [14] Li Z, Elliott J, Feng W, et al. 2011. The 2010 MW 6.8 Yushu (Qinghai, China) earthquake: Constraints provided by InSAR and body wave seismology[J]. Journal of Geophysical Research, 116(B10): B10302. doi: 10.1029/2011JB008358 [15] 梁世川, 瞿伟, 陈海禄, 等. 2022.2020-07-23西藏尼玛MW 6.3地震震源参数InSAR反演与发震构造研究[J]. 大地测量与地球动力学, 42(1): 71-76 doi: 10.14075/j.jgg.2022.01.014Liang S C, Qu W, Chen H L, et al. 2022. Source parameter inversion and seismogenic tectonic of the Nyima MW 6.3 earthquake in Tibet on July 23, 2020 based on InSAR[J]. Journal of Geodesy and Geodynamics, 42(1): 71-76 (in Chinese). DOI: 10.14075/j.jgg.2022.01.014. [16] 刘富财, 潘家伟, 李海兵, 等. 2022. 青藏高原中部日干配错断裂第四纪活动特征及2020年7月23日西藏尼玛MW 6.4地震发震构造分析[J]. 地球学报, 43(2): 173-188 doi: 10.3975/cagsb.2021.010402Liu F C, Pan J W, Li H B, et al. 2022. Characteristics of quaternary activities along the Riganpei Co fault and seismogenic structure of the July 23, 2020 MW 6.4 Nima earthquake, central Tibet[J]. Acta Geoscientica Sinica, 43(2): 173-188 (in Chinese). DOI: 10.3975/cagsb.2021.010402. [17] 刘洋, 许才军, 温扬茂, 等. 2015.2008年大柴旦MW 6.3级地震的InSAR同震形变观测及断层参数反演[J]. 测绘学报, 44(11): 1202-1209 doi: 10.11947/j.AGCS.2015.20140628Liu Y, Xu C J, Wen Y M, et al. 2015. The InSAR coseismic deformation observation and fault parameter inversion of the 2008 Dachaidan MW 6.3 earthquake[J]. Acta Geodaetica et Cartographica Sinica, 44(11): 1202-1209 (in Chinese). DOI: 10.11947/j.AGCS.2015.20140628. [18] Liu Y, Wen Y, Li Z, et al. 2022. Coseismic fault model of the 2017 MW 6.5 Jiuzhaigou earthquake and implications for the regional fault slip pattern[J]. Geodesy and Geodynamics, 13(2): 104-113. doi: 10.1016/j.geog.2021.09.009 [19] Massonnet D, Rossi M, Carmona C, et al. 1993. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 364(6433): 138-142. doi: 10.1038/364138a0 [20] Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(4): 1135-1154. doi: 10.1785/BSSA0750041135 [21] Parsons B, Wright T, Rowe P, et al. 2006. The 1994 Sefidabeh (eastern Iran) earthquakes revisited: New evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault[J]. Geophysical Journal International, 164: 202-217. doi: 10.1111/j.1365-246X.2005.02655.x [22] Peltzer G, Rosen P. 1995. Surface displacement of the 17 May 1993 Eureka Valley, California, earthquake observed by SAR interferometry[J]. Science, 268(5215): 1333-1336. doi: 10.1126/science.268.5215.1333 [23] Taylor M, Yin A, Ryerson F, et al. 2003. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 22(4): 1044. [24] Tian Z, Freymueller J, Yang Z. 2021. Postseismic deformation due to the 2012 MW 7.8 Haida Gwaii and 2013 MW 7.5 Craig earthquakes and its implications for regional rheological structure[J]. Journal of Geophysical Research: Solid Earth, 126(2): e2020JB020197. [25] Werner C, Wegmüller U, Strozzi T, et al. 2000. Gamma SAR and interferometric processing software[C]//Proceedings of the ERS-ENVISAT Symposium, Gothenburg, Sweden. [26] Wimpenny S, Copley A, Ingleby T. 2017. Fault mechanics and post-seismic deformation at Bam, SE Iran[J]. Geophysical Journal International, 209(2): 1018-1035. doi: 10.1093/gji/ggx065 [27] Wright T, Lu Z, Wicks C. 2003. Source model for the MW 6.7, 23 October 2002, Nenana Mountain earthquake (Alaska) from InSAR[J]. Geophysical Research Letters, 30(18): 1974. [28] Xu C, Liu Y, Wen Y, et al. 2010. Coseismic slip distribution of the 2008 MW 7.9 Wenchuan earthquake from joint inversion of GPS and InSAR data[J]. Bulletin of the Seismological Society of America, 100(5B): 2736-2749. doi: 10.1785/0120090253 [29] Xu W, Xie L, Aoki Y, et al. 2020. Volcano-wide deformation after the 2017 Erta Ale dike intrusion, Ethiopia, observed with radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 125(8): e2020JB019562. [30] Yang J, Xu C, Wen Y, et al. 2022. The July 2020 MW 6.3 Nima earthquake, central Tibet: A shallow normal-faulting event rupturing in a stepover zone[J]. Seismological Research Letters, 93(1): 45-55. doi: 10.1785/0220210057 -