Petrophysical facies characteristics and classification evaluation of Dongying Formation of Nanpu No. 4 structure
-
摘要: 南堡凹陷4号构造晚期成岩作用强烈、储层非均质性强、孔隙结构复杂,导致优质储层岩石物理特征不清及储层有效性评价难. 针对这一难题,综合利用岩心薄片鉴定、扫描电镜、X全岩衍射、毛管实验及测录、试油等数据对储层的沉积特征、成岩特征及孔隙结构特征开展相控研究,研究结果表明研究区东二、东三段沉积相主要发育辫状河三角洲相,沉积微相主要发育水下分流河道、分流间湾、河口坝等;依据成岩作用及矿物类型将成岩相划分为弱溶蚀相、黏土矿物充填相、碳酸盐胶结相、压实致密相四类;根据储层物性及压汞等数据将孔隙结构相划分为Ⅰ类大孔粗喉型、Ⅱ类大孔中喉型、Ⅲ类中孔细喉型、Ⅳ类小孔微喉型. 基于沉积、成岩、孔隙结构三种特征单元叠加聚类分析将储层岩石物理相划分为PF1-PF4四类,其中PF1为油气及油水产能高的优势储层,PF2为产能一般的含油储层,PF3为需要储层改造才有产能的较差储层,PF4为无效储层,通过测井响应规律建立岩石物理相分类评价标准,为研究区储层有效性评价、优势储层预测以及后续的滚动开发提供了技术支撑和坚实的理论基础.Abstract: Strong diagenesis and reservoir heterogeneity as well as complex pore structure in the late stage of No. 4 structure in Nanpu sag make assessment of the petrophysical characteristics of its high-quality reservoir and evaluation of its effectiveness difficult. To address this, the sedimentary, diagenetic, and pore structure characteristics of the reservoir were comprehensively studied using core thin section analysis, scanning electron microscopy, X-ray diffraction, capillary analysis, and logging and oil tests. The results showed that the sedimentary facies of the Ed2 and Ed3 of the study area were mainly braided river delta types, and the sedimentary microfacies mainly developed in an underwater distributary channel, interdistributary bay, and mouth bar. Diagenetic facies can be divided into four types based on diagenesis and mineral types: weak dissolution facies, clay mineral filling facies, carbonate cementation facies, and compacted dense facies. The pore structure facies can be divided into four types based on the reservoir physical properties and mercury injection, I: macropore coarse throat type, II: macropore medium throat type, III: mesopore thin throat type, and IV: micropore throat type. Based on the superimposed cluster analysis of sedimentary, diagenesis, and pore structure, the reservoir petrophysical facies can be divided into PF1-PF4, and the corresponding quantitative classification and evaluation criteria can be established. PF1 is an advantageous reservoir with high oil, gas, and water productivity; PF2 is an oil-bearing reservoir with average productivity; PF3 is a poor reservoir with low productivity after reservoir reconstruction; and PF4 is an invalid reservoir. The quantitative classification and evaluation criteria of petrophysical facies are established by logging response rules, which provide technical support and a solid theoretical basis for the evaluation of reservoir effectiveness, superior reservoir prediction, and subsequent ongoing development in the study area.
-
图 1 南堡凹陷区域构造图(司兆伟等,2019)
Figure 1. Regional structure map of Nanpu depression(Si et al., 2019)
图 3 南堡4号构造东营组东二、东三段成岩作用特征. (a)NP43-X4830,3859.05 m,线接触、颗粒紧密排列,孔隙差,压实作用强;(b)NP43-X4830,3854.27 m,石英岩岩屑,石英次生加大,方解石胶结;(c)NP4-31,3970.9 m,铁白云石连晶胶结;(d)NP4-31,3939.66 m,粒间高岭石、伊蒙混层等黏土填隙物及微孔;(e)NP43-X4830,3864.39 m,长石蚀变深;(f)NP4-39,4443.27 m,颗粒溶蚀形成溶蚀孔隙及粒间残余孔缝
Figure 3. Diagenesis characteristics of the 2nd and 3rd members of Dongying Formation in Nanpu No. 4 structure. (a) NP43-X4830, 3859.05 m; (b) NP43-X4830, 3854.27 m; (c) NP4-31, 3970.9 m; (d) NP4-31, 3939.66 m; (e) NP43-X4830, 3864.39 m; (f) NP4-39, 4443.27 m
图 4 南堡4号构造东营组东二、东三段孔喉类型. (a)NP43-X4830,3855.99 m;(b)NP43-X4830,3849.38 m;(c)NP43-X4830,3972.04 m;(d)NP4-31,3972.04 m
Figure 4. Types of pore throat in the 2nd and 3rd members of Dongying Formation in Nanpu No. 4 structure. (a) NP43-X4830, 3855.99 m; (b) NP43-X4830, 3849.38 m; (c) NP43-X4830, 3972.04 m; (d) NP4-31, 3972.04 m
图 5 南堡4号构造东营组东二、东三段不同孔隙结构压汞曲线特征. (a)NP43-4950,4188.84 m,一类孔隙结构;(b)NP4-66,4275.1 m,二类孔隙结构;(c)NP4-68,4605.07 m,三类孔隙结构;(d)NP4-31,3972.72 m,四类孔隙结构
Figure 5. Mercury injection curve characteristics of different pore structures in the 2nd and 3rd members of Dongying Formation in Nanpu No. 4 structure. (a) NP43-4950, 4188.84 m, Class I pore structure; (b) NP4-66, 4275.1 m, Class II pore structure; (c) NP4-68, 4605.07 m, Class Ⅲ pore structure; (d) NP4-31, 3972.72 m, Class Ⅳ pore structure
图 6 NP43-X4828井东三段岩石物理相划分成果图. CAL:井径;GR:自然伽马;SP:自然电位;RLLD:深侧向电阻率;RLLS:浅侧向电阻率;MSFL:微球电阻率;CNL:中子;DEN:密度;AC:声波;POR:孔隙度;PERM:渗透率;SH:泥质含量;SAND:砂岩含量
Figure 6. Petrophysical phase division results of the 3rd member of well NP43-X4828. CAL: caliper; GR: gamma ray; SP: spontaneous potential; RLLD: deep resistivity; RLLS: shallow resistivity; MSFL: microsphere resistivity; CNL: neutron porosity; DEN: bulk density; AC: compressional slowness; POR: porosity; PERM: permeability; SH: shale volume; SAND: sand volume
表 1 不同成岩相地质及测井响应特征
Table 1. Geological and logging response characteristics of different diagenetic facies
成岩作用类型 成岩相 岩性 硅酸盐含量 泥质含量 碳酸盐含量 自然伽马 电阻率 声波 密度 中子 破坏性 压实致密相 粉砂岩、
泥岩较低 较高 较低 高值 中-高值 中等 高值 中等 碳酸盐胶结相 细砂岩、
粉砂岩较低 较低 较高 低值 高值 低值 高值 低值 黏土矿物充填相 细砂岩、
粉砂岩低-中等 较高 较低 中等 低值 中-高值 低-中等 中等 建设性 弱溶蚀相 中砂岩、
细砂岩较高 较低 较低 低值 中-高值 中-高值 低值 中等 表 2 南堡4号构造东营组东二、东三段不同孔隙结构相划分标准
Table 2. Different pore structure phase classification criteria of the 2nd and 3rd members of Dongying Formation in Nanpu No. 4 structure
孔隙结构相 Ⅰ类大孔粗喉型 Ⅱ类大孔中喉型 Ⅲ类中孔细喉型 Ⅳ类小孔微喉型 孔隙度/% >15 >15 >10 <10 渗透率/(10−3 m2) >10 1~10 0.1~1 <0.1 排驱压力/MPa <0.1 0.1~0.5 0.5~2 >2 平均孔喉半径/μm >1.2 0.45~1.2 0.2~0.45 <0.2 分选系数 >1.5 0.45~1.5 0.15~0.45 <0.15 表 3 南堡4号构造东营组东二、东三段不同岩石物理相划分标准
Table 3. Petrophysical facies division criteria of the 2nd and 3rd members of Dongying Formation in Nanpu No. 4 structure
岩石
物理相自然
伽马/API电阻率/
(Ω·m)声波/
(us·ft−1)密度/
(g·cm−3)中子/% 沉积微相 成岩相 孔隙结构相 PF1 60~80 4~15 80~95 2.2~2.4 15~25 水下分流河道、河口坝 弱溶蚀相 Ⅰ类 PF2 60~85 5~20 75~85 2.3~2.5 10~20 水下分流河道、河口坝 弱溶蚀、黏土矿物填充相 Ⅱ类或Ⅲ类 PF3 60~100 5~15 65~80 2.35~2.55 5~20 水下分流河道、河口坝 压实致密、碳酸盐胶结相 Ⅲ类或Ⅳ类 PF4 85~120 2~7 70~110 1.8~2.55 15~40 分流间湾 压实致密、碳酸盐胶结相 Ⅳ类 -
[1] 柴毓, 王贵文. 2016. 致密砂岩储层岩石物理相分类与优质储层预测-以川中安岳地区须二段储层为例[J]. 岩性油气藏, 28(3): 75-85Chai Y, Wang G W. 2016. Petrophysical facies classification of tight sandstone reservoir and high-quality reservoir prediction: A case study from the second member of Xujiahe Formation in Anyue area, central Sichuan Basin[J]. Lithologic Reservoirs, 28(3): 75-85 (in Chinese). [2] 陈欢庆, 曹晨, 梁淑贤, 等. 2013. 储层孔隙结构研究进展[J]. 天然气地球科学, 24(2): 227-237Chen H Q, Cao C, Liang S X, et al. 2013. Research advances on reservoir pores[J]. Natural Gas Geoscience, 24(2): 227-237 (in Chinese). [3] 高雨, 卢志远, 蒋庆平, 等. 2021. 岩石物理相在砂砾岩储层分类评价中的应用-以M1井区上乌尔禾组为例[J]. 科学技术与工程, 21(8): 3068-3075Gao Y, Lu Z Y, Jiang Q P, et al. 2021. Application of petrophysical facies for sandy-conglomerate reservoir evaluation: A case upper Wuerhe reservoir in the M1 well block, Junggar Basin[J]. Science Technology and Engineering, 21(8): 3068-3075 (in Chinese). [4] 管红, 朱筱敏. 2008. 南堡凹陷东营组层序地层格架与沉积体系[J]. 沉积学报, 26(5): 730-736Guan H, Zhu X M. 2008. Sequence framework and sedimentary facies of Ed Formation in paleogene, Nanpu sag, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 26(5): 730-736 (in Chinese). [5] 韩进. 2020. 鄂尔多斯盆地王盘山区延长组储层微观孔隙结构及渗流特征表征[D]. 西安: 西北大学.Han J. 2020. Microscopic characteristics of pore structure and seepage of Yanchang formation in Wangpanshan Area in Ordos Basin[D]. Xi'an: Northwest University (in Chinese). [6] 姜华. 2009. 南堡凹陷东营组构造层序地层分析及其油气地质意义[D]. 武汉: 中国地质大学(武汉).Jiang H. 2009. Tectono-sequence stratigraphic analysis in Dongying Formation of Nanpu sag and is petroleum geological significance[J]. Wuhan: China University of Geosciences (Wuhan) (in Chinese). [7] 赖锦, 王贵文, 王书南, 等. 2013a. 碎屑岩储层成岩相研究现状及进展[J]. 地球科学进展, 28(1): 39-50Lai J, Wang G W, Wang S N, et al. 2013. Research status and advances in the diagenetic facies of clastic reservoirs[J]. Advances in Earth Science, 28(1): 39-50 (in Chinese). [8] 赖锦, 王贵文, 陈敏, 等. 2013b. 基于岩石物理相的储集层孔隙结构分类评价: 以鄂尔多斯盆地姬塬地区长8油层组为例[J]. 石油勘探与开发, 40(5): 566-573Lai J, Wang G W, Chen M, et al. 2013. Pore structures evaluation of low permeability clastic reservoirs based on petrophysical facies: A case study on Chang 8 reservoir in the Jiyuan region, Ordos Basin[J]. Petroleum Exploration & Development, 40(5): 566-573 (in Chinese). [9] 马旭鹏. 2010. 储层物性参数与其微观孔隙结构的内在联系[J]. 勘探地球物理进展, 33(3): 216-219Ma X P. 2010. The internal relation between reservoir physical property parameters and its microscopic pore structure[J]. Progress in Exploration Geophysics, 33(3): 216-219 (in Chinese). [10] 司兆伟, 谢伟彪, 陈晶莹, 等. 2019. 岩石物理相测井识别及其对优质储层的控制——以南堡凹陷古近系东营组一段为例[J]. 东北石油大学学报, 43(5): 48-57Si Z W, Xie W B, Chen J Y, et al. 2019. Petrophysics facies logging identification and control of high-quality reservoirs: A case study of the Paleogene Dongying Formation Member 1 in Nanpu sag[J]. Journal of Northeast Petroleum University, 43(5): 48-57 (in Chinese). [11] Spain D R. 1992. Petrophysical evaluation of a slope Fan/Basin-Floor fan complex: Cherry Canyon formation, Ward County, Texas[J]. The American Association of Petroleum Geologists Bulletin, 76(6): 805-827. [12] 王苗, 廖远涛, 邓大飞, 等. 2012. 南堡凹陷1号构造带东一段储层物性特征及其控制因素[J]. 油气地质与采收率, 19(4): 14-17Wang M, Liao Y T, Deng D F, et al. 2012. Reservoir characters and controlling factors of member one of Dongying group in fracture belt 1, Nanpu depression[J]. Petroleum Geology and Recovery Efficiency, 19(4): 14-17 (in Chinese). [13] 谢武仁, 杨威, 杨光, 等. 2010. 川中地区上三叠统须家河组砂岩储层孔隙结构特征[J]. 天然气地球科学, 21(3): 435-440Xie W R, Yang W, Yang G, et al. 2010. Pore Structure features of sandstone reservoirs in the upper triassic Xujiahe Formation in the central part of Sichuan Basin[J]. Natural Gas Geoscience, 21(3): 435-440 (in Chinese). [14] 熊琦华, 彭仕宓, 黄述旺, 等. 1994. 岩石物理相研究方法初探: 以辽河冷东—雷家地区为例[J]. 石油学报, 15(增刊1): 68-73Xiong Q H, Peng S M, Huang S W, et al. 1994. Preliminary study on petrophysical facies: A case study of Lengdong-Leijia area, Liaohe Basin[J]. Acta Petrolei Sinica, 15(sup. 1): 68-73 (in Chinese). [15] 赵迎冬, 张永超, 王全利, 等. 2018. 南堡凹陷物源体系发育特征与优质储层形成[J]. 地质科技情报, 37(1): 128-134 doi: 10.19509/j.cnki.dzkq.2018.0117Zhao Y D, Zhang Y C, Wang Q L, et al. 2018. Characteristics of distribution of provenance system and formation of the high quality reservoir in Nanpu sag[J]. Geological Sciene and Technology Information, 37(1): 128-134 (in Chinese). doi: 10.19509/j.cnki.dzkq.2018.0117 [16] 邹才能, 陶士振, 周慧, 等. 2008. 成岩相的形成、分类与定量评价方法[J]. 石油勘探与开发, 35(5): 526-540Zou C N, Tao S Z, Zhou H, et al. 2008. Genesis, classification and evaluation method of diagenetic facies[J]. Petroleum Exploration & Development, 35(5): 526-540 (in Chinese). -