• ISSN 2097-1893
  • CN 10-1855/P

复杂砾岩油水核磁弛豫特性的实验分析

田超国 王雪亮 魏博 梁晶 毛文红 耿雪杰 李慧莹

引用本文: 田超国,王雪亮,魏博,梁晶,毛文红,耿雪杰,李慧莹. 2024. 复杂砾岩油水核磁弛豫特性的实验分析. 地球与行星物理论评(中英文),55(2):241-247
Tian C G, Wang X L, Wei B, Liang J, Mao W H, Geng X J, Li H Y. 2024. Experimental analysis of oil-water nuclear magnetic relaxation characteristics of complex conglomerate reservoir. Reviews of Geophysics and Planetary Physics, 55(2): 241-247 (in Chinese)

复杂砾岩油水核磁弛豫特性的实验分析

doi: 10.19975/j.dqyxx.2022-074
基金项目: 中石油集团重大科技专项:测井重大技术现场试验与集成配套(2019D-3809);中国石油集团测井有限公司十大科技项目:项目八课题一“岩石物理实验分析技术研究与应用”(CNLC 2022-08B01)
详细信息
    作者简介:

    田超国(1984-),男,工程师,主要从事岩石物理与测井解释评价的研究. E-mail:tianchaoguo@petrochina.com.cn

    通讯作者:

    王雪亮(1979-),男,高级工程师. 主要从事岩石物性、电性、声学、核磁共振实验及测井应用方面的研究. E-mail: wangxuel@cnpc.com.cn

  • 中图分类号: P631

Experimental analysis of oil-water nuclear magnetic relaxation characteristics of complex conglomerate reservoir

Funds: Supported by the Major Science and Technology Project of CNPC: Field Test and Integration of Major Logging Technology (Grant No. 2019D-3809), the Ten Scientific and Technological Projects of CNPC Logging Co. , ltd. : Project 8: "The Research and Application of Petrophysical Experimental Analysis Technology" (Grant No. CNLC 2022-08B01)
  • 摘要: 玛湖凹陷砾岩储层岩性、孔隙结构复杂,造成储层流体识别困难. 通过区块原油样品获取原油不同温度下的体弛豫特征,并利用两种不同体弛豫特征的模拟油样开展实验;在此基础上,选取了部分砾岩样品通过真空加压饱和水、高速离心和真空饱和模拟油的方法快速建立了饱和水、束缚水和饱和油状态,进行流体及模拟不同油水饱和状态的核磁实验分析. 实验结果表明:岩心饱和水核磁T2谱的分布范围主要受表面弛豫影响,受油相体弛豫性质的影响,不同黏度油样饱和水状态的核磁谱均与饱和水核磁谱存在差异,就本次实验的岩心样品,油样越稀,差异越明显;含油核磁谱分布形态受油相体弛豫、表面弛豫、孔隙结构和润湿性的综合影响. 结合油样的体弛豫特性,利用多组分高斯拟合对两种油样饱和的砾岩核磁T2谱进行了分析,尝试对油相体弛豫信号进行了定量评价.

     

  • 图  1  玛湖凹陷砾岩储层岩石薄片微观特征

    Figure  1.  Microscopic characteristics of thin sections of conglomerate reservoir in the Mahu sag

    图  2  不同温度下三种原油样的体弛豫T2

    Figure  2.  Bulk relaxation T2 spectra of three crude samples at different temperatures

    图  3  两种模拟油样的体弛豫T2

    Figure  3.  Bulk relaxation T2spectra of two simulated oil samples

    图  4  四块岩心不同状态下的核磁共振T2谱. 各图中的图例依次为:饱和水状态、离心状态、饱和油A状态、饱和油B状态、油A体弛豫、油B体弛豫

    Figure  4.  NMR T2 spectra of four cores in different states. From top to bottom, the legend in each chart is: Saturated water state, centrifugal state, saturated oil A state, saturated oil B state, bulk relaxation T2 spectra of oil A, bulk relaxation T2 spectra of oil B

    图  5  核磁共振T2谱的连续分布拟合

    Figure  5.  Continuous distribution fitting of NMR T2 spectra

    表  1  岩心基本参数

    Table  1.   Basic parameters of the samples

    序号 岩心编号 岩石定名 层位 孔隙度/% 孔隙体积/ml 气体渗透率/(10−3μm2
    1 15555 灰褐色含砾泥岩 T1b 6.5 1.630 8.29
    2 15575 灰色砂质砾岩 T1b 19.7 3.801 291.00
    3 15577 灰色砂质砾岩 T1b 13.5 2.633 124.00
    4 15563 灰色砂质砾岩 T1b 11.2 2.315 20.60
    下载: 导出CSV

    表  2  饱和水与饱和油状态下核磁T2谱对比

    Table  2.   Comparison of T2 NMR spectra of saturated water and saturated oil

    岩样号 饱水谱几何均值/ms 饱油谱几何均值/ms 饱水谱特征 饱油谱特征
    15555 8.94 11.92 三峰,右峰小,水峰:35.5 ms 三峰,右峰较大,油峰:354.8 ms
    15563 11.03 38.62 双峰,水峰:39.8 ms 三峰,右峰出现分离,油峰:112 ms
    15575 11.09 36.49 双峰,水峰:50.1 ms 四峰,右峰出现分离,油峰:794.1 ms
    15577 14.47 62.47 双峰,水峰:63.1 ms 三峰,右峰出现分离,油峰:354.2 ms
    下载: 导出CSV

    表  3  饱和油状态下核磁T2谱连续分布拟合结果

    Table  3.   Results of continuous distribution fitting of NMR T2 spectra in the saturated oil state

    岩样号 $\phi_{总} $/% $\phi_{1} $/% $\phi_{2} $/% $\phi_{3} $/% $\phi_{4} $/% 含油谱特征峰值/ms 饱水谱特征峰值/ms
    15563 10.2 2.5 0 6.0 1.7 0.679,89.83,965.6 0.875,44.176
    15575 14.9 4.9 1.2 3.8 5.0 0.704,6.613,145.022,910.223 1.160,58.647
    15577 11.7 2.7 1.3 5.3 2.4 0.841,13.903,221.008,1097.487 1.471,62.974
     注: $\phi_{总} $为核磁计算总孔隙度(%) ; $\phi_{1} $~ $\phi_{4} $分别对应4种油谱组分区间孔隙度(%)
    下载: 导出CSV
  • [1] 陈洪斌. 2003. 测井识别储层流体性质的方法研究及应用[J]. 天然气勘探与开发, 26(3): 36-42

    Chen H B. 2003. Study and application of well logging to identify reservoir fluid properties[J]. Natural Gas Exploration and Development, 26(3): 36-42 (in Chinese).
    [2] 葛新民, 曾炳丁, 李楠, 等. 2021. 核磁共振饱和度指数及其在储层流体饱和度计算中的应用[J]. 中国石油大学学报(自然科学版), 45(5): 64-72

    Ge X M, Zeng B D, Li N, et al. 2021. NMR saturation index and its application to fluid saturation estimation[J]. Journal of China University of Petroleum (Edition of Natural Science), 45(5): 64-72(in Chinese).
    [3] doi: 10.19762/j.cnki. dizhixuebao.2022223.

    Li D, Hu K L, Zhang Y, et al. 2022. Logging evaluation method for reservoir fluid properties of Chang 8 oil layer to the west of Tianhuan depression-Pengyang region of Ordos basin[J]. Acta Geologica Sinica, 96(6): 2230-2239 (in Chinese). doi: 10.19762/j.cnki.dizhixuebao.2022223
    [4] 李鹏举, 张智鹏, 姜大鹏. 2011. 核磁共振测井流体识别方法综述[J]. 测井技术, 35(5): 396-401 doi: 10.16489/j.issn.1004-1338.2011.05.005

    Li P J, Zhang Z P, Jiang D P. 2011. Review on fluid identification methods with NMR logging[J]. Well Logging Technology, 35(5): 396-401(in Chinese). doi: 10.16489/j.issn.1004-1338.2011.05.005.
    [5] 李舟波. 2004. 利用测井方法识别复杂油气储层的流体性质[J]. 石油与天然气地质, 25(4): 356-362

    Li Z B. 2004. Problem and advance on the fluid typing for complex reservoirs using well log[J]. Oil and Gas Geology, 25(4): 356-362 (in Chinese).
    [6] 刘国强, 龚仁彬, 石玉江, 等. 2022. 油气层测井知识图谱构建及其智能识别方法[J]. 石油勘探与开发, 49(3): 502-512 doi: 10.1016/S1876-3804(22)60042-9

    Liu G Q, Gong R B, Shi Y J, et al. 2022. Construction of well logging knowledge graph and intelligent identification method of hydrocarbon-bearing formation[J]. Petroleum Exploration and Development, 49(3): 502-512 (in Chinese). doi: 10.1016/S1876-3804(22)60042-9
    [7] 罗兴平, 苏东旭, 王振林, 等. 2017. 核磁共振测井在低阻油层评价中的应用——以准噶尔盆地阜东斜坡头屯河组为例[J]. 新疆石油地质, 38(4): 470-476

    Luo X P, Su D X, Wang Z L, et al. 2017. Application of NMR logging in low-resistivity reservoir evaluation: A case study of Toutunhe Formation on the eastern Fukang Slope, Junggar Basin[J]. Xinjiang Petroleum Geology, 38(4): 470-476 (in Chinese).
    [8] 王龙, 何宗斌, 朱雷. 2017. 核磁共振测井油层识别方法综述[J]. 能源与环保, 39(5): 198-201 doi: 10.19389/j.cnki.1003-0506.2017.05.041

    Wang L, He Z B, Zhu L. 2017. Review on recognition methods of oil reservior with NMR logging[J]. China Energy and Environmental Protection, 39(5): 198-201(in Chinese). doi: 10.19389/j.cnki.1003-0506.2017.05.041.
    [9] 肖立志. 2007. 核磁共振测井原理与应用[M]. 北京: 石油工业出版社.

    Xiao L Z. 2007. Principle and Application of NMR Logging[M]. Beijing: Press of Petroleum Industry (in Chinese).
    [10] 谢然红, 肖立志. 2007. 储层流体及其在岩石孔隙中的核磁共振弛豫温度特性[J]. 地质学报, 81(2): 284-288

    Xie R H, Xiao L Z. 2007. Temperature effect on NMR relaxation time for bulk fluids and fluids in rocks[J]. Acta Geologica Sinica, 81(2): 284-288 (in Chinese).
    [11] 张妮, 王伟, 王振林, 等. 2018. 利用核磁共振测井判定低渗透砾岩储集层流体性质——以玛湖凹陷下三叠统百口泉组为例[J]. 新疆石油地质, 39(1): 109-113

    Zhang N, Wang W, Wang Z L, et al. 2018. Using NMR logging to determine fluid properties in low-permeability conglomerate reservoirs: A case study from the lower Triassic Baikouquan Formation in Mahu sag[J]. Xinjiang Petroleum Geology, 39(1): 109-113 (in Chinese).
    [12] 张少华, 谭茂金, 李高仁, 等. 2021. 复杂油水层核磁共振测井时间域分析改进方法[J]. 石油物探, 60(4): 686-692

    Zhang S H, Tan M J, Li G R, et al. 2021. Improved time domain analysis method for NMR logging in complex oil-water reservoirs[J]. Geophysical Prospecting for Petroleum, 60(4): 686-692 (in Chinese).
    [13] 赵军龙, 刘玲, 李新胜, 等. 2009. 低渗特低渗砂岩储层流体识别技术研究综述和展望[J]. 地球物理学进展, 24(4): 1446-1453

    Zhao J L, Liu L, Li X S, et al. 2009. Review and forecast of technique research on fluid identification of low and particularly low permeability sandstone reservoir[J]. Progress in Geophysics, 24(4): 1446-1453 (in Chinese).
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  80
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-22
  • 修回日期:  2023-02-01
  • 录用日期:  2023-02-13
  • 网络出版日期:  2023-02-20
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回