• ISSN 2097-1893
  • CN 10-1855/P

全球下地幔波速异常结构综述

石宇通 叶蔚然 宾可轶 师一康 黄周传

引用本文: 石宇通,叶蔚然,宾可轶,师一康,黄周传. 2023. 全球下地幔波速异常结构综述. 地球与行星物理论评(中英文),54(6):699-718
Shi Y T, Ye W R, Bin K Y, Shi Y K, Huang Z C. 2023. Review of seismic velocity anomalies in the lower mantle. Reviews of Geophysics and Planetary Physics, 54(6): 699-718 (in Chinese)

全球下地幔波速异常结构综述

doi: 10.19975/j.dqyxx.2022-073
基金项目: 国家重点研发计划资助项目(2022YFF0800404)
详细信息
    通讯作者:

    黄周传(1984-),男,教授,主要从事地震学和深部构造的研究. E-mail:huangz@nju.edu.cn

  • 中图分类号: P541

Review of seismic velocity anomalies in the lower mantle

Funds: Supported by the National Key R&D Program of China (Grant No. 2022YFF0800404)
  • 摘要: 下地幔体积占地球总体积50%以上,对地球的演化具有重要的影响. 早期研究认为下地幔的组分比较均一,但1970年代以来,地震层析成像揭示了地球的深部速度结构,发现下地幔存在很多复杂的波速异常区. 进入21世纪以后,台阵数据的积累和计算机技术的进步使我们能够进一步约束这些下地幔波速异常区的空间范围和波速结构,由于这些异常结构通常与俯冲板片和地幔柱等有紧密的联系,了解这些波速异常体的精细结构对于古板块的重建和地幔动力学有重要的意义. 本文重点总结了近30年以来利用地震数据研究下地幔异常体的方法和结果,详细地描述了不同类型的波速异常区在全球范围内的分布情况及其特征,并逐一分析了不同类型波速异常构造体的成因. 下地幔LLSVP主要有两个,分别是非洲LLSVP和太平洋LLSVP,它们在横向上可扩展至数千千米,垂直方向上从核幔边界的高度超过1000 km. 现在观测结果发现LLSVP边界处的速度突变较大,主流的观点认为含有成分异常的热化学作用形成了LLSVP. ULVZ位于下地幔底部,其横向扩展大部分小于1000 km,但部分ULVZ的范围可以超过1000 km,高度仅为十几到几十千米,相应的S波速度异常可达−40%~−20%. 一般认为ULVZ的形成与地幔底部的部分熔融有关,而成分异常促进了部分熔融的发生. D"速度不连续面在很多地区也非常明显,特别是存在俯冲板块的地区,可能由于俯冲板块降低了核幔边界处的温度,使得pPv能够稳定存在,从而形成了稳定的D"速度不连续面. 除了波速异常之外,下地幔波速的各向异性也是值得关注的重点之一,因为各向异性直接反映了地幔流动状态. 现有研究结果表明,下地幔这几种主要的波速异常结构(LLSVP、ULVZ、 D"间断面、各向异性)在空间分布上密切相关,这些异常体可能与俯冲板片有关,其周围地幔温度和化学成分的差异可能是产生这些异常体的重要因素. 最后,本文还总结了中国地区的下地幔波速结构的结果,展望了我国未来在地幔波速异常和各向异性研究的方向.

     

  • 图  1  地幔内主要构造活动示意图(修改自Kopper et al., 2021

    Figure  1.  A cartoon showing tectonics in the mantle (modified from Kopper et al., 2021)

    图  2  地震层析成像揭示的太平洋和非洲LLSVP的结构(修改自French and Romanowicz, 2015),红色和蓝色分别表示低速和高速异常

    Figure  2.  Structures of the Pacific and African LLSVP revealed by seismic tomography (modified from French and Romanowicz, 2015). The red and blue colors denote low- and high-velocity anomalies, respectively

    图  3  研究ULVZ使用的主要震相及其射线路径(修改自Yu and Garnero, 2018). 虚线表示S波,实线表示P波

    Figure  3.  Popular phases and their corresponding ray paths that are used to study the ULVZ structures (modified from Yu and Garnero, 2018). Dashed and solid lines denote S and P waves, respectively

    图  4  全球的ULVZ区域分布图(修改自Yu and Garnero, 2018),底图为2800 km深的S波速度异常(图1; 修改自 French and Romanowicz, 2015). (a)确定ULVZ存在的区域. (b)ULVZ可能存在的区域. (c)ULVZ不存在的区域

    Figure  4.  Distribution of ULVZ (modified from Yu and Garnero, 2018). Background colors show the S wave velocity anomalies (Fig. 1; modified from French and Romanowicz, 2015). (a) ULVZ is confirmed. (b) ULVZ possibly exists. (c) ULVZ does not exist

    图  5  夏威夷地区下方大型ULVZ结构示意图(修改自Jenkins et al., 2021

    Figure  5.  ULVZ structures under Hawaii (modified from Jenkins et al., 2021)

    图  6  ULVZ和D"间断面在产生衍生震相时的对比. (a)经过ULVZ的ScS及其前后驱震相CMB处的射线路径,d表示ULVZ的厚度. (b) S、Scd和ScS在地球内的射线路径. (c)利用修改的PREM模型获得的远震S、Scd、ScS理论地震图(修改自Fan et al., 2021

    Figure  6.  Raypaths generated by ULVZ and D" discontinuity. (a) ScS and its pre- and post-phases related to the ULVZ. (b) Ray paths of S, Scd, and ScS in the Earth. (c) Synthetic waveforms of S, Scd, and ScS generated by a modified PREM model (modified from Fan et al., 2021)

    图  7  全球若干典型地区的D"层速度结构研究

    Figure  7.  D" structures in several regions, globally

    图  8  全球若干典型地区的D"层各向异性研究

    Figure  8.  D" anisotropy in several regions globally

    图  9  后钙钛矿(pPv)、布里奇曼石(Pv)和铁橄榄石(Fp)在下地幔环境下发生简单剪切(a)、纯剪切(b)和拉伸变形(c)产生的定向排列的S波各向异性(修改自Creasy et al., 2021). 红色表示弱各向异性,蓝色表示强各向异性,各向异性最大值(max)标注在每个子图顶端. 后钙钛矿可能存在三种主要组构,从左到右分别是pPv1 (010) [100]、pPv2 (001)[100]和pPv3 {011}[0–11]+(010)[100]

    Figure  9.  S wave anisotropy generated by pPv, Pv, and Fp under simple shear (a), pure shear (b), and extensional deformations (c) in the lower mantle (modified from Creasy et al., 2021). The red and blue colors denote weak and strong anisotropy, respectively; maximum values are labeled above each subfigure. pPv has three possible fabrics, which are pPv1 (010) [100], pPv2 (001) [100], and pPv3 {011}[0–11] + (010) [100], from left to right

  • [1] Aki K, Lee W H K. 1976. Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times form local earthquakes. A homogeneous initial model[J]. Journal of Geophysical Research: Solid Earth, 81: 4381-4399. doi: 10.1029/JB081i023p04381
    [2] Avants M, Lay T, Garnero E J. 2006. A new probe of ULVZ S-wave velocity structure: Array stacking of ScS waveforms[J]. Geophysical Research Letters, 33: L07314.
    [3] Berryman J G. 2000. Seismic velocity decrement ratios for regions of partial melt in the lower mantle[J]. Geophysical Research Letters, 27(3): 421-424. doi: 10.1029/1999GL008402
    [4] Breger L, Romanowicz B. 1998. Three-dimensional structure at the base of the mantle beneath the central Pacific[J]. Science, 282: 718-720. doi: 10.1126/science.282.5389.718
    [5] Brodholt J P, Hellfrich G, Trampert J. 2007. Chemical versus thermal heterogeneity in the lower mantle: The most likely role of anelasticity[J]. Earth Planet Science Letters, 262: 429-437. doi: 10.1016/j.jpgl.2007.07.054
    [6] Brown S P, Thorne M S, Miyagi L, Rost S. 2015. A compositional origin to ultralow-velocity zones[J]. Geophysical Research Letters, 42(4): 1039-1045. doi: 10.1002/2014GL062097
    [7] Bull A L, McNamara A K, Ritsema J. 2009. Synthetic tomography of plume clusters and thermochemical piles[J]. Earth Planet Science Letters, 278: 152-162. doi: 10.1016/j.jpgl.2008.11.018
    [8] Bullen K E. 1949. Compressibility-pressure hypothesis and the earth's interior[J]. Geophysical Journal International, 5: 335-368. doi: 10.1111/j.1365-246X.1949.tb02952.x
    [9] Burke K, Torsvik T. 2004. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle[J]. Earth and Planetary Science Letters, 227: 531-538. doi: 10.1016/j.jpgl.2004.09.015
    [10] Castle J C, van Der Hilst R D. 2000. The core–mantle boundary under the Gulf of Alaska: No ULVZ for shear waves[J]. Earth and Planetary Science Letters, 176(3-4): 311-321. doi: 10.1016/S0012-821X(00)00027-3
    [11] Cobden L, Goes S, Ravenna M, et al. 2009. Thermochemical interpretation of 1-D seismic data for the lower mantle: the signifi- cance of non-adiabatic thermal gradients and compositional heterogeneity[J]. Journal of Geophysical Research: Solid Earth, 114: B11309.
    [12] Cottaar S, Romanowicz B. 2012. An unsually large ULVZ at the base of the mantle near Hawaii[J]. Earth and Planetary Science Letters, 355: 213-222.
    [13] Creasy N, Long M D, Ford H A. 2017. Deformation in the lowermost mantle beneath Australia from observations and models of seismic anisotropy[J]. Journal of Geophysical Research: Solid Earth, 122: 5243-5267. doi: 10.1002/2016JB013901
    [14] Creasy N, Miyagi L, Long M D. 2021. A library of elastic tensors for lowermost mantle seismic anisotropy studies and comparison with seismic observations[J]. Geochemistry, Geophysics, Geosystems, 21: e2019GC008883.
    [15] Davies D R, Goes S, Lau H C P. 2015. Thermally Dominated Deep Mantle LLSVPs: A Review[M]// Khan A, Deschamps F. The Earth's Heterogeneous Mantle, 441-477.
    [16] Deng J, Long M D, Creasy N. 2017. Lowermost mantle anisotropy near the eastern edge of the Pacific LLSVP: Constraints from SKS-SKKS splitting intensity measurements[J]. Geophysical Journal International, 210: 774-786. doi: 10.1093/gji/ggx190
    [17] Doubrovine P, Steinberger B, Torsvik T. 2016. A failure to reject: Testing the correlation between large igneous provinces and deep mantle structures with EDF statistics[J]. Geochemistry, Geophysics, Geosystems, 17: 1130-1163.
    [18] Dziewonski A M, Hager B H, O’Connell R J. 1977. Large scale heterogeneity in the lower mantle[J]. Journal of Geophysical Research: Solid Earth, 82: 239-255. doi: 10.1029/JB082i002p00239
    [19] Dziewonski A M, Forte A M, Su W J, Woodward R L. 1993. Seismic tomography and geodynamics[C]//Relating Geophysical Structures and Processes, The Jeffreys Volume. 67-105.
    [20] Fan A, Sun X L. 2021. Origin of ULVZs near the African LLSVP: Implications from their distribution and characteristics[J]. Earthquake Science, 34(4): 299-309. doi: 10.29382/eqs-2021-0042
    [21] Fan A, Sun X L, Zhang Z, et al. 2021. From subduction to LLSVP: The core-mantle boundary heterogeneities across north Altantic[J]. Geochemistry, Geophysics, Geosystems, 23: e2021GC009879.
    [22] Ford H A, Long M D, He X. 2015. Lowermost mantle flow at the eastern edge of the African large low shear velocity province[J]. Earth and Planetary Science Letters, 420: 12-22. doi: 10.1016/j.jpgl.2015.03.029
    [23] Ford S R, Garnero E J, McNamara A K. 2006. A strong lateral shear velocity gradient and anisotropy heterogeneity in the lowermost mantle beneath the southern Pacific[J]. Journal of Geophysical Research: Solid Earth, 111: B03306.
    [24] French S W, Romanowicz B. 2015. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots[J]. Nature, 525: 95-99. doi: 10.1038/nature14876
    [25] Frost D A, Rost S. 2014. The P-wave boundary of the large-low shear velocity province beneath the Pacific[J]. Earth and Planet Science Letters, 403: 380-392. doi: 10.1016/j.jpgl.2014.06.046
    [26] Garnero E J, Helmberger D V, Grand S. 1993b. Preliminary evidence for a lower mantle shear wave velocity discontinuity beneath the central Pacific[J]. Physics of the Earth and Planetary Interiors, 79: 335-347. doi: 10.1016/0031-9201(93)90113-N
    [27] Garnero E J, Helmberger D V. 1995. A very slow basal layer underlying large-scale low- velocity anomalies in the lower mantle beneath the Pacific: Evidence from core phases[J]. Physics of the Earth and Planetary Interiors, 91: 161-176. doi: 10.1016/0031-9201(95)03039-Y
    [28] Garnero E J, Helmberger D V. 1996. Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific[J]. Geophysics Research Letter, 23: 977-980. doi: 10.1029/95GL03603
    [29] Gassner A, Thomas C, Kruger F, Weber M. 2015. Probing the core-mantle boundary beneathEurope and Western Eurasia: A detailed study using PcP[J]. Physics of the Earth and Planetary Interiors, 246: 9-24.
    [30] Grand S P. 1994. Mantle shear structure beneath the Americas and surrounding oceans[J]. Journal of Geophysical Research: Solid Earth, 99: 11591-11622. doi: 10.1029/94JB00042
    [31] Grund, M, Ritter J R. 2019. Widespread seismic anisotropy in Earth’s lowermost mantle beneath the Atlantic and Siberia[J]. Geology, 47(2): 123-126. doi: 10.1130/G45514.1
    [32] He Y M, Wen L X, Zheng T Y. 2006. Geographic boundary and shear wave velocity structure of the "Pacific anomaly" near the core-mantle boundary beneath western Pacific[J]. Earth and Planetary Science Letters, 244: 302-314. doi: 10.1016/j.jpgl.2006.02.007
    [33] He Y M, Wen L X. 2009. Structural features and shear-velocity structure of the "Pacific Anomaly''[J]. Journal of Geophysical Research: Solid Earth, 114: B02309
    [34] He Y M, Wen L X. 2011. Seismic velocity structures and detailed features of the D' discontinuity near the core-mantle boundary beneath eastern Eurasia[J]. Physics of the Earth and Planetary Interiors, 189(3-4): 176-184. doi: 10.1016/j.pepi.2011.09.002
    [35] He Y M, Wen L X. 2012. Geographic boundary of the "Pacific Anomaly" and its geometry and transitional structure in the north[J]. Journal of Geophysical Research: Solid Earth, 117: B09308.
    [36] Helmberger D V, Wen L, Ding X. 1998. Seismic evidence that the source of the Iceland hotspot lies at the core-mantle boundary[J]. Nature, 396: 251-255. doi: 10.1038/24357
    [37] Helmberger D V, Ni S D. 2005. Seismic Modeling Constraints on the South African Super Plume[M]//van der Hilst R D, Bass J D, Matas J, Trampert J. Earth's Deep Mantle: Structure, Composition, and Evolution. American Geophysical Union (AGU) ,160: 63-81.
    [38] Hernlund J W, Thomas C, Tackley P J. 2005. A doubling of the post-perovskite phase boundar and structure of the Earth’s lowermost mantle[J]. Nature, 434: 882-886. doi: 10.1038/nature03472
    [39] Hernlund J W, Houser C. 2008. On the statistical distribution of seismic velocities in Earth’s deep mantle[J]. Earth and Planetary Science Letters, 265: 423-437. doi: 10.1016/j.jpgl.2007.10.042
    [40] Houard S, Nataf H C. 1993. Lateraaly varying reflector at the top of D” beneath northern Siberia[J]. Geophysical Journal International, 115: 168-182. doi: 10.1111/j.1365-246X.1993.tb05597.x
    [41] Hutko A R, Lay T, Revenaugh J. 2009. Localized double-array stacking analysis of PcP: D '' and ULVZ structure beneath the Cocos plate, Mexico, central Pacific, and north Pacific[J]. Physics of the Earth and Planetary Interiors, 173: 60-74. doi: 10.1016/j.pepi.2008.11.003
    [42] Idehara K, Yamada A, Zhao D. 2007. Seismological constraints on the ultralow velocity zones in the lowermost mantle from core-reflected waves[J]. Physics of the Earth and Planetary Interiors, 165: 25-46. doi: 10.1016/j.pepi.2007.07.005
    [43] Jeffreys H, Bullen K E. 1940. Seismological Tables[S]. British Association Seismological Committee, London.
    [44] Jenkins J, Mousavi S, Li Z, Cottaar S. 2021. A high-resolution map of Hawaiian ULVZ morphology from ScS phases[J]. Earth and Planetary Science Letters, 563: 116885. doi: 10.1016/j.jpgl.2021.116885
    [45] Karato S I, Karki B B. 2001. Origin of lateral variation of seismic wave velocities and density in the deep mantle[J]. Journal of Geophysical Research, 106: 21771-21783. doi: 10.1029/2001JB000214
    [46] Kawai K, Takeuchi N, Geller R J, Fuji N. 2007. Possible evidence for a double-crossing phase transition in D" beneath central America from inversion of seismic waveforms[J]. Geophysical Research Retters, 34: l09314.
    [47] Kendall J M, Nangini C. 1996. Lateral variations in D" below the Caribbean[J]. Geophysical Research Letters, 23(4): 399-402. doi: 10.1029/95GL02659
    [48] Kendall J M, Silver P G. 1996. Constraints from seismic anisotropy on the nature of the lowermost mantle[J]. Nature, 381(6581): 409-412. doi: 10.1038/381409a0
    [49] Khan A, Connolly J A D, Taylor S R. 2008. Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth’s mantle[J]. Journal of Geophysical Research: Solid Earth, 113: B09308.
    [50] Kim D, Lekic V, Menard B, et al. 2020. Sequencing seismograms: A panoptic view of scattering in the core-mantle boundary region[J]. Science, 368: 1223-1228. doi: 10.1126/science.aba8972
    [51] Ko J Y T, Hung S H, Kuo B Y, Li Z. 2017. Seismic evidence for the depression of the D" discontinuity beneath the Caribbean: Implication for slab heating from the Earth's core[J]. Earth and Planetary Science Letters, 467: 128-137. doi: 10.1016/j.jpgl.2017.03.032
    [52] Kohler M D, Vidale J E, Davis P M. 1997. Complex scattering within D'' observed on the very dense Los Angeles region seismic experiment passive array[J]. Geophysical Research Letters, 24: 1855-1858. doi: 10.1029/97GL01823
    [53] Koppers A A P, Becker T W, Jackson M G, et al. 2021. Mantle plumes and their role in Earth processes[J]. Nature Reviews Earth Environment, 2: 382-401. doi: 10.1038/s43017-021-00168-6
    [54] Lay T, Helmberger D V. 1983. A lower mantle S-wave triplication and the shear velocity structure of D"[J]. Geophysical Journal International, 75: 799-837. doi: 10.1111/j.1365-246X.1983.tb05010.x
    [55] Lay T. 1987. Structure of the Earth: Mantle and core[J]. Reviews of Geophysics, 25: 1161-1167. doi: 10.1029/RG025i006p01161
    [56] Lay T, Garnero E J, Russell S A. 2004. Lateral variation of the D" discontinuity beneath the Cocos Plate[J]. Geophysical Research Letters, 31: l15612. doi: 10.1029/2004GL020300
    [57] Lay T, Hernlund J, Garnero E, Thorne M. 2006. A post-perovskite lens and D” heat flux beneath the central Pacific[J]. Science, 314: 1272-1276. doi: 10.1126/science.1133280
    [58] Lekic V, Cottaar S, Dziewonski A, Romanowicz B. 2012. Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity[J]. Earth and Planetary Science Letters, 357-358: 68-77. doi: 10.1016/j.jpgl.2012.09.014
    [59] Li G, Bai L, Ritsema J. 2020. Lateral variations of shear-wave velocity in the D” layer beneath the Indian-Eurasian plate collision zone[J]. Geophysical Research Letter, 47: e2019GL086856.
    [60] 李娟, 陈思丹, 何小波, 等. 2023. 中-下地幔散射体: 探测方法、研究进展和展望[J]. 地球与行星物理论评(中英文), 54(3): 339-354

    Li J, Chen S D, He X B, et al. 2023. Mid-lower mantle scatters: Dectection methods, research progress and prospect[J]. Reviews of Geophysics and Planetary Physics, 54(3): 339-354 (in Chinese).
    [61] Li J W, Sun D Y, Bower D J. 2022b. Slab control on the mega-sized north Pacific ultra-low velocity zone[J]. Nature Communications, 13: 1042. doi: 10.1038/s41467-022-28708-8
    [62] Li M, McNamara A K, Garnero E J, Yu S. 2017. Compositionally-distinct ultra-low velocity zones on Earth’s core-mantle boundary[J]. Nature Communications, 8: 177. doi: 10.1038/s41467-017-00219-x
    [63] Li Y, Miller M, Sun D. 2019. Seismic imaging of D” region beneath the central Atlantic[J]. Physics of the Earth and Planetary Interiors, 292: 76-86. doi: 10.1016/j.pepi.2019.05.005
    [64] Li Z, Leng K, Jenkins J, Cottaar S. 2022a. Kilometer-scale structure on the core-mantle boundary near Hawaii[J]. Nature Communications, 13: 2787.
    [65] Liu X F, Dziewonski A M. 1997. Global Analysis of Shear Wave Velocity Anomalies in the Lowermost Mantle[M]// Gurnis M, Wysession M E, Knittle E, Buffett B A. The Core-Mantle Boundary Region. American Geophysical Union (AGU), 28: 21- 36.
    [66] Long M D. 2009. Complex anisotropy in D″ beneath the eastern Pacific from SKS-SKKS splitting discrepancies[J]. Earth and Planetary Science Letters, 283(1-4): 181-189. doi: 10.1016/j.jpgl.2009.04.019
    [67] Long M D, Lynner C. 2015. Seismic anisotropy in the lowermost mantle near the Perm anomaly[J]. Geophysical Research Letters, 42: 7073-7080. doi: 10.1002/2015GL065506
    [68] Luo S N, Ni S D, Helmberger D V. 2001. Evidence for a sharp lateral variation of velocity at the core-mantle boundary from multipathed PKPab[J]. Earth and Planetary Science Letters, 189: 155-164. doi: 10.1016/S0012-821X(01)00364-8
    [69] Lutz K A, Long M D, Creasy N, Deng J. 2020. Seismic anisotropy in the lowermost mantle beneath North America from SKS-SKKS splitting intensity discrepancies[J]. Physics of the Earth and Planetary Interiors, 305: 106504. doi: 10.1016/j.pepi.2020.106504
    [70] Lynner C, Long M D. 2012. Evaluating contributions to SK(K)S splitting from lower mantle anisotropy: A case study from station DBIC, Cote DIvoire[J]. Bulletin of the Seismological Society of America, 102(3): 1030-1040. doi: 10.1785/0120110255
    [71] Lynner C, Long M D. 2014. Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP[J]. Geophysical Research Letters, 41: 3447-3454. doi: 10.1002/2014GL059875
    [72] Ma X L, Sun X L. 2017. Ultra-low velocity zone heterogeneities at the core-mantle boundary from diffracted PKKPab waves[J]. Earth, Planets Space, 69(1): 115.
    [73] Ma X L, Sun X L, Thomas C. 2019. Localized ultra-low velocity zones at the eastern boundary of Pacific LLSVP[J]. Earth and Planetary Science Letters, 507: 40-49. doi: 10.1016/j.jpgl.2018.11.037
    [74] Makeyeva L I, Vinnik L P, Roecker S W. 1992. Shear-wave splitting and small-scale convection in the continental upper mantle[J]. Nature, 358(6382): 144-147. doi: 10.1038/358144a0
    [75] McNamara A K, Zhong S. 2005. Thermochemical structures under Africa and the Pacific Ocean[J]. Nature, 437: 1136-1139. doi: 10.1038/nature04066
    [76] McNamara A K, Garnero E J, Rost S. 2010. Tracking deep mantle reservoirs with ultra-low velocity zones[J]. Earth and Planetary Science Letters, 299: 1-9. doi: 10.1016/j.jpgl.2010.07.042
    [77] McNamara A K. 2019. A review of large low shear velocity provinces and ultra low velocity zone[J]. Tectonophysics, 760: 199-220. doi: 10.1016/j.tecto.2018.04.015
    [78] Mitchell B J, Helmberger D V. 1973. Shear velocities at the base of the mantle from observations of S and ScS[J]. Journal of Geophysical Research, 78(26): 6009-6020. doi: 10.1029/JB078i026p06009
    [79] Mori J, Helmberger D. 1995. Localized boundary layer below the mid-Pacific velocity anomaly identified from a PcP precursor[J]. Journal of Geophysical Research, 100: 20359-20365. doi: 10.1029/95JB02243
    [80] Murakami M, Hirose K, Sata N, et al. 2004. Phase transition of MgSiO3 perovskite in the deep lower mantle[J]. Science, 304: 855-858. doi: 10.1126/science.1095932
    [81] Ni S D, Helmberger D V. 2001. Probing an ultra-low velocity zone at the core mantle boundary with P and S waves[J]. Geophysical Research Letters, 28: 2345-2348. doi: 10.1029/2000GL012766
    [82] Ni S D, Helmberger D V, Tan E, Gurnis M. 2002. Sharp sides to the African superplume[J]. Science, 296: 1850-1852. doi: 10.1126/science.1070698
    [83] Ni S D, Helmberger D V. 2003a. Further constraints on the African superplume structure[J]. Physics of the Earth and Planetary Interiors, 140: 243-251. doi: 10.1016/j.pepi.2003.07.011
    [84] Ni S D, Helmberger D V. 2003b. Ridge-like lower mantle structure beneath South Africa[J]. Journal of Geophysical Research: Solid Earth, 108: 2094.
    [85] Ni S D, Helmberger D V. 2003c. Seismological constraints on the South African superplume could be the oldest distinct structure on Earth[J]. Earth and Planetary Science Letters, 206: 119-131. doi: 10.1016/S0012-821X(02)01072-5
    [86] Niu F. 2014. Distinct compositional thin layers at mid-mantle depths beneath northeast China revealed by the USArray[J]. Earth and Planetary Science Letters, 402: 305-312. doi: 10.1016/j.jpgl.2013.02.015
    [87] Nowacki A, Wookey J, Kendall J M. 2010. Deformation of the lowermost mantle from seismic anisotropy[J]. Nature, 467: 1091-1094. doi: 10.1038/nature09507
    [88] Pachhai S, Dettmer J, Tkalcic H. 2015. Ultra-low velocity zones beneath the Philippine and Tasman Seas revealed by a trans-dimensional Bayesian waveform inversion[J]. Geophysical Journal International, 203: 1302-1318. doi: 10.1093/gji/ggv368
    [89] Panning M, Romanowicz B. 2006. A three-dimensional radially anisotropic model of shear velocity in the whole mantle[J]. Geophysical Journal International, 167: 361-379. doi: 10.1111/j.1365-246X.2006.03100.x
    [90] Persh S E, Vidale J E, Earle P S. 2001. Absence of short-period ULVZ precursors to PcP and ScP from two regions of the CMB[J]. Geophysical Research Letters, 28(2): 387-390. doi: 10.1029/2000GL011607
    [91] Reiss M C, Long M D, Creasy N. 2019. Lowermost mantle anisotropy beneath Africa from differential SKS- SKKS shear-wave splitting[J]. Journal of Geophysical Research: Solid Earth, 124: 8540-8564. doi: 10.1029/2018JB017160
    [92] Revenaugh J, Meyer R. 1997. Seismic evidence of partial melt within a possibly ubiquitous low- velocity layer at the base of the mantle[J]. Science, 277: 670-673. doi: 10.1126/science.277.5326.670
    [93] Ritsema J, Ni S, Helmberger D V, Crotwell H P. 1998. Evidence for strong shear velocity reductions and velocity gradients in the lower mantle beneath Africa[J]. Geophysical Research Letters, 25: 4245-4248. doi: 10.1029/1998GL900127
    [94] Ritsema J, McNamara A K, Bull A L. 2007. Tomographic filtering of geodynamic models: Implications for model interpretation and large-scale mantle structure[J]. Journal of Geophysical Research: Solid Earth, 112: B01303.
    [95] Rost S, Garnero E J, Williams Q. 2006. Fine-scale ultralow-velocity zone structure from high- frequency seismic array data[J]. Journal of Geophysical Research: Solid Earth, 111: B09310.
    [96] Russell S A, Lay T, Garnero E J. 1998. Seismic evidence for small-scale dynamics in the lowermost mantle at the root of the Hawaiian hotspot[J]. Nature, 396: 255-258. doi: 10.1038/24364
    [97] Russell S A, Reasoner C, Lay T, Revenaugh J. 2001. Coexisting shear and compressional-wave seismic velocity discontinuities beneath the central Pacific[J]. Geophysical Research Letters, 28: 2281-2284. doi: 10.1029/2000GL012553
    [98] Schubert G, Masters G, Tackley P J, Olson P. 2004. Superplumes or plume clusters?[J]. Physics of the Earth and Planetary Interiors, 146: 147–162. doi: 10.1016/j.pepi.2003.09.025
    [99] Schuberth B S A, Bunge H P, Ritsema J. 2009. Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone?[J]. Geochemistry, Geophysics, Geosystems, 10: Q05W03.
    [100] Shang X F, Shim S H, de Hoop M, van der Hilst R. 2014. Multiple seismic reflectors in Earth’s lowermost mantle[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(7): 2442-2446. doi: 10.1073/pnas.1312647111
    [101] 沈旭章, 周蕙兰. 2009. 用PKIKP的前驱震相探测青藏高原东部地幔底部的散射体[J]. 科学通报, 54(24): 3844-3851 doi: 10.1360/csb2009-54-24-3844

    Shen X Z, Zhou H L. 2009. Locating seismic scatterers at the base of the mantle beneath eastern Tibet with PKIKP precursors[J]. Chinese Science Bulletin, 54(24): 3844-3851 (in Chinese). doi: 10.1360/csb2009-54-24-3844
    [102] Simmons N A, Grand S P. 2002. Partial melting in the deepest mantle[J]. Geophysical Research Letters, 29: 1552 doi: 10.1029/2001GL013716
    [103] Su W J, Woodward R L, Dziewonski A M. 1992. Degree 12 model of shear velocity heterogeneity in the mantle[J]. Journal of Geophysical Research, 99: 6945-6980.
    [104] Sun D, Helmberger D. 2008. Lower mantle tomography and phase change mapping[J]. Journal of Geophysical Research: Solid Earth, 113: B10305. doi: 10.1029/2007JB005289
    [105] Sun D Y, Helmberger D V, Gurnis M. 2010. A narrow, mid-mantle plume below southern Africa[J]. Geophysical Research Letters, 37: L09302.
    [106] Sun D Y, Miller M S. 2013. Study of the western edge of the African large low shear velocity province[J]. Geochemistry, Geophysics, Geosystems, 14: 3109-3125.
    [107] Sun D Y, Helmberger D, Miller M S, Jackson J M. 2016. Major disruption of D′′ beneath Alaska[J]. Journal of Geophysical Research: Solid Earth, 121: 3534-3556. doi: 10.1002/2015JB012534
    [108] Sun N, Shi W, Mao Z, et al. 2018. High pressure-temperature study on the thermal equations of state and phase diagram of SiO2[J]. Journal of Geophysical Research: Solid Earth, 124. doi: 10.1029/2019JB017853.
    [109] Sun X L, Song D X, Zheng S H, Helmberger D V. 2007. Evidence for a chemical-thermal structure at base of mantle from sharp lateral P-wave variations beneath central America[J]. Proceedings of the National Academy of Sciences of the United States of America, 104: 26-30. doi: 10.1073/pnas.0609143103
    [110] Tackley P J. 2002. Strong heterogeneity caused by deep mantle layering[J]. Geochemistry, Geophysics, Geosystem, 3: 1024.
    [111] Tackley P J. 2007. Mantle geochemical geodynamics[J]. Treatise on Geophysics, 7: 437-505. doi: 10.1016/B978-044452748-6/00124-3
    [112] Tan E, Gurnis M. 2005. Metastable superplumes and mantle compressibility[J]. Geophysical Research Letters, 32: L20307. doi: 10.1029/2005GL024190
    [113] Tao J T, Hu J F, Jin C, He X B. 2020. Seismic evidence links the subducted Mongol-Okhotsk slab to deformation in D″ near the northeastern margin of the Perm anomaly[J]. Tectonophysics, 774: 228297. doi: 10.1016/j.tecto.2019.228297
    [114] Thorne M S, Garnero E J, Grand S P. 2004. Geographic correlation between hotspots and deep mantle lateral shear-wave velocity gradients[J]. Physics of the Earth and Planetary Interiors, 146: 47-63. doi: 10.1016/j.pepi.2003.09.026
    [115] Thorne M S, Garnero E J, Jahnke G, et al. 2013a. Mega ultra low velocity zone and mantle flow[J]. Earth and Planetary Science Letters, 364: 59-67. doi: 10.1016/j.jpgl.2012.12.034
    [116] Thorne M S, Zhang Y, Ritsema J. 2013b. Evaluation of 1-D and 3-D seismic models of the Pacific lower mantle with S SKS and SKKS traveltimes and amplitudes[J]. Journal of Geophysical Research: Solid Earth, 118(3): 985-995. doi: 10.1002/jgrb.50054
    [117] Thorne M S, Leng K, Pachhai S, et al. 2021. The most parsimonious ultralow-velocity zone distri- bution from highly anomalous SPdKS waveforms[J]. Geochemistry, Geophysics, Geosystems, 22: e2020GC009467.
    [118] To A, Fukao Y, Tsuboi S. 2011. Evidence for a thick and localized ultra low shear velocity zone at the base of the mantle beneath the central Pacific[J]. Physics of the Earth and Planetary Interiors, 184(3-4): 119-133. doi: 10.1016/j.pepi.2010.10.015
    [119] Torsvik T, van der Voo R, Doubrovine P, et al. 2014. Deep mantle structure as a reference frame for movements in and on the Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(24): 8735-8740. doi: 10.1073/pnas.1318135111
    [120] van der Hilst R, de Hoop M, Wang P, et al. 2005. Seismostratigraphy and thermal structure of Earth’s core-mantle boundary region[J]. Science, 315: 1813-1817.
    [121] Vanacore E A, Rost S, Thorne M S. 2016. Ultralow-velocity zone geometries resolved by multidimensional waveform modelling[J]. Geophysical Journal International, 206: 659-674. doi: 10.1093/gji/ggw114
    [122] Vidale J E, Benz H M. 1992. A sharp and flat section of the core-mantle boundary[J]. Nature, 359(6396): 627-629. doi: 10.1038/359627a0
    [123] Wang Y, Wen L X. 2004. Mapping the geometry and geographic distribution of a very low velocity province at the base of the Earth’s mantle[J]. Journal of Geophysical Research: Solid Earth, 109: B10305.
    [124] Wang Y, Wen L X. 2007a. Geometry and P and S velocity structure of the “African Anomaly”[J]. Journal of Geophysical Research: Solid Earth, 112: B05313.
    [125] Wang Y, Wen L. 2007b. Complex seismic anisotropy at the border of a very low velocity province at the base of the Earth’s mantle[J]. Journal of Geophysical Research: Solid Earth, 112(B9): B09305.
    [126] Weber M, Kornig M. 1992. A search for anomalies in the lowermost mantle using seismic bulletins[J]. Physics of the Earth and Planetary Interiors, 73: 1-28. doi: 10.1016/0031-9201(92)90104-4
    [127] Williams Q, Garnero E J. 1996. Seismic evidence for partial melt at the base of Earth’s mantle[J]. Science, 273: 1528-1530. doi: 10.1126/science.273.5281.1528
    [128] Wolf J, Creasy N, Long M D, Thomas C. 2019. An investigation of seismic anisotropy in the lowermost mantle beneath Iceland[J]. Geophysical Journal International, 219: S152-S166. doi: 10.1093/gji/ggz312
    [129] Young C J, Lay T. 1987. Evidence for a shear velocity discontinuity in the lower mantle beneth India and the Indian Ocean[J]. Physics of the Earth and Planetary Interiors, 49: 37-53. doi: 10.1016/0031-9201(87)90131-2
    [130] Young C J. 1990. Multiple phase analysis of the shear velocity structure in the D” region beneath Alaska[J]. Journal of the Goephysical Research: Solid Earth, 95(B11): 17385-17402. doi: 10.1029/JB095iB11p17385
    [131] Yu J, Sun D. 2022. A lower mantle slab below the East Asia margin constrained by seismic waveform complexity[J]. Journal of Geophysical Research: Solid Earth, 127(6): e2022JB024246.
    [132] Yu S, Garnero E J. 2018. Ultra-low velocity zone locations: A global assessment[J]. Geochemistry, Geophysics, Geosystems, 19: 396-414.
    [133] Yuan K Q, Romanowicz B. 2017. Seismic evidence for partial melting at the root of major hot spot plumes[J]. Science, 357: 393-396. doi: 10.1126/science.aan0760
    [134] Zhang B L, Ni S D, Chen Y. 2018. Constraints on small-scale heterogeneity in the lowermost mantle from observations of near podal PcP precursors[J]. Earth and Planetary Science Letters, 489: 267-276. doi: 10.1016/j.jpgl.2018.01.033
    [135] Zhang B L, Ni S D, Sun D. 2019. Seismological Constraints on the Small-Scale Heterogeneity in the Lowermost Mantle Beneath East Asia and Implication for Its Mineralogical Origin[J]. Geophysical Research Letters, 46(10): 5225-5233. doi: 10.1029/2019GL082296
    [136] Zhang C, Huang Z. 2022. D″ anisotropy inverted from shear wave splitting intensity[J]. Earthquake Science, 35: 93-104. doi: 10.1016/j.eqs.2022.05.003
    [137] Zhang L, Li J, Wang T, et al. 2020. Body Waves Retrieved From Noise Cross-Correlation Reveal Lower Mantle Scatterers Beneath the Northwest Pacific Subduction Zone[J]. Geophysical Research Letters, 47(19): e2020GL088846.
  • 加载中
图(9)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  323
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-14
  • 修回日期:  2023-03-07
  • 录用日期:  2023-03-08
  • 网络出版日期:  2023-03-17
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回