Review of the identification of near-fault velocity pulse-like strong ground motions
-
摘要: 速度脉冲型地震动对近断层区域工程结构有特殊的破坏作用,是造成近断层区域震害的主要影响因素之一. 开展近断层速度脉冲型地震动研究对揭示近断层区域工程结构的地震破坏机理、开展抗震设防以及抗震设计具有重要价值. 速度脉冲的有效识别是关键环节,主要历经定性、半定量、定量的过程. 其中定量识别方法具有可重复性、可批量处理等优点,越来越受到广泛认可和应用. 然而目前定量速度脉冲识别方法尚未有统一的、明确的判别原则. 本文从识别条件、基本原理、关键步骤、应用范围等方面系统总结并详细介绍了目前国内外常用的三类定量速度脉冲识别方法,即基于连续小波变换的速度脉冲识别方法、基于能量的速度脉冲识别方法以及多速度脉冲定量识别方法,并推荐了这三类方法中的代表方法,分析了其优缺点. 分析指出速度脉冲识别方法的不同,本质是速度脉冲主要特征波形的提取手段以及量化的判别标准的不同. 各种方法都有自身的优势,但由于速度脉冲记录波形的不稳定性,没有任何一种方法可以达到百分之百的识别率. 此外,现有的定量识别方法都是基于信号处理方法和脉冲特性基本原理,并未考虑速度脉冲产生机制. 因此需要综合上述三点来综合判别速度脉冲,形成完善的脉冲判别体系. 最后,探讨了定量的速度脉冲识别方法进一步提升的关键问题和研究重点.Abstract: Strong pulse-like ground motions have caused extensive damage to many engineering structures and are one of the main factors influencing earthquake damage in near-fault regions. Therefore, it is necessary to study near-fault velocity pulse-like ground motions to reveal the seismic failure mechanism of engineering structures in near-fault areas and to carry out seismic fortification and seismic design. The key step is the effective identification of strong pulse-like ground motions. The strong pulse-like ground motions identified in previous studies have typically been selected by subjective judgment, because the velocity-time history of the ground motion is dominated by a large pulse. The selection of pulse-like ground motions using these approaches requires a certain level of judgment. However, the classification may not be obvious for many ground motions. Numerous researchers have attempted to capture pulse-like features using different approaches, of which simple pulse models, known as semi-quantitative methods, are commonly used. However, one limitation of semi-quantitative approaches is that most do not provide a quantitative pulse-detection scheme; that is, the classification of pulse-like ground motions may not be easily reproducible. Many quantitative classification methods for pulse-like ground motions have been developed. These quantitative classifications provide electronic libraries of recorded ground motions, list statistics indicating whether a given ground motion contains a velocity pulse, and help the science and engineering communities to access these ground motions and study their effects for research or practical applications. In brief, the identification methods for strong velocity pulse-like ground motions have undergone qualitative, semi-quantitative, and quantitative development processes. Among these methods, the quantitative identification method has the advantages of repeatability and batch processing and is increasingly recognized and applied. However, there is no uniform and definite classification principle for quantitative velocity pulse recognition methods. In this paper, three types of quantitative identification methods commonly used for velocity pulses are systematically summarized and introduced in detail from the aspects of recognition conditions, basic principles, key steps, and application scope. Representatives of these three methods are recommended, including a quantitative classification method using wavelet analysis, a quantitative identification method based on energy, and an efficient algorithm based on significant velocity half-cycles. In addition, their advantages and disadvantages were analyzed. Because of the instability of the velocity pulse recording waveform, no method can achieve a pulse recognition rate of 100%. In addition, although quantitative methods have made great progress in pulse recognition, period determination, and pulse recording direction determination, they are all based on the basic principles of signal processing methods and pulse characteristics without considering the mechanism of velocity pulse generation. Thus, it is necessary to include the above mentioned three points to synthetically identify the strong ground motions of the velocity pulse and form an optimal pulse-discriminant system. Finally, the key problems affecting the further improvement of the quantitative velocity pulse recognition method are discussed, and the research emphasis for its future development is highlighted. This provides a basic reference for beginners in the field.
-
图 1 典型近断层破裂方向性效应速度脉冲(TCU065)和滑冲效应速度脉冲(MZQ-EW)记录的速度时程和位移时程(修改自赵晓芬和温增平,2022)
Figure 1. The velocity and displacement time histories of typical strong pulse-like ground motions caused by forward directivity and fling effects (modified from Zhao and Wen, 2022)
图 2 2008年汶川地震51JYT记录出现显著速度脉冲的方位(引自谢俊举等,2017)
Figure 2. Azimuth showing a distinct pulse for the 51JYT record during the 2008 Wenchuan earthquake (from Xie et al., 2017)
图 3 以2018年台湾花莲地震中HWA028台站记录为例说明利用小波方法从原始速度脉冲记录中提取长周期脉冲信号的过程(修改自赵晓芬,2021)
Figure 3. Extraction of long-period pulses from the original strong motion record using the wavelet method. The time history with a velocity pulse for the station, HWA028, from the 2018 Hualien earthquake is shown (modified from Zhao, 2021)
图 4 以2018年台湾花莲地震中HWA012站为例给出方向性速度脉冲. 其中用垂线标出原始记录能量达到17%和脉冲记录中能量达到5%对应的时间(修改引自赵晓芬和温增平,2022)
Figure 4. The HWA012 station as an example of an early-arriving pulse. The times correspond to t17%,original and t5%,pulse, and the pulses are marked with vertical lines (modified from Zhao and Wen, 2022)
图 5 多速度脉冲定量识别方法算例. (a)以1979年美国因皮里尔河谷(Imperial Valley)地震中EI Centro Array#4台站记录为例,说明单循环速度脉冲识别;(b)以1994年北岭地震(Northridge-01)地震中LA Dam台站记录为例,说明多脉冲的识别(修改自Zhai et al., 2018)
Figure 5. Examples of the multi-velocity pulse quantitative recognition method. (a) A pulse-like ground motion with only one velocity pulse; (b) A pulse-like ground motion with multiple velocity pulses (modified from Zhai et al., 2018)
表 1 速度脉冲类型及对应脉冲能量临界值
Table 1. The types of velocity pulses and corresponding critical pulse energy values
脉冲类型 半脉冲数量 脉冲能量临界值 类型I 1 0.30 类型II 2 0.42 类型III 3 0.50 类型IV 4 0.57 类型V 5 0.73 -
[1] Alavi B, Krawinkler H. 2001. Effects of near-fault ground motions on frame structures[R]. California: Blume Earthquake Engineering Center. [2] Alavi B, Krawinkler H. 2004. Behavior of moment-resisting frame structures subjected to near-fault ground motions[J]. Earthquake Engineering and Structural Dynamics, 33: 687-706. doi: 10.1002/eqe.369 [3] Anderson J C, Bertero V V. 1987. Uncertainties in establishing design earthquakes[J]. Journal of Structural Engineering, 113(8): 1709-1724. doi: 10.1061/(ASCE)0733-9445(1987)113:8(1709) [4] Baker J W. 2007. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bulletin of the Seismological Society of America, 97(5): 1486-1501. doi: 10.1785/0120060255 [5] Boore D M, Bommer J J. 2005. Processing of strong-motion accelerograms: Needs, options and consequences[J]. Soil Dynamics Earthquake Engineering, 25(2): 93-115. doi: 10.1016/j.soildyn.2004.10.007 [6] Bray J D, Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dynamics Earthquake Engineering, 24(11): 815-828. doi: 10.1016/j.soildyn.2004.05.001 [7] 常志旺. 2014. 近场脉冲型地震动的量化识别及特性研究[D]. 哈尔滨: 哈尔滨工业大学: 3-4Chang Z W. 2014. Quantitative identification and the characteristics of near-fault pulse-like ground motions[D]. Harbin: Harbin Institute of Technology: 3-4 (in Chinese). [8] Chang Z W, Sun X D, Zhai C H, et al. 2016. An improved energy-based approach for selecting pulse-like ground motions[J]. Earthquake Engineering and Structural Dynamics, 45(14): 2405-2411. doi: 10.1002/eqe.2758 [9] Chang Z W, Gao Q H, Monti G, et al. 2023. Selection of pulse-like ground motions with strong velocity-pulses using moving-average filtering[J]. Soil Dynamics Earthquake Engineering, 164: 107574. doi: 10.1016/j.soildyn.2022.107574 [10] Chen X Y, Wang D S, Zhang R. 2019. Identification of pulse periods in near-fault ground motions using the HHT method[J]. Bulletin of the Seismological Society of America, 109(6): 2384-2398. doi: 10.1785/0120190046 [11] Chen X Y, Wang D S. 2020. Multi-pulse characteristics of near-fault ground motions[J]. Soil Dynamics Earthquake Engineering, 137: 106275. doi: 10.1016/j.soildyn.2020.106275 [12] 陈笑宇, 王东升, 付建宇, 国巍. 2021. 近断层地震动脉冲特性研究综述[J]. 工程力学, 38(8): 1-14, 54 doi: 10.6052/j.issn.1000-4750.2020.08.0582Chen X Y, Wang D S, Fu J G, Guo W. 2021. State-of-the-art review on pulse characteristics of near-fault ground motions[J]. Engineering Mechanics, 38(8): 1-14, 54 (in Chinese). doi: 10.6052/j.issn.1000-4750.2020.08.0582 [13] Dickinson B W, Gavin H P. 2011. Parametric statistical generalization of uniform-hazard earthquake ground motions[J]. Journal of Structural Engineering, 137(3): 410-422. doi: 10.1061/(ASCE)ST.1943-541X.0000330 [14] Feng J, Zhao B M, Zhao T C. 2021. Quantitative identification of near-fault pulse-like ground motions based on variational mode decomposition technique[J]. Soil Dynamics Earthquake Engineering, 151: 107009. doi: 10.1016/j.soildyn.2021.107009 [15] Hall J F, Heaton T H, Halling M W, et al. 1995. Near-source ground motion and its effects on flexible buildings[J]. Earthquake Spectra, 11(4): 569-605. doi: 10.1193/1.1585828 [16] Hayden C P, Bray J D, Abrahamson N A. 2014. Selection of near-fault pulse motions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 140(7): 04014030. doi: 10.1061/(ASCE)GT.1943-5606.0001129 [17] Howard J K, Tracy C A, Burns R G. 2005. Comparing observed and predicted directivity in near-source ground motion[J]. Earthquake Spectra, 21(4): 1063-1092. doi: 10.1193/1.2044827 [18] 胡进军, 谢礼立. 2011. 地震破裂的方向性效应相关概念综述[J]. 地震工程与工程振动, 31(4): 1-8 doi: 10.13197/j.eeev.2011.04.001Hu J J, Xie L L. 2011. Review of rupture directivity related concepts in seismology[J]. Earthquake Engineering and Engineering Vibration, 31(4): 1-8 (in Chinese). doi: 10.13197/j.eeev.2011.04.001 [19] Kuo C H, Huang J Y, Lin C M, et al. 2019. Strong ground motion and pulse-like velocity observations in the near-fault region of the 2018 MW 6.4 Hualien, Taiwan, earthquake[J]. Seismological Research Letters, 90(1): 40-50. doi: 10.1785/0220180195 [20] 李明, 谢礼立, 翟长海. 2009. 近断层脉冲型地震动重要参数的识别方法[J]. 世界地震工程, 25(4): 1-6Li M, Xie L L, Zhai C H. 2009. Identification methods of important parameters for near-fault pulse-type ground motions[J]. Word Earthquake Engineering, 25(4): 1-6 (in Chinese). [21] 李祥秀, 王瑶, 李小军, 等. 2021. 速度脉冲地震动作用下巨-子结构隔震体系的振动台试验研究[J]. 应用基础与工程科学学报, 29(3): 633-644 doi: 10.16058/j.issn.1005-0930.2021.03.009Li X X, Wang Y, Li X J, et al. 2021. Experiment studies on seismic performance of mega-sub isolation system subjected to near-fault ground motions with velocity pulse[J]. Journal of Basic Science and Engineering, 29(3): 633-644 (in Chinese). doi: 10.16058/j.issn.1005-0930.2021.03.009 [22] 刘启方, 袁一凡, 金星, 等. 2006. 近断层地震动的基本特征[J]. 地震工程与工程振动, 26(1): 1-10 doi: 10.3969/j.issn.1000-1301.2006.01.001Liu Q F, Yuan Y F, Jin X, et al. 2006. Basic characteristics of near-fault ground motion[J]. Earthquake Engineering and Engineering Vibration, 26(1): 1-10 (in Chinese). doi: 10.3969/j.issn.1000-1301.2006.01.001 [23] Ma K F, Wu Y M. 2019. Preface to the focus section on the 6 February 2018 MW 6.4 Hualien, Taiwan, earthquake[J]. Seismological Research Letters, 90(1): 15-18. doi: 10.1785/0220180356 [24] Makris N. 1997. Rigidity-plasticity-viscosity: Can electrorheological dampers protect base-isolated structures from near-source ground motions[J]. Earthquake Engineering and Structural Dynamics, 26(5): 571-591. doi: 10.1002/(SICI)1096-9845(199705)26:5<571::AID-EQE658>3.0.CO;2-6 [25] Mavroeidis G P, Papageorgiou A S. 2003. A mathematical representation of near-fault ground motion[J]. Bulletin of the Seismological Society of America, 93(3): 1099-1131. doi: 10.1785/0120020100 [26] Shahi S K, Baker J W. 2011. An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis[J]. Bulletin of the Seismological Society of America, 101(2): 742-755. doi: 10.1785/0120100090 [27] Shahi S K, Baker J W. 2013. A probabilistic framework to include the effects of near-fault directivity in seismic hazard assessment[R]. Berkeley: University of California: 1-77. [28] Shahi S K, Baker J W. 2014. An efficient algorithm to identify strong-velocity pulses in multicomponent ground motions[J]. Bulletin of the Seismological Society of America, 104(5): 2456-2466. doi: 10.1785/0120130191 [29] Sigurðsson G, Rupakhety R, Rahimi S E, Olafsson S. 2020. Effect of pulse-like near-fault ground motions on utility-scale land-based wind turbines[J]. Bulletin of Earthquake Engineering, 18(3): 953-968. doi: 10.1007/s10518-019-00743-9 [30] Somerville P G, Smith N F, Graves R W, Abrahamson N A. 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismological Research Letters, 68(1): 199-222. doi: 10.1785/gssrl.68.1.199 [31] Somerville P G. 2003. Magnitude scaling of the near fault rupture directivity pulse[J]. Physics of the Earth and Planetary Interiors, 137(1-4): 201-212. doi: 10.1016/S0031-9201(03)00015-3 [32] Tang Y C, Zhang J. 2011. Response spectrum-oriented pulse identification and magnitude scaling of forward directivity pulses in near-fault ground motions[J]. Soil Dynamics Earthquake Engineering, 31(1): 59-76. doi: 10.1016/j.soildyn.2010.08.006 [33] Tang Y C, Wu C H, Wu G. 2021. Automated detection of velocity pulses in ground motions based on adaptive similarity search in response spectrum [J]. Soil Dynamics Earthquake Engineering, 6: 106626. [34] 王东升, 陈笑宇, 张锐, 国巍. 2022. 基于希尔伯特-黄变换的近断层地震动脉冲特性研究[J]. 地震学报, 44(5): 824−844.Wang D S, Chen X Y, Zhang R, Guo W. 2022. Characteristics of pulses in near-fault ground motion based on Hilbert-Huang transform[J]. Acta Seismologica Sinica, 44(5): 824-844 (in Chinese). [35] 谢俊举, 李小军, 温增平. 2017. 近断层速度大脉冲对反应谱的放大作用[J]. 工程力学, 34(8): 194-211 doi: 10.6052/j.issn.1000-4750.2016.09.0680Xie J J, Li X J, Wen Z P. 2017. The amplification effects of near-fault distinct velocity pulses on response spectra[J]. Engineering Mechanics, 34(8): 194-211 (in Chinese). doi: 10.6052/j.issn.1000-4750.2016.09.0680 [36] 杨迪雄, 李刚, 程耿东. 2005. 近断层脉冲型地震动作用下隔震结构地震反应分析[J]. 地震工程与工程振动, 25(2): 119-124 doi: 10.3969/j.issn.1000-1301.2005.02.021Yang D X, Li G, Cheng G D. 2005. Seismic analysis of base-isolated structures subjected to near-fault pulse-like ground motions[J]. Earthquake Engineering and Engineering Vibration, 25(2): 119-124 (in Chinese). doi: 10.3969/j.issn.1000-1301.2005.02.021 [37] Zhai C H, Chang Z W, Li S, et al. 2013. Quantitative identification of near-fault pulse-like ground motions based on energy[J]. Bulletin of the Seismological Society of America, 103(5): 2591-2603. doi: 10.1785/0120120320 [38] Zhai C H, Li C, Kunnath S, et al. 2018. An efficient algorithm for identifying pulse-like ground motions based on significant velocity half-cycles[J]. Earthquake Engineering and Structural Dynamics, 47(3): 757-71. doi: 10.1002/eqe.2989 [39] 赵晓芬. 2015. 近断层地震动速度脉冲的识别方法及对隔震结构的影响研究[D]. 哈尔滨: 中国地震局工程力学研究所: 7-30.Zhao X F. 2015. Study on strong motion velocity pulse identification method and influence on isolated structures[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 7-30 (in Chinese). [40] 赵晓芬. 2021. 近断层强地震动速度脉冲特性及相关问题研究[D]. 北京: 中国地震局地球物理研究所: 22.Zhao X F. 2021. Characteristics of near-fault pulse-like strong ground motions and related studies[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 22 (in Chinese). [41] 赵晓芬, 温增平. 2022. 近断层速度脉冲型地震动相关问题研究[J]. 地震学报, 44(5): 765-782 doi: 10.11939/jass.20220141Zhao X F, Wen Z P. 2022. Review on issues of near-fault velocity pulse-like ground motions[J]. Acta Seismologica Sinica, 44(5): 765-782 (in Chinese). doi: 10.11939/jass.20220141 [42] 周宝峰. 2012. 强震观测中的关键技术研究[D]. 哈尔滨: 中国地震局工程力学研究所: 12-33.Zhou B F. 2012. Some key issues on the strong motion observation[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Adiministration: 12-33 (in Chinese). -