Fault interaction and earthquake triggering mechanisms: Progress and prospects
-
摘要: 断层相互作用与地震触发关系研究是震源物理学领域的热点问题,能够帮助认识强震的孕育过程与物理机理,在地震危险性分析与预测研究中也有良好的应用前景. 前人的综述文章从应力触发的基本原理、方法、适用性及多个震例研究的角度,提供了详细的阐述,然而从地震活动性分析这一角度对地震触发的介绍并不详尽,也未对这两个角度的结合和互补提供进一步的探讨. 本文从物理模型和统计模型两个角度,综述了过去几十年针对断层相互作用和地震触发机制研究的成果与进展;通过介绍速率-状态摩擦律,展现这一科学问题的内在统一性,并对目前存在的问题和未来的可能研究方向进行了梳理和展望. 从物理模型角度, 着重分析了断层相互作用来源的几个重要机制:静态应力触发、动态应力触发和黏弹性应力触发,以及计算的基本原理和方法. 在统计模型方面,介绍了地震活动性分析的基本原理和方法,重点分析了ETAS模型和b值在断层相互作用和地震触发机制中的应用. 从两个模型结合的角度,指出两者互相验证的统一内涵以及速率-状态摩擦律的基本原理和方法. 分析指出通过库仑应力计算和ETAS模型这两种不同的角度,可以综合研究多断层或地震之间的应力相互作用,并提供交叉验证,增加结果的可靠性;应用速率-状态摩擦律可以回溯性地研究地震序列的发生过程,为认识地震触发关系和断层相互作用提供了新的视角.Abstract: Research on fault interaction and earthquake triggering, which is a hot issue in the field of source physics, can facilitate understanding of the underlying mechanisms of strong earthquakes and also has good application prospects in earthquake risk analysis and prediction research. Previous review articles provided detailed explanations from the perspectives of basic principles, methods, and applicability, as well as multiple earthquake case studies of stress triggering. However, the introduction to earthquake triggering from the perspective of seismicity analysis is not exhaustive, and the combination and complementarity of these two perspectives are not provided in detail. This paper summarizes the achievements and progress of research on fault interaction and earthquake triggering mechanism through the past few decades from the perspectives of physical and statistical models. The current challenges and possible future directions are reviewed and evaluated. From the perspective of the physical model, three important mechanisms of sources of fault interaction are analyzed: static stress triggering, dynamic stress triggering, and viscoelastic stress triggering, as well as the basic principles and methods of calculation. In the aspect of the statistical model, the basic principles and methods of seismicity analysis are introduced, and applications of the epidemic-type aftershock sequence (ETAS) model and b-value in fault interaction and earthquake triggering mechanism are analyzed. From the perspective of the combination of these two models, the unified connotation of mutual verification and the basic principle of the rate-and-state friction law are introduced. The analysis points out that the stress interaction between multiple faults or earthquakes can be comprehensively studied through the two different schools of Coulomb stress calculation and the ETAS model and that cross-validation can increase the reliability of the results. Retroactive application of rate-and-state friction law can provide a new perspective for understanding the earthquake triggering relationship and fault interaction.
-
图 1 断层相互作用示意图(修改自Chéry et al., 2001). 构造加载导致断层A发生位错u,应力降由破裂尺寸L、W和位错u控制. 由于地球介质的连续性,断层A的位错会在其周围介质产生应力扰动,从而断层B受到应力扰动
$ {\delta }\tau $ ,进而影响断层B上地震的发生. 与此同时,断层A位错产生的地震波在地球介质中传播过程时,会对断层B的应力状态产生动态扰动. 另一方面,断层A深部介质(下地壳、上地幔等)的黏弹性形变,导致震后随时间变化的黏弹性应力扰动,可能会持续几十年甚至上百年Figure 1. Schematic diagram of fault interaction (modified from Chéry et al., 2001). Structural loading causes dislocation u to occur on fault A, and the stress drop is controlled by the rupture dimensions L and W and the coseismic slip u. Due to the continuity of the Earth medium, the dislocation of fault A will generate stress disturbance in the surrounding medium, so fault B will be subject to stress disturbance
$ {\delta }\tau $ and then affect the occurrence of earthquakes on fault B. At the same time, the seismic wave generated by the dislocation of fault A will dynamically disturb the stress state of fault B during the propagation process in the Earth medium. On the other hand, the viscoelastic deformation of the deep medium (lower crust, upper mantle, etc.) of fault A leads to viscoelastic stress disturbance that changes with time after the earthquake and may last for decades or even hundreds of years图 2 1979 年 3 月 15 日 Homestead Valley 地震序列(ML = 4.9、5.2、4.5、4.8)的库仑应力改变与余震分布(修改自King et al., 1994). 白色直线为发震断层,白色圆圈表示余震. 红色表示库仑应力增强区,紫色表示库仑应力减小区
Figure 2. Coulomb stress changes and distribution of aftershocks for the March 15, 1979, Homestead Valley earthquake sequence (ML = 4.9, 5.2, 4.5, 4.8) (modified from King et al., 1994). The straight white line is the seismogenic fault, and the white circle is the aftershock. Red indicates areas of increased Coulomb stress, and purple indicates areas of decreased Coulomb stress
图 3 Landers地震后各地区(括号内为震中距,单位为km)地震累积数曲线(修改自Hill et al., 1993). 右侧数字为各地区总地震数目,两条短竖线分别表示Petrolia(Cape Mendocino)M=7.1地震和 Landers M=7.3地震的发震时刻
Figure 3. Cumulative number curves of earthquakes in various regions after the Landers earthquake (the epicentral distance in km is shown in brackets) (modified from Hill et al., 1993). The number on the right is the total number of earthquakes in each region, and the two short vertical lines represent the occurrence times of the Petrolia (Cape Mendocino) M = 7.1 earthquake and the Landers M = 7.3 earthquake, respectively
图 4 Hector Mine地震初始破裂点
$ \mathrm{\Delta }\mathrm{C}\mathrm{F}\mathrm{S} $ 随时间的变化(修改自Freed and Lin, 2001). (a)假设黏性流变只发生在下地壳的情况;(b)假设黏性流变主要发生在上地幔的情况Figure 4.
$ \mathrm{\Delta }\mathrm{C}\mathrm{F}\mathrm{S} $ at the initial rupture point of the Hector Mine earthquake over time (modified from Freed and Lin, 2001): (a) Assuming that viscous rheology occurs only in the lower crust and (b) assuming that viscous rheology occurs mainly in the upper mantle图 6 地震之间触发关系示意图. (a)地震发生的逻辑关系. (b)地震发生的时间序列. (c)地震触发的概率,仅以地震A、B、C、D、E为例(修改自Marsan and Lengliné, 2010). 其中灰色方框的数字表示第二个地震是被前一个地震触发的概率. 对除了地震A以外的其他地震(B-Q),被其他地震触发的概率之和应为100%
Figure 6. Schematic diagram of the triggering relationship between earthquakes. (a) Logical relationship of earthquake occurrence. (b) Time series of earthquake occurrence. (c) Probability of earthquake triggering, taking earthquakes A, B, C, D, and E as examples (modified from Marsan and Lengliné, 2010). The number in the gray box indicates the probability that the second earthquake is triggered by the previous earthquake. For earthquakes (B-Q), other than earthquake A, the sum of the probabilities triggered by other earthquakes should be 100%
图 7 库仑应力计算与地震活动性分析对比结果,以2008年汶川地震和2017年九寨沟地震为例(修改自Jia et al., 2018). (a)不同断层模型和参数下汶川地震对九寨沟地震的库仑应力变化,模型A、B分别为Ji和Hayes(2008)、Wang等(2011)的断层模型. (b)九寨沟地区累积背景概率曲线(黑色折线),红色虚线表示汶川地震前的拟合结果,绿色虚线表示汶川地震后的拟合结果,可以看出汶川地震后九寨沟地区背景地震活动性显著降低
Figure 7. Comparison results of Coulomb stress calculation and seismicity analysis, taking the 2008 Wenchuan and the 2017 Jiuzhaigou earthquakes as examples (modified from Jia et al., 2018). (a) Coulomb stress changes from the Wenchuan earthquake to the Jiuzhaigou earthquake under different fault models and parameters. Models A and B are the fault models of Ji and Hayes (2008) and Wang et al. (2011), respectively. (b) Cumulative background probability curve (black broken line) in the Jiuzhaigou area. The red dotted line represents the fitting results before the Wenchuan earthquake, and the green dotted line represents the fitting results after the Wenchuan earthquake. The background seismicity in the Jiuzhaigou area decreased significantly after the Wenchuan earthquake
图 8 应力加载速率变化和应力变化引起的地震活动性变化示意图(修改自Jia et al., 2020). (a)应力加载速率变化会产生类似于震群(b)的地震活动性变化;(c)应力变化会产生类似于余震序列(d)的地震活动性变化
Figure 8. Schematic diagram of changes in stress loading rate and seismicity caused by stress changes (modified from Jia et al., 2020). (a) Changes in stress loading rate will produce changes in seismicity similar to earthquake swarms (b); (c) Changes in stress will produce changes in seismicity similar to aftershock sequences (d)
表 1 不同研究给出的2008年汶川地震引起的2017年九寨沟地震震中位置的库仑应力变化
Table 1. Signal of ΔCFS near the epicenter of the Jiuzhaigou earthquake induced by the Wenchuan earthquake by different researchers
库仑应力
变化正/负断层模型 接收断层 摩擦系数 解析深度 参考文献 正 王卫民等(2008) 走向/倾角/滑动角:332°/84°/5° $\; \mu^{\prime}=0.4 $ 6, 20 km Shan等(2017) Ji和Hayes(2008) 空间变化的接收断层 $\; \mu^{\prime}=0.4 $ 10 km Toda等(2008) 有限元方法预测模型(Luo and Liu, 2010) 岷江断层(倾角: 50°) $ \; \mu^{\prime}=0.0,0.8 $ 5, 10 km Luo和Liu(2010) 三角形有限单元模型,
修改自 Shen等(2009)空间变化的接收断层基于虎牙断层(走向/倾角/滑动角:170°/60°/80°) $\; \mu^{\prime}=0.0,0.4,0.8 $ 10, 20, 30 km Hu等(2017) 负 Shen等(2009) 岷江断层(平均走向/倾角/滑动角:357°/75°/45°) $\; \mu^{\prime}=0.4 $ 5, 10, 15 km Wan和Shen (2010) Ji和Hayes(2008)
Li等(2008)
Shen等(2009)
Wang等(2011)
Hashimoto等(2010)
Sladen(2008)走向/倾角/滑动角的平均值:224.57°/37.86°/119.71° $\; \mu=0.5, \; \beta=0.5 $ 10 km Wang J等(2014) Nakamura等(2010) 虎牙断层 $\; \mu=0.7, \; \beta=0.7 $ 15 km Nalbant和McCloskey(2011) Ji和Hayes(2008) 虎牙断层(走向/倾角/滑动角:150°/75°/45°) $\; \mu^{\prime}=0.6 \text{~} 0.8 $ 2.5~20 km Shan等(2009) Ji和Hayes(2008) 虎牙断层(倾角:5°~65°W;滑动角 70°~90°) $\; \mu=0.0 \text{~} 0.8 $ 0~20 km Parsons等(2008) -
[1] Agata R, Barbot S D, Fujita K, et al. 2019. Rapid mantle flow with power-law creep explains deformation after the 2011 Tohoku mega-quake[J]. Nature Communications, 10(1): 1-11. doi: 10.1038/s41467-018-07882-8 [2] Aki K. 1965. Maximum likelihood estimate of b in the formula log N= a-bM and its confidence limits[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 43: 237-239. [3] Amitrano D. 2003. Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value[J]. Journal of Geophysical Research: Solid Earth, 108(B1): 2044. [4] Ampuero J P, Rubin A M. 2008. Earthquake nucleation on rate and state faults—Aging and slip laws[J]. Journal of Geophysical Research: Solid Earth, 113(B1): 690-701. [5] Beeler N M, Simpson R W, Hickman S H, Lockner D A. 2000. Pore fluid pressure, apparent friction, and Coulomb failure[J]. Journal of Geophysical Research, 105(B11): 25533-25542,doi: 10.1029/2000jb900119. [6] Ben-Zion Y, Rice J R. 1997. Dynamic simulations of slip on a smooth fault in an elastic solid[J]. Journal of Geophysical Research, 102(1021): 17771-17784. [7] Beroza G C, Segou M, Mousavi S M. 2021. Machine learning and earthquake forecasting—next steps[J]. Nature Communications, 12(1): 1-3. doi: 10.1038/s41467-020-20314-w [8] Catalli F, Chan C H. 2012. New insights into the application of the Coulomb model in real-time[J]. Geophysical Journal International, 188(2): 583-599. doi: 10.1111/j.1365-246X.2011.05276.x [9] Cattania C, Hainzl S, Wang L, et al. 2014. Propagation of Coulomb stress uncertainties in physics-based aftershock models[J]. Journal of Geophysical Research, 119(10): 7846-7864. doi: 10.1002/2014JB011183 [10] Cattania C, Khalid F. 2016. A parallel code to calculate rate-state seismicity evolution induced by time dependent, heterogeneous Coulomb stress changes[J]. Computers and Geosciences, 94: 48-55. doi: 10.1016/j.cageo.2016.06.007 [11] Cattania C, Werner M J, Marzocchi W, et al. 2018. The forecasting skill of physics-based seismicity models during the 2010–2012 Canterbury, New Zealand, earthquake sequence[J]. Seismological Research Letters, 89(4): 1238-1250. doi: 10.1785/0220180033 [12] 程佳, 刘杰, 甘卫军, 余怀忠. 2011.1997年以来巴颜喀拉块体周缘强震之间的黏弹性触发研究[J]. 地球物理学报, 54(8): 1997-2010 doi: 10.3969/j.issn.0001-5733.2011.08.007Cheng J, Liu J, Gan W J, Yu H Z. 2011. Coulomb stress interaction among strong earthquakes around the Bayan Har block since the Manyi earthquake in 1997[J]. Chinese Journal of Geophysics- Chinese Edition, 54(8): 1997-2010 (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.08.007 [13] Chéry J, Merkel S, Bouissou S. 2001. A physical basis for time clustering of large earthquakes[J]. Bulletin of the Seismological Society of America, 91(6): 1685-1693. doi: 10.1785/0120000298 [14] Console R, Murru M, Catalli F. 2006. Physical and stochastic models of earthquake clustering[J]. Tectonophysics, 417(1-2): 141-153. doi: 10.1016/j.tecto.2005.05.052 [15] Dascher-Cousineau K, Lay T, Brodsky E E. 2020. Two foreshock sequences post Gulia and Wiemer (2019)[J]. Seismological Society of America, 91(5): 2843-2850. [16] Dascher-Cousineau K, Lay T, Brodsky E E. 2021. Reply to “Comment on ‘Two Foreshock Sequences Post Gulia and Wiemer (2019)’by Kelian Dascher-Cousineau, Thorne Lay, and Emily E. Brodsky” by Laura Gulia and Stefan Wiemer[J]. Seismological Society of America, 92(5): 3259-3264. [17] DeSalvio N D, Rudolph M L. 2021. A retrospective analysis of b-value changes preceding strong earthquakes[J]. Seismological Research Letters, 93(1): 364-375. [18] Dieterich J H. 1979. Modeling of rock friction: 1. Experimental results and constitutive equations[J]. Journal of Geophysical Research, 84(B5): 2161-2168. doi: 10.1029/JB084iB05p02161 [19] Dieterich J H. 1986. A model for the nucleation of earthquake slip[J]. Earthquake Source Mechanics, 37(6): 37-47. [20] Dieterich J H. 1992. Earthquake nucleation on faults with rate-and state-dependent strength[J]. Tectonophysics, 211(1-4): 115-134. doi: 10.1016/0040-1951(92)90055-B [21] Dieterich J. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering[J]. Journal of Geophysical Research, 99(B2): 2601-2618. doi: 10.1029/93JB02581 [22] Dieterich J, Cayol V, Okubo P. 2000. The use of earthquake rate changes as a stress meter at Kilauea volcano[J]. Nature, 408(6811): 457-460. doi: 10.1038/35044054 [23] Dieterich J H, Richards-Dinger K B. 2010. Earthquake recurrence in simulated fault systems[J]. Pure and Applied Geophysics, 167(8): 1087-1104. [24] Fan W, Shearer P M. 2016. Local near instantaneously dynamically triggered aftershocks of large earthquakes[J]. Science, 353(6304): 1133-1136. doi: 10.1126/science.aag0013 [25] Felzer K R, Brodsky E E. 2005. Testing the stress shadow hypothesis[J]. Journal of Geophysical Research, 110(B5): B05S09. doi: 10.1029/2004JB003277. [26] Felzer K R, Brodsky E E. 2006. Decay of aftershock density with distance indicates triggering by dynamic stress[J]. Nature, 441(7094): 735-738. doi: 10.1038/nature04799 [27] Foulger G R, Wilson M P, Gluyas J G, et al. 2018. Global review of human-induced earthquakes[J]. Earth-Science Reviews, 178: 438-514. doi: 10.1016/j.earscirev.2017.07.008 [28] Freed A M, Lin J. 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer[J]. Nature, 411(6834): 180-183. doi: 10.1038/35075548. [29] Freed A M. 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer[J]. Annual Review of Earth & Planetary Sciences, 33: 335-367. [30] Frohlich C, Davis S D. 1993. Teleseismic b values; or, much ado about 1.0[J]. Journal of Geophysical Research: Solid Earth, 98(B1): 631-644. doi: 10.1029/92JB01891 [31] Fromusgs S. 2000. Preliminary report on the 16 October 1999 M 7.1 Hector Mine[J]. California, Earthquake, Seismological Research Letters, 71(1): 11-23. doi: 10.1785/gssrl.71.1.11. [32] García-Hernández R, Auria L D, Barrancos J, et al. 2021. Multiscale temporal and spatial estimation of the b-value[J]. Seismological Research Letters, 92(6): 3712-3724. doi: 10.1785/0220200388 [33] Gardner J, Knopoff L. 1974. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?[J]. Bulletin of the Seismological Society of America, 64(5): 1363-1367. doi: 10.1785/BSSA0640051363 [34] Gibowicz S J, Lasocki S. 2001. Seismicity induced by mining: Ten years later[J]. Advances in geophysics, 44: 39-181. [35] Gomberg J. 1996. Stress/strain changes and triggered seismicity following the MW 7.3 Landers, California earthquake[J]. Journal of Geophysical Research: Solid Earth, 101(B1): 751-764. doi: 10.1029/95JB03251 [36] Gomberg J, Reasenberg P, Bodin P, Harris R. 2001. Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes[J]. Nature, 411(6836): 462-466. doi: 10.1038/35078053 [37] Gomberg J. 2003. Observing earthquakes triggered in the near field by dynamic deformations[J]. Bulletin of the Seismological Society of America, 93(1): 118-138. doi: 10.1785/0120020075 [38] Gomberg J, Johnson P. 2005. Seismology: Dynamic triggering of earthquakes[J]. Nature, 437(7060): 830-830. doi: 10.1038/437830a [39] Gulia L, Wiemer S. 2019. Real-time discrimination of earthquake foreshocks and aftershocks[J]. Nature, 574(7777): 193-199. doi: 10.1038/s41586-019-1606-4 [40] Gulia L, Wiemer S. 2021. Comment on “Two Foreshock Sequences Post Gulia and Wiemer (2019)” by Kelian Dascher-Cousineau, Thorne Lay, and Emily E. Brodsky[J]. Seismological Society of America, 92(5): 3251-3258. [41] Guo Y, Zhuang J, Zhou S. 2015a. A hypocentral version of the space–time ETAS model[J]. Geophysical Journal International, 203(1): 366-372. doi: 10.1093/gji/ggv319 [42] Guo Y, Zhuang J, Zhou S. 2015b. An improved space-time ETAS model for inverting the rupture geometry from seismicity triggering[J]. Journal of Geophysical Research, 120(5): 3309-3323. doi: 10.1002/2015JB011979 [43] Guo Y, Zhuang J, Ogata Y. 2019. Modeling and forecasting aftershocks can be improved by incorporating rupture geometry in the ETAS model[J]. Geophysical Research Letters, 46(22): 12881-12889. doi: 10.1029/2019GL084775 [44] Gupta H K. 1992. Reservoir Induced Earthquakes[M]. Elsevier. [45] Gutenberg B, Richter C F. 1956. Magnitude and energy of earthquakes[J]. Annals of Geophysics, 9(1): 1-15. [46] Harris R A. 1998. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard[J]. Journal of Geophysical Research, 103(10): 24347-24358. [47] Hashimoto M, Enomoto M, Fukushima Y. 2010. Coseismic deformation from the 2008 Wenchuan, China, earthquake derived from ALOS/PALSAR images[J]. Tectonophysics, 491(1–4), 59-71. [48] 贺鹏超, 王敏, 王琪, 沈正康. 2018. 基于2001年MW7.8可可西里地震震后形变模拟研究藏北地区岩石圈流变学结构[J]地球物理学报, 61(2): 531-544He P C, Wang M, Wang Q, Shen Z K. 2018. Rheological structure of lithosphere in northern Tibet inferred from postseismic deformation modeling of the 2001 MW7.8 Kokoxili earthquake[J]. Chinese Journal of Geophysics, 61(2): 531-544 (in Chinese). [49] 和泰名, 李世愚, 张洪魁, 等. 2011. 滑动弱化模型下的库仑应力变化与远程触发问题[J]. 地震学报, 33(2): 165-186 doi: 10.3969/j.issn.0253-3782.2011.02.005He T M, Li S Y, Zhang H K, et al. 2011. Coulomb failure stress change in slip-weakening model and remote triggering of earthquakes[J]. Acta Seismologica Sinica, 32(2): 165-186 (in Chinese). doi: 10.3969/j.issn.0253-3782.2011.02.005 [50] Hearn E H, Bürgmann R, Reilinger R E. 2002. Dynamics of İzmit earthquake postseismic deformation and loading of the Düzce earthquake hypocenter[J]. Bulletin of the Seismological Society of America, 92(1): 172-193. doi: 10.1785/0120000832 [51] Heimisson E R, Segall P. 2018. Constitutive law for earthquake production based on rate-and-state friction: Dieterich 1994 revisited[J]. Journal of Geophysical Research: Solid Earth, 123(5): 4141-4156. doi: 10.1029/2018JB015656 [52] Heimisson E R. 2019. Constitutive law for earthquake production based on rate-and-state friction: Theory and application of interacting sources[J]. Journal of Geophysical Research: Solid Earth, 124(2): 1802-1821. doi: 10.1029/2018JB016823 [53] Helmstetter A, Yan Y K, Jackson D D. 2006. Comparison of short-term and time-independent earthquake forecast models for southern California[J]. Bulletin of the Seismological Society of America, 96(1): 90-106. doi: 10.1785/0120050067 [54] Helmstetter A, Shaw B E. 2009. Afterslip and aftershocks in the rate-and-state friction law [J]. Journal of Geophysical Research: Solid Earth, 114(B1): B01308. [55] Hill D P, Reasenberg P A, Michael A, et al. 1993. Seismicity remotely triggered by the magnitude 7.3 landers, california, earthquake[J]. Science, 260(5114): 1617-1623. doi: 10.1126/science.260.5114.1617 [56] Hill D P, Prejean S. 2007. Dynamic triggering[J]. Treatise on Geophysics, 4: 257-292. doi: 10.1016/B978-044452748-6/00070-5 [57] Hill D P. 2008. Dynamic stresses, Coulomb failure, and remote triggering[J]. Bulletin of the Seismological Society of America, 98(1): 66-92. doi: 10.1785/0120070049. [58] Hu J, Fu L, Sun W, Zhang Y. 2017. A study of the Coulomb stress and seismicity rate changes induced by the 2008 MW 7.9 Wenchuan earthquake, SW China[J]. Journal of Asian Earth Sciences, 135: 303-319. doi: 10.1016/j.jseaes.2016.12.048. [59] Hughes K L, Masterlark T, Mooney W D. 2010. Poroelastic stress-triggering of the 2005 M8. 7 Nias earthquake by the 2004 M9. 2 Sumatra–Andaman earthquake[J]. Earth and Planetary Science Letters, 293(3-4): 289-299. doi: 10.1016/j.jpgl.2010.02.043 [60] Ide S. 2013. The proportionality between relative plate velocity and seismicity in subduction zones[J]. Nature Geoscience, 6(9): 780-784. doi: 10.1038/ngeo1901 [61] Ishibe T, Satake K, Sakai S I, et al. 2015. Correlation between Coulomb stress imparted by the 2011 Tohoku-Oki earthquake and seismicity rate change in Kanto, Japan[J]. Geophysical Journal International, 201(1): 112-134. doi: 10.1093/gji/ggv001 [62] Iwata T. 2016. A variety of aftershock decays in the rate-and state-friction model due to the effect of secondary aftershocks: Implications derived from an analysis of real aftershock sequences[J]. Pure and Applied Geophysics, 173(1): 21-33. doi: 10.1007/s00024-015-1151-5 [63] Jaeger J C, Cook N G, Zimmerman R. 2007. Fundamentals of Rock Mechanics[M]. Blackwell Publishing. [64] Ji C, Hayes G. 2008. Preliminary result of the May 12, 2008 MW7.9 eastern Sichuan, China earthquake[BD/OL]. Retrieved from http://earthquake.usgs.gov/earthquakes/eqinthenews/2008/us2008ryan/fifinite_fault.php. [65] Jia B, Yue H, Muzli M. 2021. Absence of near-trench early triggering during the 2012 MW 7.2 Indian ocean strike-slip earthquake: Evidence from one-day aftershocks[J]. Seismological Research Letters, 93 (2A): 719–726. doi: 10.1785/0220210174. [66] Jia K, Zhou S, Zhuang J, Jiang C. 2014. Possibility of the independence between the 2013 Lushan earthquake and the 2008 Wenchuan earthquake on Longmen Shan Fault, Sichuan, China[J]. Seismological Research Letters, 85(1): 60-67. doi: 10.1785/0220130115. [67] Jia K, Zhou S, Zhuang J, et al. 2018. Did the 2008 MW 7.9 Wenchuan earthquake trigger the occurrence of the 2017 MW 6.5 Jiuzhaigou earthquake in Sichuan, China?[J]. Journal of Geophysical Research: Solid Earth, 123(4): 2965-2983. doi: 10.1002/2017JB015165 [68] Jia K. 2020. Modeling the spatiotemporal seismicity patterns of the Longmen Shan Fault Zone based on the Coulomb rate and state model[J]. Seismological Research Letters, 92(1): 275-286. [69] Jia K, Zhou S, Zhuang J, et al. 2020. Nonstationary background seismicity rate and evolution of stress changes in the changning salt mining and shale-gas hydraulic fracturing region, Sichuan Basin, China[J]. Seismological Research Letters, 91(4): 2170-2181. doi: 10.1785/0220200092 [70] Jia K, Zhou S, Zhuang J, Jiang C. 2021. Stress transfer along the western boundary of the Bayan Har Block on the Tibet Plateau from the 2008 to 2020 Yutian earthquake sequence in China[J]. Geophysical Research Letters, 48(15): e2021GL094125. [71] 蒋长胜, 庄建仓. 2010. 基于时-空ETAS模型给出的川滇地区背景地震活动和强震潜在危险区[J]. 地球物理学报, 53(2): 305-317 doi: 10.3969/j.issn.0001-5733.2010.02.008Jiang C S, Zhuang J C. 2010. Evaluation of background seismicity and potential source zones of strong earthquakes in the Sichuan-Yunan region based on the space-time ETAS model[J]. Chinese Journal of Geophysics, 53(2): 305-317 (in Chinese). doi: 10.3969/j.issn.0001-5733.2010.02.008 [72] 蒋长胜, 吴忠良, 庄建仓. 2013. 地震的"序列归属"问题与ETAS模型——以唐山序列为例[J]. 地球物理学报, 56(9): 2971-2981 doi: 10.6038/cjg20130911Jiang C S, Wu Z L, Zhuang J C. 2013. ETAS model applied to the earthquake-sequence association (ESA) problem: The Tangshan sequence[J]. Chinese Journal of Geophysics, 56(9): 2971-2981 (in Chinese). doi: 10.6038/cjg20130911 [73] 靳志同. 2021. 精细结构对地震产生的(准)静态应力场的影响[D]. 北京: 中国地震局地球物理研究所.Jin Z T. 2021. The effect of fine structure on the (quasi) static stress field generated by earthquake[D]. Beijing: Institute of Geophysics, China Earthquake Adminstration (in Chinese). [74] Jonsson S, Segall P, Pedersen R, Björnsson G. 2003. Post-earthquake ground movements correlated to pore-pressure transients[J]. Nature, 424(6945): 179-183. doi: 10.1038/nature01776 [75] Keranen K M, Weingarten M. 2018. Induced seismicity[J]. Annual Review of Earth and Planetary Sciences, 46: 149-174. doi: 10.1146/annurev-earth-082517-010054 [76] Kilb D, Gomberg J, Bodin P. 2000. Triggering of earthquake aftershocks by dynamic stresses[J]. Nature, 408(6812): 570-574. doi: 10.1038/35046046. [77] King G C P, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 84(3): 935-953. [78] King G C P, Cocco M. 2001. Fault interaction by elastic stress changes: New clues from earthquake sequences[J]. Advances in Geophysics, 44: 1-38. [79] Kumazawa T, Ogata Y. 2014. Nonstationary ETAS models for nonstandard earthquakes[J]. The Annals of Applied Statistics, 8(3): 1825-1852. [80] Lei X, Ma S, Chen W, et al. 2013. A detailed view of the injection-induced seismicity in a natural gas reservoir in Zigong, southwestern Sichuan basin, China[J]. Journal of Geophysical Research: Solid Earth, 118(8): 4296-4311. doi: 10.1002/jgrb.50310 [81] Lei X, Wang Z, Su J. 2019. Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China[J]. Earth and Planetary Physics, 3(6): 510-525. doi: 10.26464/epp2019052 [82] 李世愚, 和泰名, 尹祥础. 2015. 岩石断裂力学[M]. 北京: 科学出版社.Li S Y, He T M, Yin X C. 2015. Rock Fracture Mechanics[M]. Beijing: Science Press (in Chinese). [83] Li Z, Fielding E, Parsons B, et al. 2008. Fault trace and slip in the 2008 MW 7.9 Sichuan, China earthquake from InSAR observations[C]// AGU Fall Meeting, 89(53), G33C−0714. [84] Linker M, Dieterich J. 1992. Effects of variable normal stress on rock friction: Observations and constitutive equations[J]. Journal of Geophysical Research: Solid Earth, 97(B4): 4923-4940. doi: 10.1029/92JB00017 [85] 刘博研, 史保平, 雷建设. 2015.2008 年和 2014 年于田地震对周边断层发震概率的影响[J]. 地球物理学报, 58(2): 463-473 doi: 10.6038/cjg20150210Liu B Y, Shi B P, Lei J S. 2015. Effects of the 2008 and 2014 Yutian earthquake on seismic probabilities of adjacent faults[J]. Chinese Journal of Geophysics, 58(2): 463-473 (in Chinese). doi: 10.6038/cjg20150210 [86] Liu C, Dong P, Zhu B, Shi Y. 2018. Stress shadow on the southwest portion of the Longmen Shan Fault Impacted the 2008 Wenchuan earthquake rupture[J]. Journal of Geophysical Research: Solid Earth, 123(11): 9963-9981. doi:https://doi.org/ 10.1029/2018JB015633. [87] Liu Y, Rice J R. 2005. Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences[J]. Journal of Geophysical Research: Solid Earth, 110(B8): B08307. doi: 10.1029/2004JB003424. [88] Luo G, Liu M. 2010. Stress evolution and fault interactions before and after the 2008 Great Wenchuan earthquake[J]. Tectonophysics, 491(1–4), 127-140. [89] Mallman E P, Tom P. 2004. A global search for stress shadows[C]//AGU Fall Meeting. [90] Mancini S, Segou M, Werner M, Cattania C. 2019. Improving physics-based aftershock forecasts during the 2016–2017 Central Italy Earthquake Cascade[J]. Journal of Geophysical Research: Solid Earth, 124(8): 8626-8643. doi: 10.1029/2019JB017874 [91] Marone C, Vidale J E, Ellsworth W L. 1995. Fault healing inferred from time dependent variations in source properties of repeating earthquakes[J]. Geophysical Research Letters, 22(22): 3095-3098. doi: 10.1029/95GL03076 [92] Marone C. 1998. Laboratory-derived friction laws and their application to seismic faulting[J]. Annual Review of Earth and Planetary Sciences, 26(1): 643-696. doi: 10.1146/annurev.earth.26.1.643 [93] Marsan D. 2006. Can coseismic stress variability suppress seismicity shadows? Insights from a rate-and-state friction model[J]. Journal of Geophysical Research, 111(B6): 3197-3215. [94] Marsan D, Lengline O. 2008. Extending earthquakes' reach through cascading[J]. Science, 319(5866): 1076-1079. doi: 10.1126/science.1148783 [95] Marsan D, Lengliné O. 2010. A new estimation of the decay of aftershock density with distance to the mainshock[J]. Journal of Geophysical Research, 115(B9): 5424-5425. [96] Masuti S, Barbot S D, Karato S I, et al. 2016. Upper-mantle water stratification inferred from observations of the 2012 Indian Ocean earthquake[J]. Nature, 538(7625): 373. doi: 10.1038/nature19783 [97] Meng X, Peng Z. 2014. Seismicity rate changes in the Salton Sea Geothermal Field and the San Jacinto Fault Zone after the 2010 MW 7.2 El Mayor-Cucapah earthquake[J]. Geophysical Journal International, 197(3): 1750-1762. doi: 10.1093/gji/ggu085 [98] 米琦, 申文豪, 史保平. 2015. 基于经验模型和物理模型研究2013 MS7.0芦山地震余震序列[J]. 地球物理学报, 58(6): 1919-1930 doi: 10.6038/cjg20150608Mi Q, Shen W H, Shi B P. 2015. Aftershock decay of the 2013 Lushan MS7.0 earthquake derived from the empirical and physical models[J]. Chinese Journal of Geophysics, 58(6): 1919-1930 (in Chinese). doi: 10.6038/cjg20150608 [99] 缪淼, 朱守彪. 2017. 流-固耦合作用对计算同震静态库仑应力变化的影响[J]. 地球物理学报, 60(4): 1457-1469 doi: 10.6038/cjg20170419Miao M, Zhu S B. 2017. Effect of the fluid-solid coupling on co-seismic static Coulomb stress changes[J]. Chinese Journal of Geophysics, 60(4): 1457-1469 (in Chinese). doi: 10.6038/cjg20170419 [100] Miyazawa M, Brodsky E E, Guo H. 2021. Dynamic earthquake triggering in southern California in high resolution: Intensity, time decay, and regional variability[J]. AGU Advances, 2(2): e2020AV000309. doi: https://doi.org/10.1029/2020AV000309. [101] Nakamura T, Tsuboi S, Kaneda Y, Yamanaka Y. 2010. Rupture process of the 2008 Wenchuan, China earthquake inferred from teleseismic waveform inversion and forward modeling of broadband seismic waves[J]. Tectonophysics, 491(1–4), 72-84 [102] Nalbant S S, McCloskey J. 2011. Stress evolution before and after the 2008 Wenchuan, China earthquake[J]. Earth and Planetary Science Letters, 307(1–2), 222-232. doi: 10.1016/j.jpgl.2011.04.039. [103] Nur A, Mavko G. 1974. Postseismic viscoelastic rebound[J]. Science, 183(4121): 204-206. doi: 10.1126/science.183.4121.204 [104] Ogata Y. 1988. Statistical models for earthquake occurrences and residual Analysis for point processes[J]. Journal of the American Statistical Association, 83(401): 9-27. doi: 10.1080/01621459.1988.10478560 [105] Ogata Y. 1998. Space-time point-process models for earthquake occurrences[J]. Annals of the Institute of Statistical Mathematics, 50(2): 379-402. doi: 10.1023/A:1003403601725. [106] Ogata Y, Zhuang J. 2006. Space–time ETAS models and an improved extension[J]. Tectonophysics, 413(1-2): 13-23. doi: 10.1016/j.tecto.2005.10.016. [107] Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the seismological society of America, 82(2): 1018-1040. doi: 10.1785/BSSA0820021018 [108] Omori F. 1894. On the After-shocks of Earthquakes[M]. College of Science, Imperial University, 7: 111-200. [109] Parsons T, Dreger D S. 2000. Static-stress impact of the 1992 Landers earthquake sequence on nucleation and slip at the site of the 1999 M=7.1 Hector Mine earthquake, southern California[J]. Geophysical Research Letters, 27(13): 1949-1952. doi:https://doi.org/ 10.1029/1999GL011272. [110] Parsons T, Ji C, Kirby E. 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin[J]. Nature, 454(7203), 509-510. doi: 10.1038/nature07177. [111] 裴玮来, 周仕勇, 庄建仓, 等. 2021. 统计地震学在地震危险性概率预测方法研究中的应用与讨论[J]. 中国科学: 地球科学, 51(12): 2035-2047Pei W L, Zhou S Y, Zhuang J C, et al. 2021. Application and discussion of statistical seismology in probabilistic seismic hazard assessment studies[J]. Science China Earth Sciences, 51(12): 2035-2047 (in Chinese). [112] Peña C, Heidbach O, Moreno M, et al. 2019. Role of lower crust in the postseismic deformation of the 2010 Maule earthquake: Insights from a model with power-law rheology[J]. Pure and Applied Geophysics, 176(9): 3913-3928. doi: 10.1007/s00024-018-02090-3 [113] Peña C, Heidbach O, Moreno M, et al. 2020. Impact of power-law rheology on the viscoelastic relaxation pattern and afterslip distribution following the 2010 MW 8.8 Maule earthquake[J]. Earth and Planetary Science Letters, 542: 116292. doi: 10.1016/j.jpgl.2020.116292 [114] Perfettini H, Stein R S, Simpson R, Cocco M. 1999. Stress transfer by the 1988-1989 M=5.3 and 5.4 Lake Elsman foreshocks to the Loma Prieta fault: Unclamping at the site of peak mainshock slip[J]. Journal of Geophysical Research, 104(B9): 20169-20182. doi: 10.1029/1999jb900092. [115] Pollitz F, Vergnolle M, Calais E. 2003. Fault interaction and stress triggering of twentieth century earthquakes in Mongolia[J]. Journal of Geophysical Research, 108(B10): 2503. doi: 10.1029/2002jb002375. [116] Pollitz F F, Banerjee P, Bürgmann R, et al. 2006. Stress changes along the Sunda trench following the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes[J]. Geophysical Research Letters, 33(6): 6309. doi: 10.1029/2005GL024558 [117] Pollitz F F, Cattania C. 2017. Connecting crustal seismicity and earthquake-driven stress evolution in southern California[J]. Journal of Geophysical Research: Solid Earth, 122(8): 6473-6490. doi: 10.1002/2017JB014200 [118] Pope N, Mooney W D. 2020. Coulomb stress models for the 2019 Ridgecrest, California earthquake sequence[J]. Tectonophysics, 791: 228555. doi: 10.1016/j.tecto.2020.228555 [119] Prejean S G, Hill D P, Brodsky E E, et al. 2004. Remotely triggered seismicity on the United States west coast following the MW7.9 Denali fault earthquake[J]. Bulletin of the Seismological Society of America, 94(6B): S348-S359. doi: 10.1785/0120040610. [120] Quigley M C, Hughes M W, Bradley B A, et al. 2016. The 2010–2011 Canterbury earthquake sequence: Environmental effects, seismic triggering thresholds and geologic legacy[J]. Tectonophysics, 672: 228-274. [121] Reasenberg P A, Simpson R W. 1992. Response of regional seismicity to the static stress change produced by the loma prieta earthquake[J]. Science, 255(5052): 1687. doi: 10.1126/science.255.5052.1687 [122] Rice J R, Cleary M P. 1976. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[J]. Reviews of Geophysics, 14(2): 227-241. doi: 10.1029/RG014i002p00227 [123] Rice J R. 1992. Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault[J]. International Geophysics, 51: 475-503. [124] Richards-Dinger K, Stein R S, Toda S. 2010. Decay of aftershock density with distance does not indicate triggering by dynamic stress[J]. Nature, 467(7315): 583-586. doi: 10.1038/nature09402 [125] Roeloffs E A. 1988. Fault stability changes induced beneath a reservoir with cyclic variations in water level[J]. Journal of Geophysical Research: Solid Earth, 93(B3): 2107-2124. doi: 10.1029/JB093iB03p02107 [126] Ross Z E, Trugman D T, Hauksson E, Shearer P M. 2019. Searching for hidden earthquakes in southern California[J]. Science, 364(6442): 767-771. doi: 10.1126/science.aaw6888 [127] Roy M, Marone C. 1996. Earthquake nucleation on model faults with rate-and state-dependent friction: Effects of inertia[J]. Journal of Geophysical Research, 1011(B6): 13919-13932. [128] Rubin A M, Ampuero J P. 2005. Earthquake nucleation on (aging) rate and state faults[J]. Journal of Geophysical Research, 110(B11): 165-174. [129] Ruina A. 1983. Slip instability and state variable friction laws[J]. Journal of Geophysical Research, 88(B12): 10359-10370. doi: 10.1029/JB088iB12p10359 [130] Scholz C. 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes[J]. Bulletin of the seismological society of America, 58(1): 399-415. doi: 10.1785/BSSA0580010399 [131] Scholz C H, Aviles C A, Wesnousky S G. 1985. Scaling differences between large interplate and intraplate earthquakes[J]. Bulletin of the Seismological Society of America, 76(1): 65-70. [132] Scholz C H. 1998. Earthquakes and friction laws[J]. Nature, 391(391): 37-42. [133] Scholz C H. 2019. The Mechanics of Earthquakes and Faulting[M]. Cambridge university press. [134] Schorlemmer D, Wiemer S, Wyss M. 2004. Earthquake statistics at Parkfield: 1. Stationarity of b values[J]. Journal of Geophysical Research: Solid Earth, 109(B12): B12307. doi: 10.1029/2004JB003234 [135] Schorlemmer D, Wiemer S, Wyss M. 2005. Variations in earthquake-size distribution across different stress regimes[J]. Nature, 437(7058): 539-542. doi: 10.1038/nature04094 [136] Segou M, Parsons T. 2014. The stress shadow problem in physics-based aftershock forecasting: Does incorporation of secondary stress changes help?[J]. Geophysical Research Letters, 41(11): 3810-3817. doi:https://doi.org/ 10.1002/2013GL058744. [137] Shan B, Xiong X, Zheng Y, Diao F. 2009. Stress changes on major faults caused by MW7.9 Wenchuan earthquake, May 12, 2008[J]. Science in China Series D: Earth Sciences, 52(5): 593-601. doi: 10.1007/s11430-009-0060-9. [138] Shan B, Zheng Y, Liu C L, et al. 2017. Coseismic Coulomb failure stress changes caused by the 2017 M7.0 Jiuzhaigou earthquake, and its relationship with the 2008 Wenchuan earthquake[J]. Science China Earth Sciences, 60: 2181–2189. doi: 10.1007/s11430-017-9125-2. [139] 沈正康, 万永革, 甘卫军, 等. 2003. 东昆仑活动断裂带大地震之间的黏弹性应力触发研究[J]. 地球物理学报, 46(6): 786-795 doi: 10.3321/j.issn:0001-5733.2003.06.010Shen Z K, Wan Y G, Gan W J, et al. 2003. Viscoelastic triggering among large earthquakes along the east Kunlun fault system[J]. Chinese Journal of Geophysics, 46(6): 786-795 (in Chinese). doi: 10.3321/j.issn:0001-5733.2003.06.010 [140] Shen Z, Sun J, Zhang P, et al. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2(10), 718-724. [141] Shi Y, Bolt B A. 1982. The standard error of the magnitude-frequency b value[J]. Bulletin of the Seismological Society of America, 72(5): 1677-1687. doi: 10.1785/BSSA0720051677 [142] 石耀霖, 曹建玲. 2010. 库仑应力计算及应用过程中若干问题的讨论-以汶川地震为例[J]. 地球物理学报, 53(1): 102-110 doi: 10.3969/j.issn.0001-5733.2010.01.011Shi Y L, Cao J L. 2010. Some aspects in static stress change calculation-case study on Wenchuan earthquake[J]. Chinese Journal of Geophysics, 53(1): 102-110 (in Chinese). doi: 10.3969/j.issn.0001-5733.2010.01.011 [143] Skempton A. 1954. The pore-pressure coefficients A and B[J]. Geotechnique, 4(4): 143-147. doi: 10.1680/geot.1954.4.4.143 [144] Sladen A. 2008. Preliminary result 05/12/2008 (MW 7.9), east Sichuan[BD/OL]. Retrieved from http://www.tectonics.caltech.edu/slip_history/2008_e_sichuan/e_sichuan.html. [145] Steacy S, Marsan D, Nalbant S S, McCloskey J. 2004. Sensitivity of static stress calculations to the earthquake slip distribution[J]. Journal of Geophysical Research: Solid Earth, 109(B4): B04303. [146] Steacy S, Gomberg J, Cocco M. 2005. Introduction to special section: Stress transfer, earthquake triggering, and time-dependent seismic hazard[J]. Journal of Geophysical Research, 110(B5): B05S01. doi: 10.1029/2005JB003692. [147] Stein R S, King G C, Lin J. 1992. Change in failure stress on the southern san andreas fault system caused by the 1992 magnitude = 7.4 landers earthquake[J]. Science, 258(5086): 1328-1332. doi: 10.1126/science.258.5086.1328 [148] Stein R S. 1999. The role of stress transfer in earthquake occurrence[J]. Nature, 402(6762): 605-609. doi: 10.1038/45144. [149] Stindl T, Chen F. 2021. Spatiotemporal ETAS model with a renewal main-shock arrival process[J]. arXiv: 2112.07861. [150] 孙云强, 罗纲. 2018. 青藏高原东北缘地震时空迁移的有限元数值模拟[J]. 地球物理学报, 61(6): 2246-2264Sun Y Q, Luo G. 2018. Spatial-temporal migration of earthquakes in the northeastern Tibetan Plateau: Insights from a finite element model[J]. Chinese Journal of Geophysics, 61(6): 2246-2264 (in Chinese). [151] Suyehiro S. 1966. Difference between aftershocks and foreshocks in the relationship of magnitude to frequency of occurrence for the great Chilean earthquake of 1960[J]. Bulletin of the Seismological Society of America, 56(1): 185-200. doi: 10.1785/BSSA0560010185 [152] Sylvain B, Yuri F, Yehuda B. 2008. Postseismic deformation due to the MW 6.0 2004 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters[J]. Journal of Geophysical Research, 114(B7): 592-595. [153] Toda S, Lin J, Meghraoui M, Stein R. 2008. 12 May 2008 M = 7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems[J]. Geophysical Research Letters, 35(17): L17305. doi: 10.1029/2008GL034903. [154] Toda S, Enescu B. 2011. Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast[J]. Earth, Planets and Space, 63(3): 171-185. [155] Toda S, Stein R S, Sevilgen V, Lin J. 2011. Coulomb 3.3 graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching— User guide[R]. U. S. Geological Survey Open-File Report 2011-1060. https://pubs.usgs.gov/of/2011/1060/. [156] Toda S, Stein R S, Beroza G C, Marsan D. 2012. Aftershocks halted by static stress shadows[J]. Nature Geoscience, 5(6): 410-413. doi: 10.1038/ngeo1465. [157] Tormann T, Enescu B, Woessner J, Wiemer S. 2015. Randomness of mega-thrust earthquakes implied by rapid stress recovery after the Japan M9 event[J]. Nature Geoscience, 8(2): 152-158. doi: 10.1038/ngeo2343 [158] Tse S T, Rice J R. 1986. Crustal earthquake instability in relation to the depth variation of frictional slip properties[J]. Journal of Geophysical Research: Atmospheres, 91(B9): 9452-9472. doi: 10.1029/JB091iB09p09452 [159] Tung S, Masterlark T. 2018. Delayed poroelastic triggering of the 2016 October Visso earthquake by the August Amatrice earthquake, Italy[J]. Geophysical Research Letters, 45(5): 2221-2229. doi: 10.1002/2017GL076453 [160] Utsu T. 1961. A statistical study on the occurrence of aftershocks[J]. Geophysical Magazine, 30: 521-605. [161] Utsu T, Ogata Y. 1995. The centenary of the Omori formula for a decay law of aftershock activity[J]. Journal of Physics of the Earth, 43(1): 1-33. doi: 10.4294/jpe1952.43.1 [162] Wallace L M, Kaneko Y, Hreinsdóttir S, et al. 2017. Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge[J]. Nature Geoscience, 10(10): 765-770. s doi: 10.1038/ngeo3021 [163] Wan Y, Shen Z-K. 2010. Static Coulomb stress changes on faults caused by the 2008 MW 7.9 Wenchuan, China earthquake[J]. Tectonophysics, 491(1–4), 105-118. doi: 10.1016/j.tecto.2010.03.017. [164] 王辉, 曹建玲, 洪顺英, 等. 2016.2008年和2014年2次新疆于田M7地震之间的黏弹性应力转移[J]. 地震地质, 38(3): 646-659 doi: 10.3969/j.issn.0253-4967.2016.03.011Wang H, Cao J L, Hong S Y, et al. 2016. Viscoelastic stress transfer between 2008 and 2014 Yutian M7 earthquakes, Xinjiang[J]. Seismology and Geology, 38(3): 646-659 (in Chinese). doi: 10.3969/j.issn.0253-4967.2016.03.011 [165] Wang J, Xu C, Freymueller J T, et al. 2014. Sensitivity of Coulomb stress change to the parameters of the Coulomb failure model: A case study using the 2008 MW 7.9 Wenchuan earthquake[J]. Journal of Geophysical Research, 119(4): 3371-3392. doi: 10.1002/2012JB009860 [166] Wang J, Xu C, Freymueller J T, et al. 2021. AutoCoulomb: An automated configurable program to calculate Coulomb stress changes on receiver faults with any orientation and its application to the 2020 MW 7.8 Simeonof Island, Alaska, earthquake[J]. Seismological Research Letters, 92(4): 2591-2609. [167] Wang K, Fialko Y. 2018. Observations and modeling of coseismic and postseismic deformation due to the 2015 MW 7.8 Gorkha (Nepal) earthquake[J]. Journal of Geophysical Research: Solid Earth, 123(1): 761-779. doi: 10.1002/2017JB014620 [168] Wang Q, Qiao X, Lan Q, et al. 2011. Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan[J]. Nature Geoscience, 4(9), 634-640. [169] Wang R, Martı́n F L, Roth F. 2003. Computation of deformation induced by earthquakes in a multi-layered elastic crust—FORTRAN programs EDGRN/EDCMP[J]. Computers and Geosciences, 29(2): 195-207. doi: 10.1016/S0098-3004(02)00111-5 [170] Wang R, Lorenzo-Martín F, Roth F. 2006. PSGRN/PSCMP—A new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers and Geosciences, 32(4): 527-541. doi: 10.1016/j.cageo.2005.08.006 [171] 王卫民, 赵连锋, 李娟, 姚振兴. 2008. 四川汶川8.0级地震震源过程[J]. 地球物理学报, 51(5): 1403-1410.Wang W M, Zhao L F, Li J, Yao Z X. 2008. Rupture process of the MS 8.0 Wenchuan earthquake of Sichuan, China[J]. Chinese Journal of Geophysics, 51(5), 1403-1410 (in Chinese). [172] Wang W, Meng X, Peng Z, et al. 2015. Increasing background seismicity and dynamic triggering behaviors with nearby mining activities around Fangshan Pluton in Beijing, China[J]. Journal of Geophysical Research: Solid Earth, 120(8): 5624-5638. doi: 10.1002/2015JB012235 [173] Wang Y, Wang F, Wang M, et al. 2014. Coulomb stress change and evolution induced by the 2008 Wenchuan earthquake and its delayed triggering of the 2013 MW 6.6 Lushan earthquake[J]. Seismological Research Letters, 85(1): 52-59. doi: 10.1785/0220130111 [174] Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the seismological Society of America, 84(4): 974-1002. [175] Wennerberg L, Sharp R V. 1997. Bulk-friction modeling of afterslip and the modified Omori law[J]. Tectonophysics, 277(1-3): 109-136. doi: 10.1016/S0040-1951(97)00081-4 [176] 解朝娣, 吴小平, 朱元清. 2009. 大震地震波对云南地震活动的远场动态应力触发作用[J]. 地震研究, 32(4): 9Xie C D, Wu X P, Zhu Y Q. 2009. Far-field triggering effect of dynamic stress on seismicity in Yunnan produced by great earthquake’s waves[J]. Journal of Seismological Research, 32(4): 9 (in Chinese). [177] 解朝娣, 朱元清, Lei X L, 等. 2010. MS8.0 汶川地震产生的应力变化空间分布及其对地震活动性的影响[J]. 中国科学: 地球科学, 40(6): 688-698 doi: 10.1007/s11430-010-4025-9Xie C D, Zhu Y Q, Lei X L, et al. 2010. Pattern of stress change and its effect on seismicity rate caused by MS8.0 Wenchuan earthquake[J]. Science China Earth Sciences, 40(6): 688-698. doi: 10.1007/s11430-010-4025-9 (in Chinese). [178] Xiong X, Shan B, Zheng Y, Wang R. 2010. Stress transfer and its implication for earthquake hazard on the Kunlun Fault, Tibet[J]. Tectonophysics, 482(1-4): 216-225. doi: 10.1016/j.tecto.2009.07.020. [179] 许才军, 汪建军, 熊维. 2018. 地震应力触发回顾与展望[J]. 武汉大学学报·信息科学版, 43(12): 2085-2092 doi: 10.13203/j.whugis20180149Xu C J, Wang J J, Xiong W. 2018. Retrospection and perspective for earthquake stress triggering[J]. Geomatics and Information Science of Wuhan University, 43(12): 2085-2092 (in Chinese). doi: 10.13203/j.whugis20180149 [180] Yang H, Liu Y, Wei M, et al. 2017. Induced earthquakes in the development of unconventional energy resources[J]. Science China Earth Sciences, 60(9): 1632-1644. doi: 10.1007/s11430-017-9063-0 [181] Yao D, Peng Z, Kaneko Y, et al. 2021. Dynamic triggering of earthquakes in the North Island of New Zealand following the 2016 MW 7.8 Kaikōura earthquake[J]. Earth and Planetary Science Letters, 557: 116723. doi: 10.1016/j.jpgl.2020.116723 [182] Yue H, Castellanos J C, Yu C, et al. 2017. Localized water reverberation phases and its impact on backprojection images[J]. Geophysical Research Letters, 44(19): 9573-9580. doi: 10.1002/2017GL073254 [183] Yun N, Zhou S, Yang H, et al. 2019. Automated detection of dynamic earthquake triggering by the high-frequency power integral ratio[J]. Geophysical Research Letters, 46(22): 12977-12985. doi: 10.1029/2019GL083913 [184] Zaliapin I, Ben-Zion Y. 2013a. Earthquake clusters in southern California I: Identification and stability[J]. Journal of Geophysical Research: Solid Earth, 118(6): 2847-2864. doi: 10.1002/jgrb.50179 [185] Zaliapin I, Ben-Zion Y. 2013b. Earthquake clusters in southern California II: Classification and relation to physical properties of the crust[J]. Journal of Geophysical Research: Solid Earth, 118(6): 2865-2877. doi: 10.1002/jgrb.50178 [186] Zaliapin I, Ben-Zion Y. 2020. Earthquake declustering using the nearest-neighbor approach in space-time-magnitude domain[J]. Journal of Geophysical Research: Solid Earth, 125(4): e2018JB017120. [187] 张贝, 张怀, 石耀霖. 2015. 有限元模拟弹性位错的等效体力方法[J]. 地球物理学报, 58(5): 1666-1674 doi: 10.6038/cjg20150518Zhang B, Zhang H, Shi Y L. 2015. Equivalent-bodyforce approach on modeling elastic dislocation problem using finite element method[J]. Chinese Journal of Geophysics, 58(5): 1666-1674 (in Chinese). doi: 10.6038/cjg20150518 [188] Zhang H, Cheng H, Jin Y, et al. 2016. The implications of regional microseismic activities: A lesson from 2008 MS 8.0 Wenchuan earthquake[J]. Physics of the Earth and Planetary Interiors, 261: 107-117. doi: 10.1016/j.pepi.2016.06.006 [189] 张捷, 况文欢, 张雄, 等. 2021. 全球油气开采诱发地震的研究现状与对策[J]. 地球与行星物理论评, 52(3): 239-265 doi: 10.19975/j.dqyxx.2020-027Zhang J, Kuang W H, Zhang X, et al. 2021. Global review of induced earthquakes in oil and gas production fields[J]. Reviews of Geophysics and Planetary Physics, 52(3): 239-265 (in Chinese). doi: 10.19975/j.dqyxx.2020-027 [190] Zhang S, Zhou S. 2016. Spatial and temporal variation of b-values in southwest China[J]. Pure and Applied Geophysics, 173(1): 85-96. doi: 10.1007/s00024-015-1044-7 [191] Zheng Y, Zhou S. 2014. The spatiotemporal variation of the b-value and its tectonic implications in North China[J]. Earthquake Science, 27(3): 301-310. doi: 10.1007/s11589-014-0086-8 [192] Zhu S. 2016. Is the 2013 Lushan earthquake (MW = 6.6) a strong aftershock of the 2008 Wenchuan, China mainshock (MW = 7.9)?[J]. Journal of Geodynamics, 99: 16-26. doi: 10.1016/j.jog.2016.05.002 [193] Zhuang J, Ogata Y, Vere-Jones D. 2002. Stochastic declustering of space-time earthquake occurrences[J]. Journal of the American Statistical Association, 97(458): 369-380. doi: 10.1198/016214502760046925. [194] Zhuang J, Ogata Y, Vere-Jones D. 2004. Analyzing earthquake clustering features by using stochastic reconstruction[J]. Journal of Geophysical Research: Solid Earth, 109(B5): B05301,doi: 10.1029/2003JB002879. [195] Zhuang J, Chang C P, Ogata Y, Chen Y I. 2005. A study on the background and clustering seismicity in the Taiwan region by using point process models[J]. Journal of Geophysical Research, 110(B5): B05S18. doi: 10.1029/2004jb003157. [196] Zhuang J. 2011. Next-day earthquake forecasts for the Japan region generated by the ETAS model[J]. Earth Planets and Space, 63(3): 207-216. doi: 10.5047/eps.2010.12.010. [197] Ziv A, Rubin A. 2003. Implications of rate-and-state friction for properties of aftershock sequence: Quasi-static inherently discrete simulations[J]. Journal of Geophysical Research: Solid Earth, 108(B1): 2051. -