• ISSN 2097-1893
  • CN 10-1855/P

地球磁层软X射线信号的辐射特性研究

孙天然 张颖洁 韦飞 彭松武 尧中华 王赤

引用本文: 孙天然,张颖洁,韦飞,彭松武,尧中华,王赤. 2023. 地球磁层软X射线信号的辐射特性研究. 地球与行星物理论评(中英文),54(0):1-17
Sun T R, Zhang Y J, Wei F, Peng S W, Yao Z H, Wang C. 2023. Advances in soft X-ray emission of the Earth's magnetosphere. Reviews of Geophysics and Planetary Physics, 54(0): 1-17 (in Chinese)

地球磁层软X射线信号的辐射特性研究

doi: 10.19975/j.dqyxx.2022-070
基金项目: 国家自然科学基金资助项目(42188101,42074202,41731070);中国科学院青年创新促进会优秀会员(Y202045);中国科学院研究基金和国家重点实验室专项研究基金
详细信息
    作者简介:

    孙天然(1986-),女,研究员,主要从事磁层物理研究. E-mail:trsun@swl.ac.cn

    通讯作者:

    孙天然(1986-),女,研究员,主要从事磁层物理研究. E-mail:trsun@swl.ac.cn

    王赤(1967-),男,研究员,主要从事日球层物理、磁层物理等研究. E-mail:cw@swl.ac.cn

  • 中图分类号: P353

Advances in soft X-ray emission of the Earth's magnetosphere

Funds: Supported by the National Natural Science Foundation of China (Grants Nos. 42188101, 42074202, 41731070), Youth Innovation Promotion Association of CAS (Grant No. Y202045) and the Research Fund from the Chinese Academy of Sciences and the Specialized Research Fund for State Key Laboratories of China.
  • 摘要: 太阳风-磁层耦合和地球空间的动力学过程是空间天气的基本驱动要素,在系统尺度上认知这些过程对于空间物理和空间天气的研究至关重要. 太阳风电荷交换(solar wind charge exchange, SWCX)机制的提出,为磁层大尺度特性研究提供了一种全新的探测方式,即地球磁层的软X射线成像. SWCX发生在太阳风中的高价态重离子(例如C6+、N7+、O7+、O8+等)和中性原子或分子(例如地球空间中的中性氢原子,日球层中的中性氢原子和氦原子,彗星和其它行星上的水分子、CO2等)发生碰撞时. 太阳风离子得到一个或多个电子后进入激发态,随后在回到基态的过程中释放出一个或多个软X射线波段的光子. 地球磁层的SWCX软X射线辐射主要发生在日侧的磁鞘和极尖区,因此利用软X射线大范围成像技术可以对磁层进行远距离全景成像,从而在大尺度上认知太阳风-磁层相互作用的基本模式. 在此背景下,中欧联合空间科学卫星计划太阳风-磁层相互作用全景成像卫星(Solar wind Magnetosphere Ionosphere Link Explorer, SMILE)得到立项和实施. SMILE卫星将针对日下点附近区域的磁层顶、弓激波、部分极尖区和地球极光进行成像探测,同时对太阳风等离子体和磁场进行原位测量. SMILE卫星计划于2024—2025年发射. 本文将阐述地球磁层软X射线辐射的机制、回顾磁层软X射线辐射观测证据及辐射特性方面的研究、总结磁层信号的模拟仿真进展、介绍磁层成像探测计划,并提出未来行星磁层软X射线成像探测的概念.

     

  • 图  1  地球磁层结构示意图. P是热压

    Figure  1.  Schematic plot of the Earth's magnetosphere. P is the thermal pressure

    图  2  慢速太阳风中计算出的SWCX发射光谱. 横轴是能量,纵轴是X射线强度,不同颜色对应不同离子的发射线(修改自Koutroumpa et al., 2009

    Figure  2.  Spectrum of SWCX emission calculated for the slow solar wind. The horizontal axis is energy and the vertical axis is X-ray intensity. Different colors correspond to emission lines of different ions (modified from Koutroumpa et al., 2009)

    图  3  XMM-Newton卫星在0.3~2.0 keV波段的X射线图像. 从左到右依次为MOS1、MOS2和PN,其中带红色斜线的小圆圈表示要从视野中去除的天文点源,大的黄色圆圈表示用于分析的视野区域

    Figure  3.  X-ray images of XMM-Newton in the 0.3–2.0 keV band. From left to right: MOS1, MOS2, and PN. The small circle with red diagonal line represents the astronomical point source to be removed from the field of view, and the large yellow circle represents the field of view for analysis

    图  4  1/4 keV ROSAT全天空调查图. (a)、(b)分别是移除LET前和移除LET后的全天空X射线背景图(修改自Snowden et al., 2009

    Figure  4.  1/4 keV ROSAT all-sky survey map. (a) and (b) are the all-sky X-ray background images before and after the removal of LET, respectively (modified from Snowden et al., 2009)

    图  5  SWCX光谱模型拟合到XMM-Newton在ICME中观测到的光谱. 横轴是能量,上面板的纵轴是强度,下面板的纵轴是模型和观测的拟合方差. 不同颜色的高斯线对应不同离子的发射线(修改自Carter et al., 2010

    Figure  5.  SWCX spectral model fitted to the spectra observed by XMM-Newton in an ICME. The horizontal axis is energy, the vertical axis of the upper panel is X-ray intensity, and the vertical axis of the lower panel is the fitting variance of the model and observation. Gaussian lines of different colors correspond to emission lines of different ions (modified from Carter et al., 2010)

    图  6  ICME驱动的鞘区(a)和ICME本体(b)作用下磁层X射线辐射示意图. 白球和彩球分别表示太阳风中的质子和离子. ACE卫星位于太阳风中,XMM-Newton卫星位于磁层中,其中白色虚线是它的视线(修改自Zhang et al., 2022b

    Figure  6.  Schematic diagram of magnetospheric X-ray emission during the impact of the ICME-driven sheath (a) and the ICME (b). The white and colored balls represent the protons and ions in the solar wind, respectively. The ACE satellite is located in the solar wind and the XMM-Newton satellite is located in the magnetosphere, where the white dotted line is its line of sight (modified from Zhang et al., 2022b)

    图  7  SWCX信号强度与太阳风质子通量的统计关系. 中间面板的横轴是太阳风质子通量,纵轴是相关性系数. 顶部面板中的直方图表示线性相关系数的绝对值,星号曲线表示该相关性的百分比. 右面板中的直方图表示事件数,星号曲线表示每个相关系数区间的平均太阳风质子通量. 红色、黑色和橙色分别表示正相关、不相关和负相关. 绿色和蓝色分别表示太阳风质子通量的突然增加和减少. 粉色代表所有情况的总和(修改自Zhang et al., 2022a

    Figure  7.  Statistical relationship between SWCX signal intensity and solar wind proton flux. The horizontal axis of the middle panel is the solar wind proton flux and the vertical axis is the correlation coefficient. The histogram in the top panel represents the absolute value of the linear correlation coefficient and the asterisk curve represents the percentage of this correlation. The histogram in the right panel represents the number of events and the asterisk curve represents the average solar wind proton flux in each correlation coefficient interval. Red, black, and orange indicate positive correlation, uncorrelated, and negative correlation, respectively. Green and blue indicate the sudden increase and decrease of solar wind proton flux, respectively. Pink represents the sum of all cases (modified from Zhang et al., 2022a)

    图  8  SMILE任务X射线成像仿真图. 从左到右太阳风等离子体数密度分别为:5、20、35 cm-3. 白色曲线所示为极尖区边界,红色曲线为赤道面和子午面内的磁层顶位置(修改自Sun et al., 2019

    Figure  8.  Prediction of the X-ray image to be observed by the SMILE mission. From left to right: the solar wind number density is 5, 20, and 35 cm−3. The white curves depict the boundaries of cusps and the red curves are the magnetopause position in the equatorial and meridian plane (modified from Sun et al., 2019)

    图  9  SXI视场内X射线强度图(a1-a3)、光子计数图像(b1-b3)及切向拟合法获得的磁层顶位置(c1-c3). 由左到右太阳风等离子体密度逐渐增强(修改自Guo et al., 2022

    Figure  9.  Predicted X-ray intensity image (a1-a3), photon counts image (b1-b3), and magnetopause position derived from the photon counts image via Tangent Fitting Approach (c1-c3). The solar wind number density increases from left to right (modified from Guo et al., 2022)

    图  10  三维磁层反演的方法总结. 从左到右分别是反演用到的信息,反演的方法和需要的假设. 反演用到的信息为一幅、两幅或多幅图. 反演的方法有边界拟合法(BFA)、切向拟合法(TFA)、切线方向法(TDA)和计算机断层分析法(CTA). 需要的假设有磁层顶位型函数、最大X射线强度在切线方向、磁层顶位型恒定等(修改自Sun et al., 2020

    Figure  10.  Summary plot of the 3D magnetopause reconstruction approach from X-ray images. From left to right: information used for reconstruction, reconstruction approaches, and required assumptions. The information of reconstruction is from one, two, to a series of pictures. The reconstruction approaches include the Boundary Fitting (BFA), Tangent Fitting (TFA), Tangential Direction (TDA), and Computed Tomography Approaches (CTA). The required assumptions are the forms of magnetopause, the maximum X-ray intensity is in the tangent direction, and different images are taken for the same magnetopause profile (modified from Sun et al., 2020)

    图  11  使用TFA方法由X射线图像提取磁层顶边界. (a)SMILE视场内的X射线强度仿真图,黑色曲线为基于X射线图像得到的磁层顶切线方向,红线为通过TFA找到的最佳匹配的切线方向. (b)TFA反演得到的三维磁层顶. (c)不同平面内的等离子体热压图,白线和红线分别为MHD和TFA反演得到的磁层顶位置(修改自Sun et al., 2020

    Figure  11.  Magnetopause position derived by utilizing the Tangent Fitting Approach. (a) Simulated X-ray image inside the FOV. The black curve represents the tangent directions derived from the X-ray image, and the red curve shows the best match calculated from the parameterized function. (b) Reconstructed 3-D magnetopause. (c1-c4) Contours of plasma thermal pressure on different planes rotating around the x axis by 0°, 30°, 60°, and 90°, respectively, starting at the equatorial plane. The white and red curves show the MHD and reconstructed magnetopause, respectively (modified from Sun et al., 2020)

    图  12  STORM仪器原型及SMILE软X射线成像仪3D模型. 右图中从左到右依次是前端电子设备、望远镜结构、龙虾眼望远镜和杂散光挡板(修改自Collier et al., 2015; Raab et al., 2016

    Figure  12.  Prototype of STORM and 3D model of SMILE SXI. From left to right: front-end electronics, telescope structure, lobster-eye telescope, and straylight baffle (modified from Collier et al., 2015; Raab et al., 2016)

    图  13  SMILE任务概念图(修改自Branduardi-Raymont et al., 2016

    Figure  13.  Concept of the SMILE mission (modified from Branduardi-Raymont et al., 2016)

    图  14  月基软X射线成像仪观测地球磁层概念图(修改自Guo et al., 2021

    Figure  14.  Sketch of the lunar based X-ray imager observing the Earth’s magnetopause (modified from Guo et al., 2021)

    表  1  天文X射线卫星

    Table  1.   Astronomical X-ray satellite

    卫星科研单位任务时间仪器能量范围/keV视场
    伦琴(ROSAT) 德、美、英 1990-06-01至1999-02-12 位置敏感比例计数器(PSPC) 0.1~2.5 ~2°
    钱德拉X射线天文台(Chandra) 1999-07-23 至今 高级CCD成像光谱仪(ACIS-I) 0.2~10 $ 16\text{'}\times 16\text{'} $
    高级CCD成像光谱仪(ACIS-S) $ 8\text{'}\times 48\text{'} $
    多镜片X射线观测卫星(XMM-Newton) 1999-12 至今 欧洲光子成像相机(EPIC-MOS) 0.1~15 $ 33\text{'}\times 33\text{'} $
    欧洲光子成像相机(EPIC-PN) $ 27.5\text{'}\times 27.5\text{'} $
    朱雀(Suzaku) 日、美 2005-07-10至2015-09-02 X射线成像光谱仪(XIS) 0.2~12 $ 18\text{'}\times 18\text{'} $
    下载: 导出CSV

    表  2  国际磁层成像观测计划

    Table  2.   Imaging missions of the Earth’s magnetopause

    观测计划国家平台类型发射时间观测视场运行轨道
    微笑卫星(SMILE) 中+欧 小型卫星 2024—2025 16°×27° 高地球轨道
    空间X射线成像仪(GEO-X) 日本 科学卫星 2023—2025 4°×4° 高地球轨道/近月轨道
    月基软X射线成像仪(SXI) 中国 月球科研站 待定 15°×30° 月表
    月球环境日球层X射线成像仪(LEXI) 美国 月球着陆点 待定 ~9°×9° 月表
    下载: 导出CSV
  • [1] Angel J R P. 1979. Lobster eyes as X-Ray telescopes[J]. The Astrophysical Journal, 233(1): 364-373.
    [2] Asakura K, Matsumoto H, Okazaki K, et al. 2021. Suzaku detection of solar wind charge exchange emission from a variety of highly-ionized ions in an interplanetary coronal mass ejection[J]. Publications of the Astronomical Society of Japan, 73(3): 504-518. doi: 10.1093/pasj/psab015
    [3] Benz A O, Krucker S, Hurford G J, et al. 2012. The spectrometer telescope for imaging X-rays (STIX) on board the solar orbiter mission[C]//Proceedings of SPIE: Space Telescopes and Instrumentation 2012-Ultraviolet to Gamma Ray. Amsterdam: SPIE-INT SOC Optical Engineering, 8443.
    [4] Bhardwaj A, Elsner R F, Gladstone G R, et al. 2007a. X-rays from solar system objects[J]. Planetary and Space Science, 55: 1135-1189. doi: 10.1016/j.pss.2006.11.009
    [5] Bhardwaj A, Gladstone G R, Elsner R F, et al. 2007b. First terrestrial soft X-ray auroral observation by the Chandra X-ray observatory[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 69 (1-2): 179-187.
    [6] Bodewits D, Christian D J, Torney M, et al. 2007. Spectral analysis of the Chandra comet survey[J]. Astronomy & Astrophysics, 469(3): 1183-1195.
    [7] Branduardi-Raymont G, Bhardwaj A, Elsner R F, Rodriguez P. 2010. X-rays from Saturn: a study with XMM-Newton and Chandra over the years 2002–05[J]. Astronomy & Astrophysics, 510: A73.
    [8] Branduardi-Raymont G, Escoubet C P, Kuntz K, et al. 2016. Link between solar wind, magnetosphere, and ionosphere[EB/OL]. ISSI-BJ Magazine, No. 9.
    [9] Camp J, Barthelmy S, Petre R, et al. 2015. ISS-Lobster: a low-cost wide-field X-ray transient detector on the ISS[C]//Proceedings of SPIE: EUV and X-ray Optics-Synergy between Laboratory and Space IV. Prague: SPIE-INT SOC Optical Engineering, 9510.
    [10] Carter J A, Sembay S. 2008. Identifying XMM-Newton observations affected by solar wind charge exchange. Part I[J]. Astronomy & Astrophysics, 489(2): 837-848.
    [11] Carter J A, Sembay S, Read A M. 2010. A high charge state coronal mass ejection seen through solar wind charge exchange emission as detected by XMM-Newton[J]. Monthly Notices of the Royal Astronomical Society, 402(2): 867-878. doi: 10.1111/j.1365-2966.2009.15985.x
    [12] Carter J A, Sembay S, Read A M. 2011. Identifying XMM-Newton observations affected by solar wind charge exchange—Part II[J]. Astronomy & Astrophysics, 527: A115.
    [13] Carter J A, Sembay S, Read A M. 2012. Exospheric solar wind charge exchange as seen by XMM-Newton[J]. Astronomische Nachrichten, 333(4): 313-318. doi: 10.1002/asna.201211661
    [14] Collier M R, Moore T E, Snowden S L, et al. 2005. One-up on L1: can X-rays provide longer advanced warning of solar wind flux enhancements than upstream monitors[J]. Advances in Space Research, 35(12): 2157-2161. doi: 10.1016/j.asr.2005.02.035
    [15] Collier M R, Sibeck D G, Cravens T E, et al. 2010. Astrophysics noise: A space weather signal[J]. Eos Transactions American Geophysical Union, 91(24): 709-722.
    [16] Collier M R, Porter F S, Sibeck D G. 2015. First flight in space of a wide-field-of-view soft x-ray imager using lobster-eye optics: Instrument description and initial flight results[J]. Review of Scientific Instruments, 86(7): 071301. doi: 10.1063/1.4927259
    [17] Collier M R, Connor H K. 2018. Magnetopause surface reconstruction from tangent vector observations[J]. Journal of Geophysical Research: Space Physics, 123(12): 10189-10199.
    [18] Connor H K, Carter J. 2019. Exospheric neutral hydrogen density at the nominal 10 R-E subsolar point deduced from XMM-Newton X-Ray observations[J]. Journal of Geophysical Research: Space Physics, 124(3): 1612-1624. doi: 10.1029/2018JA026187
    [19] Connor H K, Sibeck D G, Collier M R, et al. 2021. Soft X-ray and ENA imaging of the Earth's dayside magnetosphere[J]. Journal of Geophysical Research: Space Physics, 126(3): e2020JA028816.
    [20] Cravens T E. 1997. Comet hyakutake X-ray source: charge transfer of solar wind heavy ions[J]. Geophysical Research Letters, 24(1): 105-108. doi: 10.1029/96GL03780
    [21] Cravens T E. 2000. Heliospheric X-ray emission associated with charge transfer of the solar wind with interstellar neutrals[J]. Astrophysical Journal, 532(2): L153-L156. doi: 10.1086/312574
    [22] Cravens T E, Robertson I P, Snowden S L. 2001. Temporal variations of geocoronal and heliospheric X-ray emission associated with the solar wind interaction with neutrals[J]. Journal of Geophysical Research: Space Physics 106(A11): 24883-24892.
    [23] Cravens T E. 2002. X-ray emission from comets[J]. Science, 296(5570): 1042-1045.
    [24] Djuric N, Smith S J, Simcic J, et al. 2008. Absolute single and multiple charge exchange cross sections for highly charged C, N, and O ions colliding with CH4[J]. The Astrophysical Journal, 679(2): 1661-1664. doi: 10.1086/587782
    [25] Dunn W R, Branduardi-Raymont G, Ray L, et al. 2017. The independent pulsations of Jupiter's northern and southern X-ray auroras[J]. Nature Astronomy, 1(11): 758. doi: 10.1038/s41550-017-0262-6
    [26] Dunn W R, Ness J-U, Lamy L, et al. 2021. A low signal detection of X-rays from Uranus[J]. Journal of Geophysical Research: Space Physics, 126(4): e2020JA028739.
    [27] Dunn W R. 2022. X-ray emissions from the Jovian system[J]. arXiv preprint arXiv: 2208: 13455.
    [28] Evrard A E, Henry J P. 1991. Expectations for X-ray cluster observations by the ROSAT satellite[J]. Astrophysical Journal, 383(1): 95-103.
    [29] Ezoe Y, Ebisawa K, Yamasaki N Y, et al. 2010. Time variability of the geocoronal solar-wind charge exchange in the direction of the celestial equator[J]. Publications of the Astronomical Society of Japan, 62(4): 981-986. doi: 10.1093/pasj/62.4.981
    [30] Ezoe Y, Miyoshi Y, Yoshitake H, et al. 2011. Enhancement of terrestrial diffuse X-ray emission associated with coronal mass ejection and geomagnetic storm[J]. Publications of the Astronomical Society of Japan, 63: S691-S704. doi: 10.1093/pasj/63.sp3.S691
    [31] Ezoe Y, Miyoshi Y, Kasahara S, et al. 2018. Ultralightweight x-ray telescope missions: ORBIS and GEO-X[J]. Journal of Astronomical Telescopes Instruments and Systems, 4(4): 046001.
    [32] Fraser G W, Carpenter J D, Rothery D A, et al. 2010. The mercury imaging X-ray spectrometer (MIXS) on bepicolombo[J]. Planetary and Space Science, 58(1-2): 79-95. doi: 10.1016/j.pss.2009.05.004
    [33] Fujimoto R, Mitsuda K, Mccammon D, et al. 2007. Evidence for solar-wind charge-exchange X-ray emission from the Earth's magnetosheath[J]. Progress of Theoretical Physics Supplements, 169: 71-74. doi: 10.1143/PTPS.169.71
    [34] Giacconi R. 1981. X-Ray Astronomy with the Einstein Satellite[J]. Astrophysics & Space Science Library, 30(1-4): 3-32.
    [35] Gladstone G R, Waite J H, Grodent D, et al. 2002. A pulsating auroral X-ray hot spot on Jupiter[J]. Nature, 415: 1000-1003.
    [36] Gondoin P, Aschenbach B, Bräuninger H, et al. 1996. X-ray performance of a qualification model of an XMM mirror module[C]//Proceedings of SPIE: EUV, X-Ray, and Gamma-ray Instrumentation for Astronomy VII. Denver: SPIE - Iut SOC Optical Engineering, 2808: 390-401.
    [37] Guo Y H, Wang C, Wei F, et al. 2021. A Lunar-based soft X-ray imager (LSXI) for the Earth's magnetosphere[J]. Science China Earth Sciences, 64(7): 1026-1035. doi: 10.1007/s11430-020-9792-5
    [38] Guo Y H, Sun T R, Wang C, et al. 2022. Deriving the magnetopause position from wide field-of-view soft X-ray imager simulation[J]. Science China Earth Sciences, 65(8): 1601-1611. doi: 10.1007/s11430-021-9937-y
    [39] Henley D B, Shelton R L. 2010. An XMM-Newton survey of the soft X-ray background. I. The O VII and O VIII lines between l=120° and l=240°[J]. Astrophysical Journal Supplement Series, 187(2): 388-408. doi: 10.1088/0067-0049/187/2/388
    [40] Henley D B, Shelton R L. 2012. An XMM-Newton survey of the soft X-ray background. II. An all-sky catalog of diffuse O VII and O VIII emission intensities[J]. Astrophysical Journal Supplement Series, 202(2): 14. doi: 10.1088/0067-0049/202/2/14
    [41] Ishi D, Ishikawa K, Numazawa M, et al. 2019. Suzaku detection of enigmatic geocoronal solar wind charge exchange event associated with coronal mass ejection[J]. Publications of the Astronomical Society of Japan, 71(1): 23.
    [42] Ishikawa K, Ezoe Y, Miyoshi Y, et al. 2013. Suzaku observation of strong solar-wind charge-exchange emission from the terrestrial exosphere during a geomagnetic storm[J]. Publications of the Astronomical Society of Japan, 65(3): 63. doi: 10.1093/pasj/65.3.63
    [43] Jorgensen A M, Sun T R, Wang C, et al. 2019a. Boundary detection in three dimensions with application to the smile mission: The effect of photon noise[J]. Journal of Geophysical Research: Space Physics, 124(6): 4365-4383. doi: 10.1029/2018JA025919
    [44] Jorgensen A M, Sun T R, Wang C, et al. 2019b. Boundary detection in three dimensions with application to the SMILE mission: The effect of model-fitting noise[J]. Journal of Geophysical Research: Space Physics, 124(6): 4341-4355. doi: 10.1029/2018JA026124
    [45] Jorgensen A M, Xu R, Sun T R, et al. 2022. A theoretical study of the tomographic reconstruction of magnetosheath X-ray emissions[J]. Journal of Geophysical Research: Space Physics, 127(4): e2021JA029948.
    [46] Kirkpatrick P, Baez A V. 1948. Formation of optical images by X-Rays[J]. Journal of the Optical Society of America, 38(9): 766-774. doi: 10.1364/JOSA.38.000766
    [47] Koutroumpa D, Lallement R, Kharchenko V, et al. 2006. Charge-transfer induced EUV and soft X-ray emissions in the heliosphere[J]. Astronomy & Astrophysics, 460(1): 289-U228.
    [48] Koutroumpa D, Acero F, Lallement R, et al. 2007. OVII and OVIII line emission in the diffuse soft X-ray background: heliospheric and galactic contributions[J]. Astronomy & Astrophysics, 475(3): 901-U47.
    [49] Koutroumpa D, Lallement R, Raymond J C, et al. 2009. The solar wind charge-transfer X-ray emission in the 1/4 keV energy range: inferences on local bubble hot gas at low Z[J]. The Astrophysical Journal, 696(2): 1517-1525. doi: 10.1088/0004-637X/696/2/1517
    [50] Krasnopolsky V A, Greenwood J B, Stancil P C. 2004. X-Ray and extreme ultraviolet emissions from comets[J]. Space Science Reviews, 113(3-4): 271-374. doi: 10.1007/s11214-005-6263-2
    [51] Kuntz K D, Snowden S L. 2008. The EPIC-MOS particle-induced background spectra[J]. Astronomy & Astrophysics, 478(2): 575-596.
    [52] Kuntz K D, Collado-Vega Y M, Collier M R, et al. 2015. The solar wind charge exchange production factor for hydrogen[J]. The Astrophysical Journal, 808(2): 143. doi: 10.1088/0004-637X/808/2/143
    [53] Kuntz K D. 2018. Solar wind charge exchange: An astrophysical nuisance[J]. Astronomy and Astrophysics Reviews, 27: 1.
    [54] Li T P. 2007. HXMT: A Chinese high-energy astrophysics mission[J]. Nuclear Physics B - Proceedings Supplement, 166: 131-139. doi: 10.1016/j.nuclphysbps.2006.12.070
    [55] Liang G Y, Li F, Wang F L, et al. 2014. X-Ray and EUV spectroscopy of various astrophysical and laboratory plasma: collisional, photoionization and charge-exchange plasma[J]. Astrophysical Journal, 783(2): 124. doi: 10.1088/0004-637X/783/2/124
    [56] Liang G Y, Zhu X L, Wei H G, et al. 2021. Charge-exchange soft X-ray emission of highly charged ions with inclusion of multiple-electron capture[J]. Monthly Notices of the Royal Astronomical Society, 508(2): 2194-2203. doi: 10.1093/mnras/stab2537
    [57] Liang G Y, Sun T R, Lu H Y, et al. 2022. X-ray morphology due to charge-exchange emissions to study the global structure around Mars[J]. The Astrophysical Journal(accepted).
    [58] Lisse C M, Dennerl K, Englhauser J, et al. 1996. Discovery of X-ray and extreme ultraviolet emission from comet C/Hyakutake 1996 B2[J]. Science, 274(5285): 205-209. doi: 10.1126/science.274.5285.205
    [59] Mawhorter R J, Chutjian A, Cravens T E, et al. 2007. Absolute single and multiple charge exchange cross sections for highly charged C, O, and Ne ions on H2O, CO, and CO2[J]. Physical Review A, 75(3): 032704. doi: 10.1103/PhysRevA.75.032704
    [60] Peng S W, Ye Y Z, Wei F, et al. 2018. Numerical model built for the simulation of the earth magnetopause by lobster-eye-type soft X-ray imager onboard SMILE satellite[J]. Optics Express, 26(12): 15138-15152. doi: 10.1364/OE.26.015138
    [61] Petrinec S M, Imhof W L, Chenette D L, et al. 2000. Dayside/nightside auroral X-ray emission difference-implications for ionospheric conductance[J]. Geophysical Research Letters, 27: 3277-3279. doi: 10.1029/2000GL000056
    [62] Raab W, Branduardi-Raymont G, Wang C, et al. 2016. SMILE: a joint ESA/CAS mission to investigate the interaction between the solar wind and Earth’s magnetosphere[C]//Proceedings of SPIE: Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray. Edinburgh: SPIE-INT SOC Optical Engoneering, 9905(1): 990502.
    [63] Richardson I G, Cane H V. 2010. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996-2009): catalog and summary of properties[J]. Solar Physics, 264(1): 189-237. doi: 10.1007/s11207-010-9568-6
    [64] Richardson I G. 2014. Identification of interplanetary coronal mass ejections at ulysses using multiple solar wind signatures[J]. Solar Physics, 289(10): 3843-3894. doi: 10.1007/s11207-014-0540-8
    [65] Robertson I P, Cravens T E. 2003. Spatial maps of heliospheric and geocoronal X-ray intensities due to the charge exchange of the solar wind with neutrals[J]. Journal of Geophysical Research, 108(A10): 8031. DOI: 10.1029/2003JA009873.
    [66] Robertson I P, Collier M R, Cravens T E, Fok M-C. 2006. X-ray emission from the terrestrial magnetosheath including the cusps[J]. Journal of Geophysical Research, 111: A12105. DOI: 10.1029/2006JA011672.
    [67] Rutherford D J, Horridge G A. 1965. The rhabdom of the lobster eye[J]. Journal of Cell Science, 106(2): 119-130.
    [68] Schwadron N A, Cravens T E. 2000. Implications of solar wind composition for cometary X-rays[J]. Astrophysical Journal, 544(1): 558-566. doi: 10.1086/317176
    [69] Slavin J D, Wargelin B J, Koutroumpa D. 2013. Solar wind charge exchange emission in the Chandra deep field north[J]. The Astrophysical Journal, 779(1): 13. doi: 10.1088/0004-637X/779/1/13
    [70] SMILE science study team. 2018. SMILE (Solar Wind Magnetosphere Ionosphere Link Explorer) definition study[R]. Report. ESA/SCI, 1.
    [71] Smith R K, Edgar R J, Plucinsky P P, et al. 2005. Chandra observations of MBM 12 and models of the local bubble[J]. Astrophysical Journal, 623(1): 225-234. doi: 10.1086/428568
    [72] Snowden S L, McCammon D, Burrows D N, et al. 1994. Analysis procedures for ROSAT XRT/PSPC observations of extended objects and the diffuse background[J]. Astrophysical Journal, 424(2): 714-728.
    [73] Snowden S L, Freyberg M J, Plucinsky P P, et al. 1995. First maps of the soft x-ray diffuse background from the ROSAT all-sky survey[J]. The Astrophysical Journal, 454(2): 643-653.
    [74] Snowden S L, Egger R, Freyberg M J, et al. 1997. ROSAT survey diffuse X-ray background maps. II[J]. Astrophysical Journal, 485(1): 125.
    [75] Snowden S L, Collier M R, Kuntz K D. 2004. XMM-Newton observation of solar wind charge exchange emission[J]. Astrophysical Journal, 610(2): 1182-1190. doi: 10.1086/421841
    [76] Snowden S L, Collier M R, Cravens T, et al. 2009. Observation of solar wind charge exchange emission from exospheric material in and outside Earth's magnetosheath 2008 September 25[J]. Astrophysical Journal, 691(1): 372-381. doi: 10.1088/0004-637X/691/1/372
    [77] Sun T R, Wang C, Wei F, et al. 2015. X-ray imaging of Kelvin-Helmholtz waves at the magnetopause[J]. Journal of Geophysical Research: Space Physics, 120(1): 266-275. doi: 10.1002/2014JA020497
    [78] Sun T R, Wang C, Sembay S, et al. 2019. Soft X-ray imaging of the magnetosheath and cusps under different solar wind conditions: MHD simulations[J]. Journal of Geophysical Research: Space Physics, 124(4): 2435-2450.
    [79] Sun T R, Wang C, Connor H K, et al. 2020. Deriving the magnetopause position from the soft X-ray image by using the tangent fitting approach[J]. Journal of Geophysical Research: Space Physics, 125(9): e2020JA028169.
    [80] Sun T R, Wang X, Wang C. 2021. Tangent directions of the cusp boundary derived from the simulated soft X-Ray image[J]. Journal of Geophysical Research: Space Physics, 126(3): e2020JA028314.
    [81] Tsuneta S, Acton L, Bruner M, et al. 1991. The soft X-ray telescope for the solar-A mission[J]. Solar Physics, 136(1): 37-67. doi: 10.1007/BF00151694
    [82] Voges W, Aschenbach B, Boller T, et al. 1999. The ROSAT all-sky survey bright source catalogue[J]. Astronomy & Astrophysics, 349(2): 389-405.
    [83] von Steiger R, Schwadron N A, Fisk L A, et al. 2000. Composition of quasi-stationary solar wind flows from Ulysses/solar wind ion composition spectrometer[J]. Journal of Geophysical Research: Space Physics, 105(A12): 27217-27238. doi: 10.1029/1999JA000358
    [84] Wang C, Branduardi-Raymont G. 2018. Progress of Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE) mission[J]. Chinese Journal of Space Science, 38(5): 657-661.
    [85] Wang C, Sun T R. 2022. Methods to derive the magnetopause from soft X-ray images by the SMILE mission[J]. Geoscience Letters, 9(1): 30. doi: 10.1186/s40562-022-00240-z
    [86] Wang R C, Li D L, Sun T R. 2022. Three-dimensional magnetospheric finite-angle integral projection complement and reconstruction method based on 3D GANs[J]. Journal of Geophysical Research: Space Physics (accepted).
    [87] Wargelin B J, Markevitch M, Juda M, et al. 2004. Chandra observations of the "dark" Moon and geocoronal solar wind charge transfer[J]. The Astrophysical Journal, 607(1): 596-610. doi: 10.1086/383410
    [88] Wargelin B J, Kornbleuth M, Martin P L, et al. 2014. Observation and modeling of geocoronal charge exchange X-ray emission during solar wind gusts[J]. The Astrophysical Journal, 796(1): 28. doi: 10.1088/0004-637X/796/1/28
    [89] Whittaker I C, Sembay S, Carter J A, et al. 2016. Modeling the magnetospheric X-ray emission from solar wind charge exchange with verification from XMM-Newton observations[J]. Journal of Geophysical Research: Space Physics, 121(5): 4158-4179. doi: 10.1002/2015JA022292
    [90] Wilkes B, Tucker W. 2020. The Chandra X-ray Observatory [M]. Bristol: IOP Publishing.
    [91] Wolter H. 1952. Mirror systems of grazing incidence as imaging optics for X-rays[J]. Annals of Physics, 10: 94-114.
    [92] Yao Z, Dunn W R, Woodfield E E, et al. 2021. Revealing the source of Jupiter's x-ray auroral flares[J]. Science Advances, 7(28): eabf0851. doi: 10.1126/sciadv.abf0851
    [93] Zhang Y J, Sun T R, Carter J A, et al. 2022a. Dynamical response of solar wind charge exchange soft X-ray emission in Earth's magnetosphere to the solar wind proton flux[J]. Astrophysical Journal (under review).
    [94] Zhang Y J, Sun T R, Wang C, et al. 2022b. Solar wind charge exchange soft x-ray emissions in the magnetosphere during an interplanetary coronal mass ejection compared to its driven sheath[J]. The Astrophysical Journal Letters, 932(1): L1. doi: 10.3847/2041-8213/ac7521
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  14
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-24
  • 录用日期:  2022-12-20
  • 修回日期:  2022-12-19
  • 网络出版日期:  2023-01-04

目录

    /

    返回文章
    返回