Analysis of the crustal movement characteristics and uplift mechanism of Longgang volcanoes, Jilin, based on geodesy and MT technology
-
摘要: 位于吉林长白山西麓龙岗山脉中段的龙岗火山群是中国近代主要火山活动区之一. 通过对火山区2010—2020年多期GNSS(Global Navigation Satallite System)观测资料及1970—2010年多个时段的一、二等水准资料进行解算,获取现今三维地壳运动速度场. GNSS获取的水平运动速率从西向东增大,东部主要以拉张运动为主,连续面应变率场结果反映火山区位于膨胀区;一等水准路线长抚线和丹抚线资料显示火山区以垂直上升运动为主,主要速率为0.55~1.83 mm/a,其中抚松—仙人桥—老山队一带为主要隆升区,速率多大于1.0 mm/a;该区域分布丰富的地热资源,也是地震多发地区. 邻近区域的二等水准路线梅通线速率相对较小,为0.23~0.77 mm/a. 结合对99个测点大地电磁数据三维反演得到的火山区深部电性结构:与隆升区对应的中下地壳赋存相对较浅的岩浆系统,电性边界带推测的浑江断裂北向延伸. 断裂附近的低阻体规模最大,向下延伸至地幔尺度. 最浅的低阻体位于最年轻的金龙顶子火山大约10 km以下位置,以上的高阻结构认为是岩浆溢流结束后的后撤和固结. 综合分析认为现今火山区地壳的膨胀隆升、地震活动与幔源物质的上涌、间断性的运移引起断层活动有关.Abstract: The Longgang volcanic field is one of the most active volcanoes in modern China. It is situated in the central region of the Longgang mountains on the west slopes of Changbaishan in Jilin. The present three-dimensional crustal movement velocity fields in the different periods were obtained by processing Global Navigation Satellite System (GNSS) observations from 2010 to 2020 and data for the leveling profiles from 1970s to 2010s in the area. The horizontal velocities of GNSS stations were larger in the eastern region than in the western regions, indicating that the eastern region is mainly tensile. The results of the continuous surface strain rates showed that a volcanic field is located in the expansion area. The results of the first-order leveling data for the Changfu profile and the Danfu profile showed that the vertical movements were predominantly uplift, with rates of 0.55~1.83 mm/a for most of the sites. The area with relatively higher uplifting rates of more than 1.0 mm/a was Fusong-Xianrenqiao-Laoshandui, which is rich in geothermal resources and prone to earthquakes. At the adjacent area, Meitong, the rates of the second-class leveling profile were relatively small, at 0.23~0.77 mm/a. The deep electrical structure of the volcanic area was obtained through the three-dimensional inversion of 99 broadband magnetotelluric soundings. The clear structures of the low resistivity in the middle and lower crusts corresponded to the uplift area, which is suggested to be a magmatic system. The position of the magma was relatively shallow. The electrical boundary zone at the northeast end of the Hunjiang fault was speculated to be the northern extension of the fault. The low-resistivity body had the largest scale and extended downward to the mantle. The shallowest low-resistivity body was approximately 10 km below the youngest Jinlongdingzi volcano, and the above high-resistivity structure was considered to be the retreat and consolidation magma after the overflow eruption ended. A comprehensive analysis showed that the ongoing inflation, uplift, and seismic activities of the crust in the volcanic area were related to the upwelling of mantle materials and fault movements caused by intermittent magma migration.
-
Key words:
- horizontal movement /
- vertical movement /
- surface expansion rate /
- MT /
- earthquake /
- uplift mechanism
-
图 1 龙岗火山群三维地壳运动背景. F1:敦化—密山断裂;F2:浑江断裂;F3:鸭绿江断裂;F4:依兰—伊通断裂;JLDZ:金龙顶子火山;同震水平位移引自王敏等(2011)
Figure 1. 3D crustal movement background in the Longgang volcanoes. F1: Dunhua-Mishan fault; F2: Hunjiang fault; F3: Yalujiang fault; F4: Yilan-Yitong fault; JLDZ: Jilongdingzi volcano;the coseismic velocities are from Wang et al. (2011)
图 5 深部电性结构立体图(5~90 km)(断层同图1,修改自Zhao et al., 2022). LAB:岩石圈-软流圈边界
Figure 5. Stereoscopic view of the deep electrical structure (5-90 km) . (Faults are the same as those in Fig. 1, modified from Zhao et al., 2022) . LAB: lithosphere-asthenosphere boundary
表 1 相对欧亚板块水平运动速率(mm/a)
Table 1. Site velocities in Eurasia (mm/a)
点名 Ve Vn σve σvn E312 3.32 −1.35 0.27 0.10 JLDG 3.21 −1.23 0.12 0.10 JLHD 2.01 −1.68 0.13 0.10 JLHN 2.27 −2.14 0.12 0.20 JLJY 3.34 −1.37 0.13 0.10 CHUN 1.84 −1.35 0.15 0.10 表 2 GNSS站点观测概况
Table 2. GNSS sites observed in this project
观测时间 年积日 观测站点 2010-08-13至2010-08-19 225-231 E312, LG01, LG02, LG03, LG04, LG05, LG06, LG07, LG08, LG09, LG10, LG11 2014-08-08至2014-08-15 220-227 E312, LG01, LG02, LG03, LG04, LG05, LG06, LG08, LG09, LG10, LG11 2020-08-24 至2020-08-30 237-244 E312, LG01, LG04, LG05, LG08 表 3 相对欧亚板块和点位E312的水平运动速率(mm/a)
Table 3. Site velocities in Eurasia and site E312 (mm/a)
时间/年 点名 相对欧亚板块 相对E312 相对E312(扣除同震) Ve Vn σve σvn dVe dVn dVe dVn 2010—2014 E312 11.52 −3.95 0.43 0.30 0 0 0 0 LG01 11.55 −5.79 0.42 0.30 0.03 −1.84 0.63 −2.24 LG02 12.40 −5.08 0.44 1.10 0.88 −1.13 1.58 −1.93 LG03 12.07 −4.49 0.48 0.60 0.55 −0.54 1.25 −1.24 LG04 11.76 −3.12 0.24 0.40 0.24 0.83 0.54 0.33 LG05 13.08 −4.32 0.36 0.40 1.56 −0.37 1.86 −1.07 LG06 11.53 −2.76 0.35 0.30 0.01 1.19 0.11 0.89 LG09 14.07 −6.51 0.65 0.30 2.55 −2.56 1.85 −2.16 LG10 12.01 0.69 0.46 0.20 0.49 4.64 −0.11 4.64 2014—2020 E312 3.32 −1.35 0.27 0.10 0 0 LG01 3.95 −4.29 0.24 0.20 0.63 −2.94 LG04 1.76 2.68 0.20 0.20 −1.56 4.03 LG05 2.88 −1.92 0.20 0.20 −0.44 −0.57 -
[1] 白登海, 廖志杰, 赵国泽, 等. 1994. 从MT探测结果推论腾冲热海热田的岩浆热源[J]. 科学通报, 39(4): 344-347.Bai D H, Liao Z J, Zhao G Z, et al.1994.The inference of magmatic heat source beneath the Rehai (hot sea) field of Tengchong from the result of magnetotelluric sounding[J]. Chinese Science Bulletin, 39(7): 572-577 (in Chinese). [2] 白志达, 徐德斌, 张秉良, 等. 2006. 龙岗火山群第四纪爆破式火山作用类型与期次研究[J]. 岩石学报, 22(6): 1473-1480 doi: 10.3321/j.issn:1000-0569.2006.06.004Bai Z D, Xu D B, Zhang B L, et al. 2006. Study on type and phase of Quaternary explosive volcanism in Longgang volcanic cluster[J]. Acta Petrologica Sinica, 22(6): 1473-1480 (in Chinese). doi: 10.3321/j.issn:1000-0569.2006.06.004 [3] 陈欣, 薄万举, 罗三明, 等. 2022. 中国大陆典型沉降区垂直形变图数据集[J]. 地震地磁观测与研究, 43(2): 202-207 doi: 10.3969/j.issn.1003-3246.2022.02.026Chen X, Bo W J, Luo S M, et al. 2022. The vertical maps of typical subsidence zones in Chinese mainland[J]. Seismological and Geomaganetic Observation and Research, 43(2): 202-207(in Chinese). doi: 10.3969/j.issn.1003-3246.2022.02.026 [4] 樊祺诚, 刘若新, 魏海泉, 等. 1999. 龙岗金龙顶子近代活动火山的岩石学与地球化学[J]. 岩石学报, 15(4): 584-589 doi: 10.3321/j.issn:1000-0569.1999.04.011Fan Q C, Liu R X, Wei H Q, et al. 1999. The petrology and geochemistry of Jinlongdingzi modernactive volcano in Longgang area[J]. Acta Petrologica Sinica, 15(4): 584-589(in Chinese). doi: 10.3321/j.issn:1000-0569.1999.04.011 [5] 樊祺诚, 隋建立, 刘若新, 等. 2002. 林龙岗第四纪火山活动分期. 岩石学报, 18(4): 495-500.Fan Q C, Sui J L, Liu R X, et al. 2002. Periods of Quarternary volcanic activity in Longgang area, Jilin Province[J]. Acta Petrologica Sinica, 18(4): 495-500 (in Chinese). [6] 范兴利, 陈棋福, 郭震. 2020. 长白山火山区高精度Rayleigh面波相速度结构与岩浆系统[J]. 岩石学报, 36(7): 2081-2091 doi: 10.18654/1000-0569/2020.07.10Fan X L, Chen Q F, Guo Z. 2020. High-resolution Rayleigh-wave phase velocity structure beneath the Changbaishan volcanic field associated with its magmatic system[J]. Acta Petrologica Sinica, 36(7): 2081-2091(in Chinese). doi: 10.18654/1000-0569/2020.07.10 [7] Fan X L, Guo Z, Zhao Y, et al. 2022. Crust and uppermost mantle magma plumbing system beneath Changbaishan intraplate volcano, China/North Korea, revealed by ambient noise adjoint tomography[J]. Geophysical Research Letters, 49: e2022GL098308. [8] 付媛媛, 高原. 2016. 东北地区背景噪声的Rayleigh和Love波相速度层析成像[J]. 地球物理学报, 59(2): 494-503 doi: 10.6038/cjg20160209Fu Y Y, Gao Y. 2016. Phase velocity tomography of Rayleigh and Love waves using ambient noise in Northeast China[J]. Chineses Journal Geophysics, 59(2): 494-503 (in Chinese). doi: 10.6038/cjg20160209 [9] 郭良迁. 1990. 东北断块区的现代地壳垂直形变及其构造活动的意义[J]. 东北地震研究, 6(3): 15-20Guo L Q. 1990. Modern crustal vertical deformation in vortheast China block region and meaning of tectonic activity[J]. Northeastern Seismological Research, 6(3): 15-20 ( in Chinese). [10] Guo Z, Chen Y J, Ning J Y, et al. 2016. Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in northeast China[J]. Earth and Planetary Science Letters, 433: 31-43. doi: 10.1016/j.jpgl.2015.09.035 [11] Hao M, Wang Q L, Shen Z K, et al. 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau[J]. Tectonophysics, 632: 281-292. doi: 10.1016/j.tecto.2014.06.016 [12] Heise W, Caldwell T G, Bibby H M, et al. 2010. Three-dimensional electrical resistivity image of magma beneath an active continental rift, Taupo volcanic zone, New Zealand[J]. Geophysical Research Letters, 37(10): L10301. [13] 胡亚轩, 王庆良, 王雄. 2009. 利用垂直形变资料分析龙岗火山的活动性[J]. 地震研究, 32(3): 289-294 doi: 10.3969/j.issn.1000-0666.2009.03.013Hu Y X, Wang Q L, Wang X. 2009. Analysis of activity of Longgang volcano based on vertical deformation[J]. Earthquake Research, 32(3): 289-294( in Chinese). doi: 10.3969/j.issn.1000-0666.2009.03.013 [14] 胡亚轩, 赵凌强, 宋尚武, 等. 2022. 长白山火山区现今地壳运动特征及动力学环境分析[J]. 大地测量与地球动力学, 42(4): 331-335 doi: 10.14075/j.jgg.2022.04.001Hu Y X, Zhao L Q, Song S W, et al. 2022. Present-day crustal deformation and geodynamic environment of the Changbaishan volcano[J]. Journal of Geodesy and Geodynamics, 42(4): 331-335( in Chinese). doi: 10.14075/j.jgg.2022.04.001 [15] Ji L Y, Wang Q L, Wang S X. 2014. Present-day 3D deformation field of northeast China, observed by GPS and leveling[J]. Geodesy and Geodynamics, 5(3): 34-40. doi: 10.3724/SP.J.1246.2014.03034 [16] Lei J S, Zhao D P. 2005. P-wave tomography and origin of the Changbai intraplate volcano in northeast Asia[J]. Tectonophysics, 397: 281-295. doi: 10.1016/j.tecto.2004.12.009 [17] Li Y H, Wu Q J, Pan J T, et al. 2012. S-wave velocity structure of northeastern China from joint inversion of Raileigh wave phase and group velocities[J]. Geophysical Journal International, 190(1): 105-115. doi: 10.1111/j.1365-246X.2012.05503.x [18] 梁国经, 刘俊清, 綦伟, 等. 2010a. 靖宇—抚松MS4.6级地震序列特征[J]. 防灾减灾学报, 26(1): 69-74Liang G J, Liu J Q, Qi W, et al. 2020a. The seismic sequence characteristics of time MS4.6 earthquake between Jingyu and Fusong[J]. Journal of Disaster Prevention and Reduction, 26(1): 69-74 (in Chinese). [19] 梁国经, 郑双凤, 郑国栋, 等. 2010b. 龙岗火山区地震震源参数研究[J]. 防灾减灾学报, 26(4): 22-29 doi: 10.13693/j.cnki.cn21-1573.2010.04.005Liang G J, Zheng S F, Zheng G D, , et al. 2010b. Source parameters research of microearthquakes at Longgang volcanic area[J]. Journal of Disaster Prevention and Reduction, 26(4): 22-29 (in Chinese). doi: 10.13693/j.cnki.cn21-1573.2010.04.005 [20] 梁国经, 李仲巍, 郑双凤, 等. 2011. 龙岗火山区尾波Q值的初步研究[J]. 地震地质, 33(1): 114-122 doi: 10.3969/j.issn.0253-4967.2011.01.011Liang G J, Li Z W, Zheng S F, et al. 2011. Primary study on coda Q value in Longgang volcano area[J]. Seismology and Geology, 33(1): 114-122( in Chinese). doi: 10.3969/j.issn.0253-4967.2011.01.011 [21] 梁明, 王武星, 张晶. 2018. 联合GPS和Grace观测研究日本MW9.0地震震后变形机制[J]. 地球物理学报, 61(7): 2691-2704 doi: 10.6038/cjg2018L0356Liang M, Wang W X, Zhang J. 2018. Post-seismic deformation mechanism of the MW9.0 Tphoku-Oki earthquake detected by GPS and Grace observations[J]. Chinese Journal of Geophysics, 61(7): 2691-2704 (in Chinese). doi: 10.6038/cjg2018L0356 [22] 刘嘉麒. 1999. 中国火山[M]. 北京: 科学出版社.Liu J Q. 1999. China Volcano[M]. Beijing: Science Press (in Chinese). [23] 刘俊清, 丁广, 张晨侠, 等. 2013. 吉林省龙岗火山群现今活动性研究[J]. 华北地震科学, 31(1): 31-33 doi: 10.3969/j.issn.1003-1375.2013.01.006Liu J Q, Ding G, Zhang C X, et al. 2013. Study on present activity of Longgang volcano in Jilin Province[J]. North China Earthquake Sciences, 31( 1): 31-33 (in Chinese). doi: 10.3969/j.issn.1003-1375.2013.01.006 [24] 刘若新, 樊祺诚, 郑祥身, 等. 1998. 长白山天池火山的岩浆演化[J]. 中国科学(D辑), 28(3): 226-231Liu R X, Fan Q C, Zheng X S, et al. 1998. The magma evolution of Tianchi volcano, Changbaishan[J]. Science in China(Series D: Earth Science), 28(3): 226-231 (in Chinese). [25] Pan B, Liu G M, Cheng T, et al. 2020. Development and status of active volcano monitoring in China[J]. Geological Society London Special Publications, 510(1): SP510-2020-62. [26] 盘晓东, 康力. 2002. 浑江断裂带及水系的分形特征和构造活动性研究[J]. 东北地震研究. 18(4): 7-15Pan X D, Kang L. 2002. Study on fractal characteristics of Hunjiang fault zone and drainage systems and activity of tectonic[J]. Seismological Research of Northeast China, 18(4): 7-15 (in Chinese). [27] 庞广华. 2017. 东北典型区域宽频带地震背景噪声成像研究[D]. 吉林: 吉林大学.Pang G H. 2017. Broadband seismic ambient noise tomography in typical regions of northeast China[D]. Jinlin: Jilin University (in Chinese). [28] 仇根根, 裴发根, 方慧, 等. 2014. 长白山天池火山岩浆系统分析[J]. 地球物理学报, 57(10): 3466-3477 doi: 10.6038/cjg20141032Qiu G G, Pei F G, Fang H, et al. 2014. Analysis of magma chamber at the Tianchi volcano area in Changbai Mountain[J]. Chinese Journal of Geophysics, 57(10): 3466-3477 (in Chinese). doi: 10.6038/cjg20141032 [29] Sella G F, Dixon T H, Mao A. 2002. REVEL: A model for recent plate velocities from space geodesy[J], Journal Geophysical Research, 107(B4): 2081. [30] Shen Z K, Sun J B, Zhang P Z, et al. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2: 718–724. doi: 10.1038/ngeo636 [31] Shen Z K, Wang M, Zeng Y H, et al. 2015. Optimal interpolation of spatially discretized geodetic data[J]. Bulletin of the Seismological Society of America, 105 (4): 2117–2127. doi: 10.1785/0120140247 [32] 史兰斌, 林传勇, 韩秀伶, 等, 1999. 吉林龙岗火山群金龙顶子火山喷发物中幔源包体的基本特征及其地质意义[J]. 地质论评, 45(增刊), 308-318.Shi L B, Lin C Y, Han X L, et al. 1999. Principal features of mantle Xenoliths in Jinlongdingzi volcanoes, Longgang volcano clusters, Jilin province and their geological implications[J]. Geological Review, 45(Sup.): 308-318 (in Chinese). [33] 隋建立, 樊祺诚, 曹杰. 1999. 龙岗火山喷发特征与火山岩岩石化学初步研究[J]. 地质论评, 45(增): 319-324 doi: 10.16509/j.georeview.1999.s1.162Sui J L, Fan Q C, Cao J. 1999. A preliminary study of eruption features and petro-chemistry of volcanic rocks from the Longgang volcanoes[J]. Geological Review, 45(Sup. ): 319–324 (in Chinese). doi: 10.16509/j.georeview.1999.s1.162 [34] 汤吉, 邓前辉, 赵国泽, 等. 2001. 长白山天池火山区电性结构和岩浆系统[J]. 地震地质, 23(2): 191-200 doi: 10.3969/j.issn.0253-4967.2001.02.008Tang J, Deng Q H, Zhao G Z, et al. 2001. Electric conductivity and magma chamber at the Tianchi volcano area in Changbaishan Mountain[J]. Seismology and Geology, 23(2): 191-200 (in Chinese). doi: 10.3969/j.issn.0253-4967.2001.02.008 [35] 唐裕. 2021. 三维大地电磁结果揭示的龙岗火山区跨地壳岩浆传输系统[D]. 吉林: 吉林大学.Tang Y. 2021.Transcrustal magmatic systems in Longgang volcanic field revealed by 3D magnetotelluric results [D]. Jinlin: Jilin University ( in Chinese). [36] 田有, 马锦程, 刘财等. 2019. 西太平洋俯冲板块对中国东北构造演化的影响及其动力学意义[J]. 地球物理学报, 62(3): 1071-1082 doi: 10.6038/cjg2019M0061Tian Y, Ma J C, Liu C, et al. 2019. Effects of subduction of the western Pacific plate on tectonic evolution of northeast China and geodynamic implications[J]. Chinese Journal of Geophysics, 62(3): 1071-1082 (in Chinese). doi: 10.6038/cjg2019M0061 [37] 王敏, 李强, 王凡, 等. 2011. 全球定位系统测定的2011年日本宫城MW9.0级地震远场同震位移[J]. 科学通报, 56(20): 1593-1596 doi: 10.1360/csb2011-56-20-1593Wang M, Li Q, Wang F, et al. 2011. Far-field coseismic displacements associated with the 2011 Tohoku-oki earthquake in Japan observed by Global Positioning System[J]. Chinese Science Bulletin, 56(20): 1593-1596 (in Chinese). doi: 10.1360/csb2011-56-20-1593 [38] Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125: e2019JB018774. [39] 王武, 陈棋福. 2017. 长白山火山区地壳S波速度结构的背景噪声成像[J]. 地球物理学报, 60(8): 3080-3095 doi: 10.6038/cjg20170816Wang W, Cheng Q F. 2017. The crust S-wave velocity structure under the Changbaishan volcano area in northeast China inferred from ambient noise tomography[J]. Chinese Journal of Geophysics. 60(8): 3080-3095 (in Chinese). doi: 10.6038/cjg20170816 [40] 吴景华, 谢俊革, 陈树义, 等. 2008. 吉林省地热资源状况与评价研究[J]. 长春工程学院学报(自然科学版), 9(2): 49-52.Wu J H, Xie J G, Chen S Y, et al. 2008.Status and valuation studies of geothermal resources in Jilin province[J] Jilin. Changchun Institute Technology (Nature Science Edition),9(2): 16-27 (in Chinese) [41] 杨清福, 王建, Hattori K H, 等. 2011. 吉林南部辉南-靖宇地区岩石圈地幔氧化-还原状态及研究意义[J]. 岩石学报, 27(6): 1797-1809Yang Q F, Wang J, Hattori K H, et al. 2011. Redox state of the lithospheric mantle beneath Huinan-Jingyu area, southern Jilin Province, China[J]. Acta Petrologica Sinica, 27(6): 1797-1809(in Chinese). [42] 于吉鹏, 孟国杰, 苏小宁, 等. 2019. 基于GPS观测研究中国东北地区现今地壳形变特征[J]. 地震, 39(3): 11-27 doi: 10.3969/j.issn.1000-3274.2019.03.002Yu J P, Meng G J, Su X N. 2019. The current crustal deformation of northeast China deduced from GPS observations[J]. Earthquake, 39(3): 11-27 (in Chinese). doi: 10.3969/j.issn.1000-3274.2019.03.002 [43] 占伟. 2017. 基于GPS连续观测的中国大陆典型区域地壳垂直运动研究[D]. 湖北: 武汉大学.Zhan W. 2017. Study on vertical crustal motion in Chinese mainland and typical areas based on continuous GPS [D]. Hubei: Wuhan University (in Chinese). [44] 詹艳, 赵国泽, 王继军, 等. 2006. 黑龙江五大连池火山群地壳电性结构[J]. 岩石学报, 22(6): 1494-1502 doi: 10.3321/j.issn:1000-0569.2006.06.007Zhan Y, Zhao G Z, Wang J J, et al. 2006. Crustal electric conductivity structure for Wudalianchi volcanic cluster in Heilongjiang Province, China[J]. Acta Petrologica Sinica, 22(6): 1494-1502 (in Chinese). doi: 10.3321/j.issn:1000-0569.2006.06.007 [45] 张风雪, 吴庆举, 李永华. 2013. 中国东北地区远震P波走时层析成像研究[J]. 地球物理学报, 56(8): 2690-2700 doi: 10.6038/cjg20130818Zhang F X, Wu Q J, Li Y H. 2013. The traveltime tomography study by teleseismic P wave data in the northeast China area[J]. Chinese Journal of Geophysics, 56(8): 2690-2700 (in Chinese). doi: 10.6038/cjg20130818 [46] 张风雪, 吴庆举, 李永华. 2014. 中国东北地区远震S波走时层析成像研究[J]. 地球物理学报, 57(1): 88-101 doi: 10.6038/cjg20140109Zhang F X, Wu Q J, Li Y H. 2014. The traveltime tomography study by teleseismic S wave data in the northeast China area[J]. Chinese Journal of Geophysics, 57(1): 88-101 (in Chinese). doi: 10.6038/cjg20140109 [47] Zhao D P, Xu Y B, Wiens D A, et al. 1997. Depth extent of the Lau back-arc spreading center and it’ s relation to subduction processes [J]. Science, 278: 254-257. doi: 10.1126/science.278.5336.254 [48] Zhao D P, Tian Y, Lei J S, et al. 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab[J]. Physics of the Earth and Planetary Interiors, 173(3-4): 197-206. doi: 10.1016/j.pepi.2008.11.009 [49] Zhao L Q, Hu Y X, Zhan Y, et al. 2022. Three-dimensional electrical structure and magma system of the monogenetic Longgang volcanic field, northeast China, inferred from broadband magnetotelluric data[J]. Journal of Geophysical Research: Solid Earth, 127: e2022JB024694. [50] 朱日祥, 徐义刚. 2019. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 49(9): 1346-1356.Zhu R X, Xu Y G. 2019.The subduction of the west Pacific plate and the destruction of the North China Craton[J].Science China Earth Sciences, 62: 1340-1350 (in Chinese). -