• ISSN 2097-1893
  • CN 10-1855/P

基于大地测量和MT技术分析吉林龙岗火山区现今地壳运动特征及其机理

胡亚轩 赵凌强 庄文泉 梁国经 綦伟

引用本文: 胡亚轩,赵凌强,庄文泉,梁国经,綦伟. 2023. 基于大地测量和MT技术分析吉林龙岗火山区现今地壳运动特征及其机理. 地球与行星物理论评(中英文),54(0):1-10
Hu Y X, Zhao L Q, Zhuang W Q, Liang G J, Qi W. 2023. Analysis of the crustal movement characteristics and uplift mechanism of Longgang volcanoes, Jilin, based on geodesy and MT technology. Reviews of Geophysics and Planetary Physics, 54(0): 1-10 (in Chinese)

基于大地测量和MT技术分析吉林龙岗火山区现今地壳运动特征及其机理

doi: 10.19975/j.dqyxx.2022-069
基金项目: 国家自然科学基金资助项目(41972315);吉林长白山火山国家野外科学观测研究站研究课题(NORSCBS20-06)
详细信息
    通讯作者:

    胡亚轩(1970-),女,正高级工程师. 主要从事地形变机理研究. E-mail:happy_hu6921@sina.com

  • 中图分类号: P315

Analysis of the crustal movement characteristics and uplift mechanism of Longgang volcanoes, Jilin, based on geodesy and MT technology

Funds: Supported by the National Natural Science Foundation of China (Grant No. 41972315), and Jilin Changbaishan Volcano National Observation and Research Station Fund Project (Grant No. NORSCBS20-06)
  • 摘要: 位于吉林长白山西麓龙岗山脉中段的龙岗火山群是中国近代主要火山活动区之一. 通过对火山区2010—2020年多期GNSS(Global Navigation Satallite System)观测资料及1970—2010年多个时段的一、二等水准资料进行解算,获取现今三维地壳运动速度场. GNSS获取的水平运动速率从西向东增大,东部主要以拉张运动为主,连续面应变率场结果反映火山区位于膨胀区;一等水准路线长抚线和丹抚资料显示火山区以垂直上升运动为主,主要速率为0.55~1.83 mm/a,其中抚松—仙人桥—老山队一带为主要隆升区,速率多大于1.0 mm/a;该区域分布丰富的地热资源,也是地震多发地区. 邻近区域的二等水准路线梅通线速率相对较小,为0.23~0.77 mm/a. 结合对99个测点大地电磁数据三维反演得到的火山区深部电性结构:与隆升区对应的中下地壳赋存相对较浅的岩浆系统,电性边界带推测的浑江断裂北向延伸. 断裂附近的低阻体规模最大,向下延伸至地幔尺度. 最浅的低阻体位于最年轻的金龙顶子火山大约10 km以下位置,以上的高阻结构认为是岩浆溢流结束后的后撤和固结. 综合分析认为现今火山区地壳的膨胀隆升、地震活动与幔源物质的上涌、间断性的运移引起断层活动有关.

     

  • 图  1  龙岗火山群三维地壳运动背景(图1b中同震水平位移20 mm/a,修订为20 mm). F1:敦化—密山断裂;F2:浑江断裂;F3:鸭绿江断裂;F4:依兰—伊通断裂;JLDZ:金龙顶子火山;同震水平位移引自王敏等(2011

    Figure  1.  3D crustal movement background in the Longgang volcanoes. F1: Dunhua-Mishan fault; F2: Hunjiang fault; F3: Yalujiang fault; F4: Yilan-Yitong fault; JLDZ: Jilongdingzi volcano;the coseismic velocities are from Wang et al. (2011)

    图  2  连续面应变率场

    Figure  2.  Continuous surface strain rates

    图  3  水平运动速度场(相对E312)及老火山口分布(断层同图1

    Figure  3.  Horizontal velocity field with respect to E312 and the old craters (Faults are same as those in Fig. 1)

    图  4  垂直运动速度场及MT实测点位分布图(断层同图1

    Figure  4.  Vertical velocity field and magnetotelluric sounding sites (Faults are the same as those in Fig. 1)

    图  5  深部电性结构立体图(5~90 km)(断层同图1,修改自Zhao et al., 2022). LAB:岩石圈-软流圈边界

    Figure  5.  Stereoscopic view of the deep electrical structure (5-90 km) . (Faults are the same as those in Fig. 1, modified from Zhao et al., 2022) . LAB: lithosphere-asthenosphere boundary

    表  1  相对欧亚板块水平运动速率(mm/a)

    Table  1.   Site velocities in Eurasia (mm/a)

    点名VeVnσveσvn
    E312 3.32 −1.35 0.27 0.10
    JLDG 3.21 −1.23 0.12 0.10
    JLHD 2.01 −1.68 0.13 0.10
    JLHN 2.27 −2.14 0.12 0.20
    JLJY 3.34 −1.37 0.13 0.10
    CHUN 1.84 −1.35 0.15 0.10
    下载: 导出CSV

    表  2  GNSS站点观测概况

    Table  2.   GNSS sites observed in this project

    观测时间年积日观测站点
    2010-08-13至2010-08-19225-231E312, LG01, LG02, LG03, LG04, LG05, LG06, LG07, LG08, LG09, LG10, LG11
    2014-08-08至2014-08-15220-227E312, LG01, LG02, LG03, LG04, LG05, LG06, LG08, LG09, LG10, LG11
    2020-08-24 至2020-08-30237-244E312, LG01, LG04, LG05, LG08
    下载: 导出CSV

    表  3  相对欧亚板块和点位E312的水平运动速率(mm/a)

    Table  3.   Site velocities in Eurasia and site E312 (mm/a)

    时间/年点名相对欧亚板块相对E312相对E312(扣除同震)
    VeVnσveσvndVe dVndVedVn
    2010—2014E31211.52−3.950.430.300000
    LG0111.55−5.790.420.300.03−1.840.63−2.24
    LG0212.40−5.080.441.100.88−1.131.58−1.93
    LG0312.07−4.490.480.600.55−0.541.25−1.24
    LG0411.76−3.120.240.400.240.830.540.33
    LG0513.08−4.320.360.401.56−0.371.86−1.07
    LG0611.53−2.760.350.300.011.190.110.89
    LG0914.07−6.510.650.302.55−2.561.85−2.16
    LG1012.010.690.460.200.494.64−0.114.64
    2014—2020E3123.32−1.350.270.1000
    LG013.95−4.290.240.200.63−2.94
    LG041.762.680.200.20−1.564.03
    LG052.88−1.920.200.20−0.44−0.57
    下载: 导出CSV
  • [1] 白登海, 廖志杰, 赵国泽, 等. 1994. 从MT探测结果推论腾冲热海热田的岩浆热源[J]. 科学通报, 39(4): 344-347.

    Bai D H, Liao Z J, Zhao G Z, et al.1994.The inference of magmatic heat source beneath the Rehai (hot sea) field of Tengchong from the result of magnetotelluric sounding[J]. Chinese Science Bulletin, 39(7): 572-577 (in Chinese).
    [2] 白志达, 徐德斌, 张秉良, 等. 2006. 龙岗火山群第四纪爆破式火山作用类型与期次研究[J]. 岩石学报, 22(6): 1473-1480 doi: 10.3321/j.issn:1000-0569.2006.06.004

    Bai Z D, Xu D B, Zhang B L, et al. 2006. Study on type and phase of Quaternary explosive volcanism in Longgang volcanic cluster[J]. Acta Petrologica Sinica, 22(6): 1473-1480 (in Chinese). doi: 10.3321/j.issn:1000-0569.2006.06.004
    [3] 陈欣, 薄万举, 罗三明, 等. 2022. 中国大陆典型沉降区垂直形变图数据集[J]. 地震地磁观测与研究, 43(2): 202-207 doi: 10.3969/j.issn.1003-3246.2022.02.026

    Chen X, Bo W J, Luo S M, et al. 2022. The vertical maps of typical subsidence zones in Chinese mainland[J]. Seismological and Geomaganetic Observation and Research, 43(2): 202-207(in Chinese). doi: 10.3969/j.issn.1003-3246.2022.02.026
    [4] 樊祺诚, 刘若新, 魏海泉, 等. 1999. 龙岗金龙顶子近代活动火山的岩石学与地球化学[J]. 岩石学报, 15(4): 584-589 doi: 10.3321/j.issn:1000-0569.1999.04.011

    Fan Q C, Liu R X, Wei H Q, et al. 1999. The petrology and geochemistry of Jinlongdingzi modernactive volcano in Longgang area[J]. Acta Petrologica Sinica, 15(4): 584-589(in Chinese). doi: 10.3321/j.issn:1000-0569.1999.04.011
    [5] 樊祺诚, 隋建立, 刘若新, 等. 2002. 林龙岗第四纪火山活动分期. 岩石学报, 18(4): 495-500.

    Fan Q C, Sui J L, Liu R X, et al. 2002. Periods of Quarternary volcanic activity in Longgang area, Jilin Province[J]. Acta Petrologica Sinica, 18(4): 495-500 (in Chinese).
    [6] 范兴利, 陈棋福, 郭震. 2020. 长白山火山区高精度Rayleigh面波相速度结构与岩浆系统[J]. 岩石学报, 36(7): 2081-2091 doi: 10.18654/1000-0569/2020.07.10

    Fan X L, Chen Q F, Guo Z. 2020. High-resolution Rayleigh-wave phase velocity structure beneath the Changbaishan volcanic field associated with its magmatic system[J]. Acta Petrologica Sinica, 36(7): 2081-2091(in Chinese). doi: 10.18654/1000-0569/2020.07.10
    [7] Fan X L, Guo Z, Zhao Y, et al. 2022. Crust and uppermost mantle magma plumbing system beneath Changbaishan intraplate volcano, China/North Korea, revealed by ambient noise adjoint tomography[J]. Geophysical Research Letters, 49: e2022GL098308.
    [8] 付媛媛, 高原. 2016. 东北地区背景噪声的Rayleigh和Love波相速度层析成像[J]. 地球物理学报, 59(2): 494-503 doi: 10.6038/cjg20160209

    Fu Y Y, Gao Y. 2016. Phase velocity tomography of Rayleigh and Love waves using ambient noise in Northeast China[J]. Chineses Journal Geophysics, 59(2): 494-503 (in Chinese). doi: 10.6038/cjg20160209
    [9] 郭良迁. 1990. 东北断块区的现代地壳垂直形变及其构造活动的意义[J]. 东北地震研究, 6(3): 15-20

    Guo L Q. 1990. Modern crustal vertical deformation in vortheast China block region and meaning of tectonic activity[J]. Northeastern Seismological Research, 6(3): 15-20 ( in Chinese).
    [10] Guo Z, Chen Y J, Ning J Y, et al. 2016. Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in northeast China[J]. Earth and Planetary Science Letters, 433: 31-43. doi: 10.1016/j.jpgl.2015.09.035
    [11] Hao M, Wang Q L, Shen Z K, et al. 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau[J]. Tectonophysics, 632: 281-292. doi: 10.1016/j.tecto.2014.06.016
    [12] Heise W, Caldwell T G, Bibby H M, et al. 2010. Three-dimensional electrical resistivity image of magma beneath an active continental rift, Taupo volcanic zone, New Zealand[J]. Geophysical Research Letters, 37(10): L10301.
    [13] 胡亚轩, 王庆良, 王雄. 2009. 利用垂直形变资料分析龙岗火山的活动性[J]. 地震研究, 32(3): 289-294 doi: 10.3969/j.issn.1000-0666.2009.03.013

    Hu Y X, Wang Q L, Wang X. 2009. Analysis of activity of Longgang volcano based on vertical deformation[J]. Earthquake Research, 32(3): 289-294( in Chinese). doi: 10.3969/j.issn.1000-0666.2009.03.013
    [14] 胡亚轩, 赵凌强, 宋尚武, 等. 2022. 长白山火山区现今地壳运动特征及动力学环境分析[J]. 大地测量与地球动力学, 42(4): 331-335 doi: 10.14075/j.jgg.2022.04.001

    Hu Y X, Zhao L Q, Song S W, et al. 2022. Present-day crustal deformation and geodynamic environment of the Changbaishan volcano[J]. Journal of Geodesy and Geodynamics, 42(4): 331-335( in Chinese). doi: 10.14075/j.jgg.2022.04.001
    [15] Ji L Y, Wang Q L, Wang S X. 2014. Present-day 3D deformation field of northeast China, observed by GPS and leveling[J]. Geodesy and Geodynamics, 5(3): 34-40. doi: 10.3724/SP.J.1246.2014.03034
    [16] Lei J S, Zhao D P. 2005. P-wave tomography and origin of the Changbai intraplate volcano in northeast Asia[J]. Tectonophysics, 397: 281-295. doi: 10.1016/j.tecto.2004.12.009
    [17] Li Y H, Wu Q J, Pan J T, et al. 2012. S-wave velocity structure of northeastern China from joint inversion of Raileigh wave phase and group velocities[J]. Geophysical Journal International, 190(1): 105-115. doi: 10.1111/j.1365-246X.2012.05503.x
    [18] 梁国经, 刘俊清, 綦伟, 等. 2010a. 靖宇—抚松MS4.6级地震序列特征[J]. 防灾减灾学报, 26(1): 69-74

    Liang G J, Liu J Q, Qi W, et al. 2020a. The seismic sequence characteristics of time MS4.6 earthquake between Jingyu and Fusong[J]. Journal of Disaster Prevention and Reduction, 26(1): 69-74 (in Chinese).
    [19] 梁国经, 郑双凤, 郑国栋, 等. 2010b. 龙岗火山区地震震源参数研究[J]. 防灾减灾学报, 26(4): 22-29 doi: 10.13693/j.cnki.cn21-1573.2010.04.005

    Liang G J, Zheng S F, Zheng G D, , et al. 2010b. Source parameters research of microearthquakes at Longgang volcanic area[J]. Journal of Disaster Prevention and Reduction, 26(4): 22-29 (in Chinese). doi: 10.13693/j.cnki.cn21-1573.2010.04.005
    [20] 梁国经, 李仲巍, 郑双凤, 等. 2011. 龙岗火山区尾波Q值的初步研究[J]. 地震地质, 33(1): 114-122 doi: 10.3969/j.issn.0253-4967.2011.01.011

    Liang G J, Li Z W, Zheng S F, et al. 2011. Primary study on coda Q value in Longgang volcano area[J]. Seismology and Geology, 33(1): 114-122( in Chinese). doi: 10.3969/j.issn.0253-4967.2011.01.011
    [21] 梁明, 王武星, 张晶. 2018. 联合GPS和Grace观测研究日本MW9.0地震震后变形机制[J]. 地球物理学报, 61(7): 2691-2704 doi: 10.6038/cjg2018L0356

    Liang M, Wang W X, Zhang J. 2018. Post-seismic deformation mechanism of the MW9.0 Tphoku-Oki earthquake detected by GPS and Grace observations[J]. Chinese Journal of Geophysics, 61(7): 2691-2704 (in Chinese). doi: 10.6038/cjg2018L0356
    [22] 刘嘉麒. 1999. 中国火山[M]. 北京: 科学出版社.

    Liu J Q. 1999. China Volcano[M]. Beijing: Science Press (in Chinese).
    [23] 刘俊清, 丁广, 张晨侠, 等. 2013. 吉林省龙岗火山群现今活动性研究[J]. 华北地震科学, 31(1): 31-33 doi: 10.3969/j.issn.1003-1375.2013.01.006

    Liu J Q, Ding G, Zhang C X, et al. 2013. Study on present activity of Longgang volcano in Jilin Province[J]. North China Earthquake Sciences, 31( 1): 31-33 (in Chinese). doi: 10.3969/j.issn.1003-1375.2013.01.006
    [24] 刘若新, 樊祺诚, 郑祥身, 等. 1998. 长白山天池火山的岩浆演化[J]. 中国科学(D辑), 28(3): 226-231

    Liu R X, Fan Q C, Zheng X S, et al. 1998. The magma evolution of Tianchi volcano, Changbaishan[J]. Science in China(Series D: Earth Science), 28(3): 226-231 (in Chinese).
    [25] Pan B, Liu G M, Cheng T, et al. 2020. Development and status of active volcano monitoring in China[J]. Geological Society London Special Publications, 510(1): SP510-2020-62.
    [26] 盘晓东, 康力. 2002. 浑江断裂带及水系的分形特征和构造活动性研究[J]. 东北地震研究. 18(4): 7-15

    Pan X D, Kang L. 2002. Study on fractal characteristics of Hunjiang fault zone and drainage systems and activity of tectonic[J]. Seismological Research of Northeast China, 18(4): 7-15 (in Chinese).
    [27] 庞广华. 2017. 东北典型区域宽频带地震背景噪声成像研究[D]. 吉林: 吉林大学.

    Pang G H. 2017. Broadband seismic ambient noise tomography in typical regions of northeast China[D]. Jinlin: Jilin University (in Chinese).
    [28] 仇根根, 裴发根, 方慧, 等. 2014. 长白山天池火山岩浆系统分析[J]. 地球物理学报, 57(10): 3466-3477 doi: 10.6038/cjg20141032

    Qiu G G, Pei F G, Fang H, et al. 2014. Analysis of magma chamber at the Tianchi volcano area in Changbai Mountain[J]. Chinese Journal of Geophysics, 57(10): 3466-3477 (in Chinese). doi: 10.6038/cjg20141032
    [29] Sella G F, Dixon T H, Mao A. 2002. REVEL: A model for recent plate velocities from space geodesy[J], Journal Geophysical Research, 107(B4): 2081.
    [30] Shen Z K, Sun J B, Zhang P Z, et al. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2: 718–724. doi: 10.1038/ngeo636
    [31] Shen Z K, Wang M, Zeng Y H, et al. 2015. Optimal interpolation of spatially discretized geodetic data[J]. Bulletin of the Seismological Society of America, 105 (4): 2117–2127. doi: 10.1785/0120140247
    [32] 史兰斌, 林传勇, 韩秀伶, 等, 1999. 吉林龙岗火山群金龙顶子火山喷发物中幔源包体的基本特征及其地质意义[J]. 地质论评, 45(增刊), 308-318.

    Shi L B, Lin C Y, Han X L, et al. 1999. Principal features of mantle Xenoliths in Jinlongdingzi volcanoes, Longgang volcano clusters, Jilin province and their geological implications[J]. Geological Review, 45(Sup.): 308-318 (in Chinese).
    [33] 隋建立, 樊祺诚, 曹杰. 1999. 龙岗火山喷发特征与火山岩岩石化学初步研究[J]. 地质论评, 45(增): 319-324 doi: 10.16509/j.georeview.1999.s1.162

    Sui J L, Fan Q C, Cao J. 1999. A preliminary study of eruption features and petro-chemistry of volcanic rocks from the Longgang volcanoes[J]. Geological Review, 45(Sup. ): 319–324 (in Chinese). doi: 10.16509/j.georeview.1999.s1.162
    [34] 汤吉, 邓前辉, 赵国泽, 等. 2001. 长白山天池火山区电性结构和岩浆系统[J]. 地震地质, 23(2): 191-200 doi: 10.3969/j.issn.0253-4967.2001.02.008

    Tang J, Deng Q H, Zhao G Z, et al. 2001. Electric conductivity and magma chamber at the Tianchi volcano area in Changbaishan Mountain[J]. Seismology and Geology, 23(2): 191-200 (in Chinese). doi: 10.3969/j.issn.0253-4967.2001.02.008
    [35] 唐裕. 2021. 三维大地电磁结果揭示的龙岗火山区跨地壳岩浆传输系统[D]. 吉林: 吉林大学.

    Tang Y. 2021.Transcrustal magmatic systems in Longgang volcanic field revealed by 3D magnetotelluric results [D]. Jinlin: Jilin University ( in Chinese).
    [36] 田有, 马锦程, 刘财等. 2019. 西太平洋俯冲板块对中国东北构造演化的影响及其动力学意义[J]. 地球物理学报, 62(3): 1071-1082 doi: 10.6038/cjg2019M0061

    Tian Y, Ma J C, Liu C, et al. 2019. Effects of subduction of the western Pacific plate on tectonic evolution of northeast China and geodynamic implications[J]. Chinese Journal of Geophysics, 62(3): 1071-1082 (in Chinese). doi: 10.6038/cjg2019M0061
    [37] 王敏, 李强, 王凡, 等. 2011. 全球定位系统测定的2011年日本宫城MW9.0级地震远场同震位移[J]. 科学通报, 56(20): 1593-1596 doi: 10.1360/csb2011-56-20-1593

    Wang M, Li Q, Wang F, et al. 2011. Far-field coseismic displacements associated with the 2011 Tohoku-oki earthquake in Japan observed by Global Positioning System[J]. Chinese Science Bulletin, 56(20): 1593-1596 (in Chinese). doi: 10.1360/csb2011-56-20-1593
    [38] Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125: e2019JB018774.
    [39] 王武, 陈棋福. 2017. 长白山火山区地壳S波速度结构的背景噪声成像[J]. 地球物理学报, 60(8): 3080-3095 doi: 10.6038/cjg20170816

    Wang W, Cheng Q F. 2017. The crust S-wave velocity structure under the Changbaishan volcano area in northeast China inferred from ambient noise tomography[J]. Chinese Journal of Geophysics. 60(8): 3080-3095 (in Chinese). doi: 10.6038/cjg20170816
    [40] 吴景华, 谢俊革, 陈树义, 等. 2008. 吉林省地热资源状况与评价研究[J]. 长春工程学院学报(自然科学版), 9(2): 49-52.

    Wu J H, Xie J G, Chen S Y, et al. 2008.Status and valuation studies of geothermal resources in Jilin province[J] Jilin. Changchun Institute Technology (Nature Science Edition),9(2): 16-27 (in Chinese)
    [41] 杨清福, 王建, Hattori K H, 等. 2011. 吉林南部辉南-靖宇地区岩石圈地幔氧化-还原状态及研究意义[J]. 岩石学报, 27(6): 1797-1809

    Yang Q F, Wang J, Hattori K H, et al. 2011. Redox state of the lithospheric mantle beneath Huinan-Jingyu area, southern Jilin Province, China[J]. Acta Petrologica Sinica, 27(6): 1797-1809(in Chinese).
    [42] 于吉鹏, 孟国杰, 苏小宁, 等. 2019. 基于GPS观测研究中国东北地区现今地壳形变特征[J]. 地震, 39(3): 11-27 doi: 10.3969/j.issn.1000-3274.2019.03.002

    Yu J P, Meng G J, Su X N. 2019. The current crustal deformation of northeast China deduced from GPS observations[J]. Earthquake, 39(3): 11-27 (in Chinese). doi: 10.3969/j.issn.1000-3274.2019.03.002
    [43] 占伟. 2017. 基于GPS连续观测的中国大陆典型区域地壳垂直运动研究[D]. 湖北: 武汉大学.

    Zhan W. 2017. Study on vertical crustal motion in Chinese mainland and typical areas based on continuous GPS [D]. Hubei: Wuhan University (in Chinese).
    [44] 詹艳, 赵国泽, 王继军, 等. 2006. 黑龙江五大连池火山群地壳电性结构[J]. 岩石学报, 22(6): 1494-1502 doi: 10.3321/j.issn:1000-0569.2006.06.007

    Zhan Y, Zhao G Z, Wang J J, et al. 2006. Crustal electric conductivity structure for Wudalianchi volcanic cluster in Heilongjiang Province, China[J]. Acta Petrologica Sinica, 22(6): 1494-1502 (in Chinese). doi: 10.3321/j.issn:1000-0569.2006.06.007
    [45] 张风雪, 吴庆举, 李永华. 2013. 中国东北地区远震P波走时层析成像研究[J]. 地球物理学报, 56(8): 2690-2700 doi: 10.6038/cjg20130818

    Zhang F X, Wu Q J, Li Y H. 2013. The traveltime tomography study by teleseismic P wave data in the northeast China area[J]. Chinese Journal of Geophysics, 56(8): 2690-2700 (in Chinese). doi: 10.6038/cjg20130818
    [46] 张风雪, 吴庆举, 李永华. 2014. 中国东北地区远震S波走时层析成像研究[J]. 地球物理学报, 57(1): 88-101 doi: 10.6038/cjg20140109

    Zhang F X, Wu Q J, Li Y H. 2014. The traveltime tomography study by teleseismic S wave data in the northeast China area[J]. Chinese Journal of Geophysics, 57(1): 88-101 (in Chinese). doi: 10.6038/cjg20140109
    [47] Zhao D P, Xu Y B, Wiens D A, et al. 1997. Depth extent of the Lau back-arc spreading center and it’ s relation to subduction processes [J]. Science, 278: 254-257. doi: 10.1126/science.278.5336.254
    [48] Zhao D P, Tian Y, Lei J S, et al. 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab[J]. Physics of the Earth and Planetary Interiors, 173(3-4): 197-206. doi: 10.1016/j.pepi.2008.11.009
    [49] Zhao L Q, Hu Y X, Zhan Y, et al. 2022. Three-dimensional electrical structure and magma system of the monogenetic Longgang volcanic field, northeast China, inferred from broadband magnetotelluric data[J]. Journal of Geophysical Research: Solid Earth, 127: e2022JB024694.
    [50] 朱日祥, 徐义刚. 2019. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 49(9): 1346-1356.

    Zhu R X, Xu Y G. 2019.The subduction of the west Pacific plate and the destruction of the North China Craton[J].Science China Earth Sciences, 62: 1340-1350 (in Chinese).
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  24
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 录用日期:  2022-12-21
  • 修回日期:  2022-12-19
  • 网络出版日期:  2022-12-24

目录

    /

    返回文章
    返回