• ISSN 2097-1893
  • CN 10-1855/P

喜马拉雅东构造结地震精定位及其区域应力场研究

陈平光 何骁慧 徐树峰 郑文俊 刘婷 刘智良

引用本文: 陈平光,何骁慧,徐树峰,郑文俊,刘婷,刘智良. 2023. 喜马拉雅东构造结地震精定位及其区域应力场研究. 地球与行星物理论评(中英文),54(6):667-683
Chen P G, He X H, Xu S F, Zheng W J, Liu T, Liu Z L. 2023. Earthquake relocation and regional stress field around the eastern Himalayan syntaxis. Reviews of Geophysics and Planetary Physics, 54(6): 667-683 (in Chinese)

喜马拉雅东构造结地震精定位及其区域应力场研究

doi: 10.19975/j.dqyxx.2022-067
基金项目: 第二次青藏高原综合科学考察研究资助项目(2019QZKK0901);中山大学中央高校基本科研业务费专项资金资助项目(22qntd2101);国家自然科学基金资助项目(41804039)
详细信息
    作者简介:

    陈平光(1998-),男,硕士研究生,主要从事地震精定位和区域应力场研究. E-mail:1416036563@qq.com

    通讯作者:

    何骁慧(1991-),女,副教授,主要从事地震震源研究. E-mail:hexiaoh5@mail.sysu.edu.cn

  • 中图分类号: P315

Earthquake relocation and regional stress field around the eastern Himalayan syntaxis

Funds: Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0901), the Fundamental Research Funds for the Central Universities (Grant No. 22qntd2101), and the National Natural Science Foundation of China (Grant No. 41804039)
  • 摘要: 喜马拉雅东构造结地处印欧大陆碰撞前缘,主要受喜马拉雅、拉萨、羌塘、川滇等地块和印度板块相互作用,区域构造变形强烈,是喜马拉雅造山带变形最强烈的地区之一,地震频发且主要呈条带状展布. 为揭示该地区地震活动及发震机制、断裂现今运动状态和区域应力应变模式,本文以喜马拉雅东构造结及周缘地区为研究区,采用双差定位法对2008—2018年间65663个M≥1.0的地震事件进行重定位,应用CAP方法对2009—2021年间163个M≥3.5的地震事件进行震源机制解反演. 在此基础上,收集研究区前人所得震源机制解共1156个,使用区域阻尼应力张量反演获得了中上地壳(0~35 km)区域应力场. 研究结果显示,区内地震主要沿断裂展布,其中喜马拉雅东构造结、高原中部拉张裂谷、川滇地块和滇缅地块地震活动频繁. 地震深度主要分布于5~25 km,川滇和滇缅地块内部地震相对于拉萨、羌塘地块的数量和优势深度有明显增大. 不同类型的震源机制分布具有明显规律性,东构造结处各种机制类型地震频发;走滑型震源机制主要沿大型边界断裂分布;正断机制地震发生于川滇地块的西边界断裂;逆断地震发育于印欧大陆碰撞前缘. 研究区主压应力轴水平方向从喜马拉雅、拉萨、羌塘、川滇、滇缅地块大致以东构造结为中心近顺时针旋转,且东构造结顶部、川滇地块北西部等地区呈现出强烈的局部不均匀性.

     

  • 图  1  (a)研究区主要构造块体、断裂(带)示意图,红色箭头为地块运动方向(修改自张培震等,2003);(b)1级以上地震分布图. 图(a)中,B1:喜马拉雅地块,B2:拉萨地块,B3:羌塘地块,B4:川滇地块,B5:滇南地块,B6:滇西地块,B4-1:川西北次级地块,B4-2:滇中次级地块;MHT:喜马拉雅主逆冲断裂带,STDS:藏南滑脱带,COR:那错—沃卡裂谷带,YGR:亚东—谷露裂谷带,IYS:雅鲁藏布江缝合带,JLF:嘉黎断裂带,XDF:西兴拉—达木断裂,DMF:东久—米林断裂,MAF:墨脱—阿尼桥断裂,APLF:阿帕龙断裂,BLF:边坝—洛隆断裂,NJF:怒江断裂带,LCRF:澜沧江断裂,JSRF:金沙江断裂带,LTF:理塘断裂带,XSHF:鲜水河断裂带,XJF:小江断裂带,LMSF:龙门山断裂带,LXF:丽江—小金河断裂带,ZDF:中甸断裂带,CHF:程海断裂带,RRF:红河断裂带,LZJF:绿汁江断裂,DYF:大盈江断裂,LRF:龙陵—瑞丽断裂,WAF:畹町—安定断裂,NTHF:南汀河断裂带,SGF:实皆断裂带. 图(b)中,1970—2021年5月间1~4.6级地震(数据源于中国地震台网、中国数字测震台网),公元624年—2022年1月4.7级及以上中强地震(数据源于国际地震中心、美国地质调查局、中国地震台网、国家地震局震害防御司);圆圈大小表示震级大小

    Figure  1.  (a) Schematic diagram of the main tectonic blocks, faults (zones) (modified from Zhang et al., 2003), and (b) seismic distribution for events of magnitude 1 or above in the study area. Fig (a), B1: Himalayan block, B2: Lhasa block, B3: Qiangtang block, B4: Sichuan-Yunnan block, B5: Southern Yunnan block, B6: Western Yunnan block, B4-1: Northwest Sichuan sub-block, B4-2: Middle Yunnan Sub-block; MHT: Main Himalayan thrust, STDS: South Tibet Detachment System, COR: Cona-Oiga Rift, YGR: Yadong-Gulu Rift, IYS: Indus-Yalu suture, JLF: Jiali fault, XDF: Xixingla - Damu fault, DMF: Dongjiu-Milin fault, MAF: Medot-Aniqiao fault, APLF: Apalong fault, BLF: Bianba - Luolong fault, NJF: Nujiang fault, LCRF: Lancang River fault, JSRF: Jinsha River fault, LTF: Litang fault, XSHF: Xianshuihe fault, XJF: Xiaojiang fault, LMSF: Longmen Shan fault, LXF: Lijiang - Xiaojinhe fault, ZDF: Zhongdian fault, CHF: Chenghai fault, RRF: Red River fault, LZJF: Lvzijiang fault, DYF: Dayingjiang fault, LRF: Longling-Ruili fault, WAF: Wanding - Anding fault, NTHF: Nantinghe fault, SGF: Sagaing fault. Fig. (b), M1-4.6 earthquakes from 1970 to May 2021 (with data from China Earthquake Networks and China Digital Seismic Networks), and M4.7 or above earthquakes from 624 to January 2022 (with data from International Earthquake Center, United States Geological Survey, China Earthquake Networks, and Earthquake Disaster Prevention Department of China Earthquake Administration); The size of the circle indicates the magnitude of the earthquake

    图  2  (a)时距拟合曲线,红色表示P波震相记录,蓝色表示S波震相记录,限制12 s内;(b)台站分布图,红色三角形表示台站位置

    Figure  2.  (a) Time distance fitting curve, red dots indicate P wave recordings and blue dots indicate S wave recordings. The data is constrained within ±12 s of the fitted value; (b) Station distribution. Red triangle indicates the station position

    图  3  CAP反演结果,以2018年1月3日M4.6地震为例. (a)台站分布图;(b)震源机制深度搜索图,相对误差表示不同深度绝对误差与最佳深度对应误差的比值;(c)地震波形拟合图,为最小误差拟合深度的震源机制解所对应的地震波形拟合图,其中黑色波形表示实际观测波形,红色波形表示理论波形,每个波形下方第一行数字代表时移大小,第二行表示波形拟合的相关系数(0~100%). 波形左侧的字母表示对应记录波形的台站,台站字母上方数字表示方位角,下方数字表示震中距

    Figure  3.  Cut-And-Paste (CAP) inversion result for the Jan. 3, 2018, event. (a) Station distribution; (b) Variation of fitting error against focal depth. The relative error represents the ratio of the absolute error at different depths to the corresponding error at the optimum depth; (c) Seismic waveform comparisons for the optimal depth. Black traces show the observed waveforms, and red traces show the synthetic waveforms. The first row of numbers below each waveform represents the time shift, and the second row represents the cross-correlation coefficient (0-100%). The letters on the left of the waveform represent the station names, and the numbers above and below the station names represent the azimuth and epicentral distance, respectively

    图  4  (a)应力反演中网格搜索机制解范围示意图,红色实心圆表示格点中心,黑色圆环代表搜索机制解的范围,X表示相邻网格中心间距,R为搜索半径;(b)网格大小0.7°×0.7°的阻尼系数曲线

    Figure  4.  (a) Illustration of the grid search settings in the stress field inversion. Red solid circle represents the center of the grid point and black large circle represents the searching range of nearby focal mechanism. X represents the distance between adjacent grid centers, and R is the search radius; (b) L-curve for the damping parameter with a grid size of 0.7°×0.7°

    图  5  (a, b)东构造结及周缘地区地震定位震中分布;其中图(a)表示地震重定位后的地震震中分布和未参与定位的地震分布图,图(b)表示地震定位后的地震震中分布和4.7级以上地震分布. 其中,圆圈大小均表示震级大小;红色圆框表示公元624年至2022年1月M≥4.7的地震事件;(c, c1)重定位前、后走时残差分布图;(d, d1)重定位前、后地震深度分布图

    Figure  5.  (a, b) Distribution of relocated earthquakes around the eastern Himalayan syntaxis. (a) Distribution of the earthquakes after the relocation and earthquakes that did not participate in the relocation. (b) Distribution of the earthquakes after the relocation (solid dots) and earthquakes larger than M4.7 from 624 to 2022 (red circles). The size of the circle represents the magnitude of the earthquake. (c, c1) Residuals before and after relocation; (d, d1) Earthquake depth distribution before and after relocation

    图  6  研究区地震定位后震中分布. 图中颜色代表深度,颜色深度关系和图5a5b一致,圆大小均表示震级大小,灰色圆为未参加定位的地震事件分布,其它彩色圆为定位后地震分布;红色圆框表示公元624年至2022年1月M≥4.7的地震事件

    Figure  6.  Distribution of the relocated earthquakes The color in the figure represents depth, and the relationship between color and depth is consistent with Fig. 5a, 5b. The size of the circles represents the magnitude of the earthquake. Gray circle represents the distribution of the earthquakes that have not participated in the location, while the other color circles represent the seismic distribution after the location. The red circle represents the seismic event M≥4.7 from 624 to 2022

    图  7  (a)震源机制解来源分布;(b)震源机制解深度分布. 图中红色震源球来源于本文,蓝色震源球来源于郭祥云等(2022),绿色震源球来源于崔子健(2018),黄色震源球来源于王晓楠(2018),黑色震源球来源于邵翠茹(2009),灰色震源球来源于Global CMT

    Figure  7.  (a) The sources and (b) depth distribution of the focal mechanisms. (a) Red beach balls are from this paper, blue beach balls are from Guo et al. (2022), green beach balls are from Cui (2018), yellow beach balls are from Wang (2018), black beach balls are from Shao (2009), and gray beach balls are from Global CMT

    图  8  (a)研究区不同震源机制类型分布,不同颜色代表不同类型的震源机制解;(b)分区统计和(A-E)分区PT轴玫瑰花样统计图,不同颜色代表不同分区A-E,每个区域上方为P轴玫瑰花样统计图

    Figure  8.  (a) Distribution of different types of source mechanism. Different colors represent different types of source mechanism solutions. (b) Rose diagram of the P-axis in different regions. Different colors represent different zones A-E. (A-E) Rose diagrams of azimuths and plunges for the P- and T-axes

    图  9  (a-c)喜马拉雅东构造结及周缘地区应力场反演结果;(d)不同网格反演应用的震源机制个数分布. 图(a)表示最大主压应力轴$ \sigma _1 $,图(b)表示中间应力轴$ \sigma _2 $,图(c)表示最小主压应力轴$ \sigma_ 3 $,线段长短表示应力倾斜角大小,线段越短倾角越大,图(d)中不同色块代表不同网格反演应力所用到的震源机制的数量,个数越多颜色越深

    Figure  9.  (a-c) Stress field inversion results and (d) the number of focal mechanism solutions in each grid. (a) The maximum compressive stress axis (σ1). The length of line segment represents the plunge angle of stress axis, and shorter line segment shows larger plunge angle. (b) The intermediate stress axis (σ2). (c) The minimum compressive stress axis (σ3). (d) Different color blocks represent the number of focal mechanisms used in stress inversion

    图  10  (a, b)最大主应力轴变化复杂程度图,图中色标单位为度;(c, d)中国大陆连续形变场(修改自Wang and Shen, 2020). 图(c)箭头表示主应变率,颜色代表最大剪应变率;图(d)表示扩张率,颜色越红扩张率越大;黑色虚线方框内区域为研究区范围

    Figure  10.  (a, b) Complexity of the maximum principal stress axis change. The unit of the color bar in the figure is degrees. (c, d) Continuous deformation field of continental China derived from interpolation of GPS velocities (modified from Wang and Shen, 2020). The region inside the black dashed box represents the study area. Arrows in (c) represent principal strain rates and the color represents maximum shear strain rate. The color in (d) shows the dilatation rate

    表  1  示例2018年1月3日M4.6地震所对应地壳速度模型

    Table  1.   Example crustal velocity model corresponding to the M4.6 earthquake on January 3, 2018

    厚度/kmVP/(km·s−1)VS/(km·s−1)
    0.52.51.2
    19.06.13.5
    12.06.63.8
    7.57.24.0
    下载: 导出CSV

    表  2  重定位震源参数误差表

    Table  2.   Seismic relocation source parameter error

    参数东西/km南北/km深度/km
    平均误差0.2940.3040.471
    最小误差0.0050.0080.018
    最大误差25.57121.72540.471
    下载: 导出CSV
  • [1] Armijo R, Tapponnier P, Mercier J L, et al. 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications[J]. Journal of Geophysical Research, 91(B14): 13803-13872. doi: 10.1029/JB091iB14p13803
    [2] 白玲, 李国辉, 宋博文. 2017.2017年西藏米林6.9级地震震源参数及其构造意义[J]. 地球物理学报, 60(12): 4956-4963

    Bai L, Li G H, Song B W. 2017. The source parameters of the M6.9 Mainling, Tibet earthquake and its tectonic implications[J]. Chinese Journal of Geophysics, 60(12): 4956-4963 (in Chinese).
    [3] Bai L, Klemperer S L, Mori J, et al. 2019. Lateral variation of the Main Himalayan Thrust controls the rupture length of the 2015 Gorkha earthquake in Nepal[J]. Science Advances, 5(6): eaav0723. doi: 10.1126/sciadv.aav0723.
    [4] Billings S D. 2010. Simulated annealing for earthquake location[J]. Geophysical Journal International, 118(3): 680-692.
    [5] 常利军, 王椿镛, 丁志峰, 等. 2015. 喜马拉雅东构造结及周边地区上地幔各向异性[J]. 中国科学: 地球科学, 45(5): 577-588

    Chang L J, Wang C Y, Ding Z F, et al. 2015. Upper mantle anisotropy of the eastern Himalayan syntaxis and surrounding regions from shear wave splitting analysis[J]. Science China Earth Sciences, 45(5): 577-588 (in Chinese).
    [6] 常祖峰, 张艳凤, 李鉴林, 等. 2014. 德钦—中甸—大具断裂晚第四纪活动的地质与地貌表现[J]. 地震研究, 37(1): 46-52

    Chang Z F, Zhang Y F, Li J L, et al. 2014. The geological and geomorphic characteristic of late Quaternary activity of the Deqin-Zhongdian-Daju fault[J]. Journal of Seismological Research, 37(1): 46-52 (in Chinese).
    [7] 陈伟文, 倪四道, 汪贞杰, 等. 2012.2010年高雄地震震源参数的近远震波形联合反演[J]. 地球物理学报, 55(7): 2319-2328

    Chen W W, Ni S D, Wang Z J, et al. 2012. Joint inversion with both local and teleseismic waveforms for source parameters of the 2010 Kaohsiung earthquake[J]. Chinese Journal of Geophysics, 55(7): 2319-2328 (in Chinese).
    [8] 程成, 白玲, 丁林, 等. 2017. 利用接收函数方法研究喜马拉雅东构造结地区地壳结构[J]. 地球物理学报, 60(8): 2969-2979

    Cheng C, Bai L, Ding L, et al. 2017. Crustal structure of eastern Himalayan syntaxis revealed by receiver function method[J]. Chinese Journal of Geophysics, 60(8): 2969-2979 (in Chinese).
    [9] 程佳. 2008. 川西地区现今地壳运动的大地测量观测研究[D]. 北京: 中国地震局地质研究所.

    Cheng J. 2008. Present-day crustal deformation of western Sichuan inferred form geodetic observation[D]. Beijing: Institute of Geology, China Earthquake Administration (in Chinese).
    [10] 程佳, 徐锡伟, 甘卫军, 等. 2012. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源[J]. 地球物理学报, 55(4): 1198-1212

    Cheng J, Xu X W, Gan W J, et al. 2012. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 55(4): 1198-1212 (in Chinese).
    [11] 崔子健. 2018. 区域构造应力场的反演与地震带划分的研究[D]. 北京: 中国地震局地球物理研究所.

    Cui Z J. 2018. Study on the inversion of regional tectonic stress field and the division of seismic belt[J]. Beijing: Institute of Geophysics, China Earthquake Administration (in Chinese).
    [12] 崔子健, 陈章立, 王勤彩, 等. 2019. 南北地震带地震震源机制解和现今应力特征[J]. 地震, 39(1): 1-10

    Cui Z J, Chen Z L, Wang Q C, et al. 2019. Characteristics of focal mechanism and stress in the north-south seismic belt of China[J]. Earthquake, 39(1): 1-10 (in Chinese).
    [13] 崔仲雄, 裴顺平. 2009. 青藏高原东构造结及周边地区上地幔顶部Pn速度结构和各向异性研究[J]. 地球物理学报, 52(9): 2245-2254

    Cui Z X, Pei S P. 2009. Study on velocity and anisotropy in the uppermost mantle of the eastern Himalayan syntaxis and surrounding regions[J]. Chinese Journal of Geophysics, 52(9): 2245-2254 (in Chinese).
    [14] 邓起东, 张培震, 冉勇康, 等. 2002. 中国活动构造基本特征[J]. 中国科学: D辑, 32(12): 1020-1030.

    Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Basic characteristics of active tectonics of China[J]. Science in China Series D: Earth Sciences, 46(4): 356-372 .
    [15] 邓起东, 程绍平, 马冀, 等. 2014. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报, 57(7): 2025-2042

    Deng Q D, Zhang P Z, M J, et al. 2014. Seismic activities and earthquake potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics, 57(7): 2025-2042 (in Chinese).
    [16] 丁林, 钟大赉, 潘裕生, 等. 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报, 40: 1497-1500 doi: 10.1360/csb1995-40-16-1497

    Ding L, Zhong D A, Pan Y S, et al. 1995. Fission track evidence for Neogene to Quaternary uplift of eastern Himalayan syntaxis[J]. China Science Bulletin, 40(16): 1497-1500 (in Chinese). doi: 10.1360/csb1995-40-16-1497
    [17] Ding L, Zhong D L. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet[J]. Science in China (series d), 42(5): 491-505. doi: 10.1007/BF02875243
    [18] Elliott J R, Walters R J, England P C, et al. 2010. Extension on the Tibetan Plateau: Recent normal faulting measured by InSAR and body wave seismology[J]. Geophysical Journal International, 183: 503-535. doi: 10.1111/j.1365-246X.2010.04754.x
    [19] Frankel A. 1995. Mapping seismic hazard in the central and eastern United States[J]. Seismological Research Letters, 66(4): 8-21. doi: 10.1785/gssrl.66.4.8
    [20] 傅莺, 龙锋, 王世元. 2018. 川滇菱形块体东边界地震精定位[J]. 中国地震, 34(1): 60-70

    Fu Y, Long F, Wang S Y. 2018. Precise location of earthquakes at the eastern boundaries of diamond block of Sichuan-Yunnan[J]. Earthquake Research in China, 34(1): 60-70(in Chinese).
    [21] Fu Y V, Li A, Chen Y J. 2010. Crustal and upper mantle structure of southeast Tibet from Rayleigh wave tomography[J]. Journal of Geophysical Research: Solid Earth, 115(B12): 1-16.
    [22] Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research, 112(B8): 1-14.
    [23] Gephart J W, Forsyth D W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence[J]. Journal of Geophysical Research, 89(B11): 9305-9320. doi: 10.1029/JB089iB11p09305
    [24] 郭祥云, 蒋长胜, 韩立波, 等. 2022. 中国大陆及邻区震源机制数据集(2009—2021年)[EB/OL]. https://data.earthquake.cn.

    Guo X Y, Jiang C S, Han L B, et al. 2022. Focal mechanism data set in Chinese Mainland and its adjacent area (2009-2021)[EB/OL]. https://data.earthquake.cn (in Chinese).
    [25] 韩明明, 陈立春, 李彦宝, 等. 2022. 班公湖—怒江缝合带西界边坝—洛隆断裂全新世活动的地质地貌证据[J]. 地球科学, 47(3): 757-765 doi: 10.3321/j.issn.1000-2383.2022.3.dqkx202203001

    Han M M, Chen L C, Li Y B, et al. 2022. Geological and geomorphic evidence for late Quaternary activity of the Bianba-Luolong fault on the western boundary of the Bangong-Nujiang suture[J]. Earth Science, 47(3): 757-765 (in Chinese). doi: 10.3321/j.issn.1000-2383.2022.3.dqkx202203001
    [26] Hardebeck J L, Shearer P M. 2002. A new method for determining first motion focal mechanisms[J]. Bulletin of the Seismological Society of America, 92(6): 2264-2276. doi: 10.1785/0120010200
    [27] 黄学猛, 杜义, 舒赛兵, 等. 2010. 龙陵—瑞丽断裂(南支)北段晚第四纪活动性特征[J]. 地震地质, 32(2): 222-232

    Huang X M, Du Y, Shu S B, et al. 2010. Study of the late Quaternary slip along the northern segment on the south branch of Longling-Ruili fault[J]. Seismology and Geology, 32(2): 222-232(in Chinese).
    [28] 黄媛, 吴建平, 张天中, 等. 2008. 汶川8.0级大地震及其余震序列重定位研究[J]. 中国科学(D辑), 38(10): 1242-1249

    Huang Y, Wu J P, Zhang T Z, et al. 2008. Relocation of the MS8.0 Wenchuan earthquake and its aftershock sequence[J]. Science in China (Ser D), 38(10): 1242-1249 (in Chinese).
    [29] 李鸿儒, 白玲, 詹慧丽. 2021. 嘉黎断裂带活动性研究进展[J]. 地球与行星物理论评, 52(2): 182-193

    Li H R, Bai L, Zhan H L. 2021. Research progress of Jiali fault activity[J]. Reviews of Geophysics and Planetary Physics, 52(2): 182-193(in Chinese).
    [30] 李延兴, 杨国华, 李智, 等. 2003. 中国大陆活动地块的运动与应变状态[J]. 中国科学(D辑), 33(增刊): 65-81

    Li Y X, Yang G H, Li Z, et al. 2003. The active block movement and strain state of China mainland[J]. Science in China (Ser D), 33(S1): 65-81 (in Chinese).
    [31] 吕坚, 曾文敬, 谢祖军, 等. 2012.2011年9月10日瑞昌—阳新4.6级地震的震源破裂特征与区域强震危险性[J]. 地球物理学报, 55(11): 3625-3633

    Lü J, Zeng W J, Xie Zu J, et al. 2012. Rupture characteristics of the MS4.6 Ruichang-Yangxin earthquake of Sep. 10, 2011 and the strong earthquake risk in the region[J]. Chinese Journal of Geophysics, 55(11): 3625-3633 (in Chinese).
    [32] 罗钧. 2013. 川滇块体及周边区域现今震源机制和应力场特征研究[D]. 北京: 中国地震局地震预测研究所.

    Luo J. 2013. Characteristics of focal mechanisms and stress field of the Sichuan-Yunnan rhombic block and its adjacent regions[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration (in Chinese).
    [33] Michael A J. 1984. Determination of stress from slip data: faults and folds[J]. Journal of Geophysical Research, 89(B13): 11517-11526. doi: 10.1029/JB089iB13p11517
    [34] Ni J, Barazangi M. 1984. Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian plate beneath the Himalaya[J]. Journal of Geophysical Research: Solid Earth, 89(B2): 1147-1163. doi: 10.1029/JB089iB02p01147
    [35] 钱晓东, 秦嘉政, 刘丽芳. 2011. 云南地区现代构造应力场研究[J]. 地震地质, 33(1): 91-106

    Qian X D, Qin J Z, Liu L F. 2011. Study on recent tectonic stress fires field in Yuannan region[J]. Seismology and Geology, 33(1): 91-106 (in Chinese).
    [36] 冉慧敏, 魏斌, 张志斌, 等. 2014.2014年新疆于田MS7.3地震及余震序列定位研究[J]. 地震研究, 37(4): 1012-1020

    Ran H M, Wei B, Zhang Z B, et al. 2014. Research on location of Yutian MS7.3 earthquake and aftershocks sequence in 2014[J]. Journal of Seismological Research, 37(4): 1012-1020 (in Chinese).
    [37] 任金卫, 沈军, 曹忠权, 等. 2000. 西藏东南部嘉黎断裂新知[J]. 地震地质, 22(4): 344-350

    Ren J W, Shen J, Cao Z Q, et al. 2000. Quaternary faulting of Jiali fault, southeast Tibetan Plateau[J]. Seismology and Geology, 22(4): 344-350 (in Chinese).
    [38] Royden L. 1996. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust[J]. Journal of Geophysical Research: Solid Earth, 101(B8): 17679-17705. doi: 10.1029/96JB00951
    [39] 邵翠茹. 2009. 雅鲁藏布大峡谷地区地震活动性研究[D]. 北京: 中国地震局地球物理研究所.

    Shao C R. 2009. Seismicity of the Yarlung Tsangpo Grand Canyon region, China[D]. Beijing: Institute of Geophysics, China Earthquake Administration (in Chinese).
    [40] Shen Z K, Lü J, Wang M, et al. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. Journal of Geophysical Research, 110(B11): 1-17.
    [41] Shi X, Wang Y, Sieh K, et al. 2018. Fault slip and GPS velocities across the Shan Plateau define a curved southwest ward crustal motion around the eastern Himalayan syntaxis[J]. Journal of Geophysical Research: Solid Earth, 123: 2502-2518. doi: 10.1002/2017JB015206
    [42] 宋键, 唐方头, 邓志辉, 等. 2011. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究[J]. 地球物理学报, 54(6): 1536-1548 doi: 10.3969/j.issn.0001-5733.2011.06.013

    Song J, Tang F T, Deng Z H, et al. 2011. Study on current movement characteristics and numerical simulation of the main faults around eastern Himalayan syntaxis[J]. Chinese Journal of Geophysics, 54(6): 1536-1548 (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.06.013
    [43] Tapponnier P, Peltzer G, Armijo R. 1986. On the mechanics of the collision between India and Asia[J]. Geological Society of London Special Publications, 19(1): 113-157. doi: 10.1144/GSL.SP.1986.019.01.07
    [44] Tapponnier P, Xu Z, Roger F. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1678. doi: 10.1126/science.105978
    [45] Waldhauser F, Ellsworth W. 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California[J]. Bulletin of the Seismological Society of America, 90(6): 1353-1368. doi: 10.1785/0120000006
    [46] Waldhauser F, Schaff D P. 2008. Large-scale relocation of two decades of northern California seismicity using cross-correlation and double-difference methods[J]. Journal of Geophysical Research, 113(B08311): 1-15.
    [47] Wang M, Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): 1-22.
    [48] 王清东. 2015. 利用双差定位法研究云南地震分布的活动构造意义[D]. 武汉: 武汉大学.

    Wang Q D. 2015. Using double-difference location method to research the active tectonic significance of Yunnan earthquakes distribution[D]. Wuhan: Wuhan University (in Chinese).
    [49] 王晓楠. 2018. 南迦巴瓦构造结周边地区主要断裂带现今运动特征[D]. 北京: 中国地震局地球物理研究所.

    Wang X N. 2018. The current movement characters of main fault zones surrounding the Namcha Barwa syntaxis[D]. Beijing: Institute of Geophysics, China Earthquake Administration (in Chinese).
    [50] 韦生吉, 倪四道, 崇加军, 等. 2009.2003年8月16日赤峰地震: 一个可能发生在下地壳的地震[J]. 地球物理学报, 52(1): 111-119

    Wei S J, Ni S D, Chong J J, et al. 2009. The 16 August 2003 Chifeng earthquake: Is it a lower crust earthquake?[J]. Chinese Journal of Geophysics, 52(1): 111-119 (in Chinese).
    [51] 向宏发, 韩竹军, 虢顺民, 等. 2004. 红河断裂带大型右旋走滑运动与伴生构造地貌变形[J]. 地震地质, 26(4): 597-610

    Xiang H F, Han Z J, Guo S M, et al. 2004. Large-scale dextral strike-slip movement and associated tectonic deformation along the red river fault zone[J]. Seismology and Geology, 26(4): 597-610 (in Chinese).
    [52] 徐锡伟, 闻学泽, 郑荣章, 等. 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学(D辑), 33(1): 151-162.

    Xu X W, Wen X Z, Zheng R Z, et al. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China[J]. Science in China (Series D), 33(S1): 151-161(in Chinese).
    [53] 杨帆, 盛书中, 万永革, 等. 2019. 网格内不满足均匀性假设对应力场反演结果的影响——以喜马拉雅东构造结及其周边地区应力场研究为例[J]. 地球物理学进展, 34(2): 479-488

    Yang F, Sheng S Z, Wan Y G, et al. 2019. Impact of the stress field in the grid not satisfies the assumption of uniformity on stress field inversion results: the study of stress field in the eastern Himalayan syntaxis and its surrounding area is an example[J]. Progress in Geophysics, 34(2): 479-488(in Chinese).
    [54] 杨建亚, 白玲, 李国辉, 等. 2017. 东喜马拉雅构造结地区地震活动及其构造意义[J]. 国际地震动态, 6: 12-18

    Yang J Y, Bai L, Li G H, et al. 2017. Seismicity in the eastern Himalayan syntaxis and its tectonic implications[J]. Recent Developments in World Seismology, 6: 12-18(in Chinese).
    [55] 易桂喜, 龙锋, 梁明剑, 等. 2017.2016年9月23日四川理塘M4.9和M5.1地震发震构造分析[J]. 地震地质, 39(5): 949-963

    Yi G X, Long F, Liang M J, et al. 2017. Seismogenic structure of the M4.9 and M5.1 Litang earthquakes on 23 September 2016 in southwestern China[J]. Seismology and Geology, 39(5): 949-963(in Chinese).
    [56] 詹慧丽, 张冬丽, 何骁慧, 等. 2020. 基于地震活动特征的鄂尔多斯西缘现今构造变形模式的限定[J]. 地震地质, 42(2): 346-365

    Zhan H L, Zhang D L, He X H, et al. 2020. Limitation of current tectonic deformation modes in the western margin of Ordos based on seismic activity characteristics[J]. Seismology and Geology, 42(2): 346-365(in Chinese).
    [57] 张建国, 汪良谋, 徐煜坚, 等. 1993. 红河断裂深部震源环境介质力学性质分析[J]. 地震地质, 15(2): 131-137

    Zhang J G, Wang L M, Xu Y J, et al. 1993. Analysis of mechanics property of the medium under the deep seismic source environment along Red River fault[J]. Seismology and Geology, 15(2): 131-137(in Chinese).
    [58] 张进江, 钟大赉, 何顺东. 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨[J]. 中国科学(D辑), 33(4): 373-383

    Zhang J J, Zhong D L, He S D. 2003. The tectonic pattern and formation process of Namche Barwa syntaxis in east Himalaya[J]. Science in China (Series D), 33(4): 373-383(in Chinese).
    [59] 张培震. 1999. 中国大陆岩石圈最新构造变动与地震灾害[J]. 第四纪研究, 5: 404-413

    Zhang P Z. 1999. Late Quaternary tectonic deformation and earthquake hazard in continental China[J]. Quaternary Sciences, 5: 404-413(in Chinese).
    [60] 张培震, 邓起东, 张国民, 等. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(增刊): 12-20.

    Zhang P Z, Deng Q D, Zhang G M, et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China (Series D), 46 (Suppl. 2): 13-24.
    [61] Zhang P Z, Wen X Z, Shen Z K, et al. 2010. Oblique, High-Angle, Listric-Reverse Faulting and Associated Development of Strain: The Wenchuan Earthquake of May 12, 2008, Sichuan, China[J]. Annual Review of Earth & Planetary sciences, 38(1): 353-382.
    [62] 张秋文, 王乘, 张培震, 等. 2006. 断层之间的相互作用及其地震地质意义[J]. 地质通报, 25(11): 1338-1341

    Zhang Q W, Wang C, Zhang P Z, et al. 2006. Fault interaction and its seismological and geological significance[J]. Geological Bulletin of China, 25(11): 1338-1341(in Chinese).
    [63] 张小双, 刘洁. 2017. 岩石圈三维结构模型综合与可视化-以青藏高原东缘为例[J]. 地球科学进展, 32(9): 996-1005

    Zhang X S, Liu J. 2017. Data assimilation and three-dimensional visualization of lithospheric structures of the eastern margin of the Tibetan Plateau[J]. Advances in Earth Science, 32(9): 996-1005(in Chinese).
    [64] 张志斌, 冉慧敏, 金花. 2019. 2016年12月8日新疆呼图壁MS6.2地震发震构造初步研究[J]. 地震工程学报, 41(4): 962-969

    Zhang Z B, Ran H M, Jin H. 2016, A preliminary study of seismogenic structure for the Hutubi, Xinjiang MS6.2 earthquake on December 8[J]. China Earthquake Engineering Journal, 41(4): 962-969 (in Chinese).
    [65] Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 84(1): 91-104.
    [66] 郑文俊, 张培震, 袁道阳, 等. 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721

    Zheng W J, Zhang P Z, Yuan D Y, et al. 2019. Basic characteristics of active tectonics and associated geodynamic processes incontinental China[J]. Journal of Geomechanics, 25(5): 699-721(in Chinese).
    [67] 钟大赉, 丁林. 1996. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑), 28: 289-295

    Zhong D L, Ding L. 1996. The uplift process of Qinghai-Tibet plateau and its mechanism[J]. Science in China (Series D), 26(4): 289-295(in Chinese).
    [68] 朱艾斓, 徐锡伟, 周永胜, 等. 2005. 川西地区小震重新定位及其活动构造意义[J]. 地球物理学报, 48(3): 629-636

    Zhu A L, Xu X W, Zhou Y S, et al. 2005. Relocation of small earthquakes in western Sichuan, China and its implications for active tectonics[J]. Chinese Journal of Geophysics, 48(3): 629-636(in Chinese).
    [69] Zhu L P. Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 86(5): 1634-1641. doi: 10.1785/BSSA0860051634
    [70] Zhu L, Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophysical Journal International, l48: 619-627.
    [71] Zoback M L. 1992. First- and second-order patterns of stress in the lithosphere: The World Stress Map Project[J]. Journal of Geophysical Research: Solid Earth, 97(B8): 11703-11728.
  • 2022-067_附录1 根据CRUST 2.0给出不同测点速度模型.pdf
    2022-067_附录2 本文cap反演的163个震源机制解.pdf
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  358
  • HTML全文浏览量:  232
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-24
  • 修回日期:  2023-02-21
  • 录用日期:  2023-02-21
  • 网络出版日期:  2023-03-06
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回