• ISSN 2097-1893
  • CN 10-1855/P

太阳大气中的莫尔顿波与极紫外波

陈鹏飞

引用本文: 陈鹏飞. 2022. 太阳大气中的莫尔顿波与极紫外波. 地球与行星物理论评(中英文),54(0):1-17
Chen P F. 2022. Moreton waves and EUV waves in the solar atmosphere. Reviews of Geophysics and Planetary Physics, 54(0): 1-17 (in Chinese)

太阳大气中的莫尔顿波与极紫外波

doi: 10.19975/j.dqyxx.2022-066
基金项目: 科技部重大研发资助项目(2020YFC2201200);国家自然科学基金资助项目(11961131002)
详细信息
    通讯作者:

    陈鹏飞(1972-),男,教授,主要从事太阳爆发(耀斑、日冕物质抛射、暗条、日冕亮点、莫尔顿波和极紫外波等)方面的研究. E-mail:chenpf@nju.edu.cn

  • 该速度比主要取决于磁力线的初始形状:如果图6中的初始磁力线在竖直方向上是狭长的,则此比值大于3;如果初始磁力线是在水平方向狭长的,则此比值小于3. 后者会导致所谓的CME过度膨胀.
  • 中图分类号: P351

Moreton waves and EUV waves in the solar atmosphere

Funds: Supported by the National Key Research and Development Program of China (Grant No. 2020YFC2201200) and National Natural Science Foundation of China (Grant No. 11961131002)
  • 摘要: 作为空间天气扰动的源头,太阳爆发活动会在太阳大气中产生各种波动现象,这些波动不但传递着大量的能量,也携带了传播路径上磁场和等离子体的信息,因此对于太阳大气中波动现象的研究非常重要. 在这些波动现象中,非常引人入胜的大尺度波动现象是太阳大气色球(紧靠太阳表面)中的莫尔顿波和日冕中的极紫外波. 莫尔顿波主要表现为Hα线心和蓝翼图像中的增亮波前以及Hα红翼图像中的暗黑波前,速度在500~2000 km/s左右,极紫外波则表现为在极紫外图像中观测到增亮波前,速度从10 km/s到逾2000 km/s. 莫尔顿波的产生机制方面的模型相对比较成熟,而极紫外波的产生机制、极紫外波与莫尔顿波之间的关系则一直是有趣而充满争议的话题. 本文对莫尔顿波和极紫外波的研究进行综述,详细介绍莫尔顿波的发现、莫尔顿波早期的经典模型以及近年的进展、极紫外波的发现、极紫外波的各种观测特征以及极紫外波的众多理论模型. 最后对莫尔顿波和极紫外波的研究进行展望,指出研究这些波动现象的意义.

     

    1)  该速度比主要取决于磁力线的初始形状:如果图6中的初始磁力线在竖直方向上是狭长的,则此比值大于3;如果初始磁力线是在水平方向狭长的,则此比值小于3. 后者会导致所谓的CME过度膨胀.
  • 图  1  日本京都大学FMT望远镜于1997年11月3日在Hα+0.8 Å波段拍摄的莫尔顿波(Narukage et al., 2002

    Figure  1.  Moreton wave observed at Hα+0.8 Å on Nov. 3, 1997, with the use of the FMT telescope of Japan (Narukage et al., 2002)

    图  2  莫尔顿波产生机制示意图(修改自Chen, 2016). 暗条爆发驱动的快模激波不但在日冕中传播(红线),也在色球中传播(蓝线AC和BD),而Hα谱线(线心或线翼)是形成在色球中某个固定高度的(虚线所示)

    Figure  2.  Schematic of an updated mechanism of Moreton waves proposed by Chen (2016), where an erupting filament drives a fast-mode MHD shock wave propagating in the corona (red lines) and in the chromosphere (blue lines). Hα line is formed at the height indicated by the dashed line

    图  3  太阳大气示意图,其中绿线为网络磁场,蓝线为网络内磁场,红色条状结构是针状体

    Figure  3.  Schematic of the solar atmosphere, where solid lines indicate the magnetic field, and the red shaded areas are spicules

    图  4  发生在1997年5月12日的日冕极紫外波事件(Chen, 2016

    Figure  4.  The EIT wave event observed using the SOHO/EIT telescope on May 12, 1997 (Chen, 2016)

    图  5  日珥上方磁力线分布的示意图

    Figure  5.  Sketch of the magnetic field lines overlying a prominence

    图  6  日冕EIT波的磁拉伸模型(Chen et al., 2002

    Figure  6.  The magnetic field line stretching model of coronal EIT waves (Chen et al., 2002)

    图  7  显示两类极紫外波共存的三个代表性事件.(a)子图修改自Chen 和Wu(2011);(b)子图修改自Kumar 等(2013);(c)子图修改自White等(2013

    Figure  7.  Three typical events showing the coexistence of two types of EUV waves. Panel (a) is adapted from Chen and Wu (2011), panel (b) from Kumar et al. (2013), and panel (c) from White et al. (2013)

  • [1] Admiranto A G, Priyatikanto R. 2016. Multi-wavelength observations of two explosive events and their effects on the solar atmosphere[J]. Journal of Astronomy and Space Sciences, 33: 197-205. doi: 10.5140/JASS.2016.33.3.197
    [2] Asai A, Ishii T T, Isobe H, et al. 2012. First simultaneous observation of an Hα Moreton wave, EUV wave, and filament/prominence oscillations[J]. The Astrophysical Journal, 745(2): L18.
    [3] Attrill G D R, Harra L K, van Driel-Gesztelyi L, et al. 2007a. Coronal ''wave'': A signature of the mechanism making CMEs large-scale in the low corona?[J]. Astronomische Nachrichten, 328(8): 760. doi: 10.1002/asna.200710794
    [4] Attrill G D R, Harra L K, van Driel-Gesztelyi L, et al. 2007b. Coronal ''wave'': Magnetic footprint of a coronal mass ejection?[J]. The Astrophysical Journal, 656(2): L101-L104. doi: 10.1086/512854
    [5] Attrill G D R, Engell A J, Wills-Davey M J, et al. 2009. Hinode/XRT and STEREO observations of a diffuse coronal "wave"-coronal mass ejection-dimming event[J]. The Astrophysical Journal, 704(2): 1296-1308. doi: 10.1088/0004-637X/704/2/1296
    [6] Attrill G D R. 2010. Dispelling illusions of reflection: A new analysis of the 2007 May 19 coronal "wave" event[J]. The Astrophysical Journal, 718(1): 494-501. doi: 10.1088/0004-637X/718/1/494
    [7] Balasubramaniam K S, Cliver E W, Pevtsov A, et al. 2010. On the origin of the solar Moreton wave of 2006 December 6[J]. The Astrophysical Journal, 723(1): 587-601. doi: 10.1088/0004-637X/723/1/587
    [8] Ballai I, Forgács-Dajka E, Douglas M. 2011. Magnetoacoustic surface gravity waves at a spherical interface[J]. Astronomy & Astrophysics, 527: A12.
    [9] Biesecker D A, Myers D C, Thompson B J, et al. 2002. Solar phenomena associated with ''EIT waves''[J]. The Astrophysical Journal, 569(2): 1009-1015. doi: 10.1086/339402
    [10] Bruzek A. 1952. Die ausbreitung von "Euptionsstörungen". Mit 2 Textabbildungen[J]. Zeitschrift fur Astrophysik, 31: 111.
    [11] Cabezas D P, Asai A, Ichimoto K, et al. 2019. Dynamic processes of the Moreton wave on 2014 March 29[J]. The Astrophysical Journal, 883(1): 32. doi: 10.3847/1538-4357/ab3a35
    [12] Carmichael H. 1964. A process for flares[C]// NASA Special Publication, 50: 451.
    [13] Chandra R, Chen P F, Fulara A, et al. 2016. Peculiar stationary EUV wave fronts in the eruption on 2011 May 11[J]. The Astrophysical Journal, 822(2): 106. doi: 10.3847/0004-637X/822/2/106
    [14] Chandra R, Chen P F, Joshi R, et al. 2018. Observations of two successive EUV waves and their mode conversion[J]. The Astrophysical Journal, 863(1): 101. doi: 10.3847/1538-4357/aad097
    [15] Chen F, Ding M D, Chen P F. 2010. Spectroscopic analysis of an EIT wave/dimming observed by Hinode/EIS[J]. The Astrophysical Journal, 720(2): 1254-1261. doi: 10.1088/0004-637X/720/2/1254
    [16] Chen F, Ding M D, Chen P F, et al. 2011. Spectroscopic analysis of interaction between an extreme-ultraviolet imaging telescope wave and a coronal upflow region[J]. The Astrophysical Journal, 740(2): 116. doi: 10.1088/0004-637X/740/2/116
    [17] Chen P F, Wu S T, Shibata K, et al. 2002. Evidence of EIT and Moreton waves in numerical simulations[J]. The Astrophysical Journal, 572(1): L99-L102. doi: 10.1086/341486
    [18] Chen P F, Ding M D, Fang C. 2005a. Synthesis of CME-associated Moreton and EIT wave features from MHD simulations[J]. Space Science Reviews, 121: 201-211. doi: 10.1007/s11214-006-3911-0
    [19] Chen P F, Fang C, Shibata K. 2005b. A full view of EIT waves[J]. The Astrophysical Journal, 622(2): 1202-1210. doi: 10.1086/428084
    [20] Chen P F, Fang C. 2005. EIT waves- A signature of global magnetic restructuring in CMEs[J]. Proceedings of the IAU Symposium, 226: 55-64.
    [21] Chen P F. 2006. The relation between EIT waves and solar flares[J]. The Astrophysical Journal Letters, 641(2): L153-L156. doi: 10.1086/503868
    [22] Chen P F. 2009a. The relation between EIT waves and coronal mass ejections[J]. The Astrophysical Journal Letters, 698(2): L112-L115. doi: 10.1088/0004-637X/698/2/L112
    [23] Chen P F. 2009b. EIT waves and coronal magnetic field diagnostics[J]. Science in China Series G, 52(11): 1785-1789. doi: 10.1007/s11433-009-0240-9
    [24] Chen P F, Wu Y. 2011. First evidence of coexisting EIT wave and coronal Moreton wave from SDO/AIA observations[J]. The Astrophysical Journal Letters, 732(2): L20. doi: 10.1088/2041-8205/732/2/L20
    [25] Chen P F, Fang C, 2012. A converging view on EIT waves[J]. EAS Publications Series, 55: 313-320. doi: 10.1051/eas/1255043
    [26] Chen P F. 2016. Global coronal waves[J]. Washington DC American Geophysical Union Geophysical Monograph Series, 216: 381-394.
    [27] Chen P F, Fang C, Chandra R, et al. 2016. Can a fast-mode EUV wave generate a stationary front?[J]. Solar Physics, 291(11): 3195-3206. doi: 10.1007/s11207-016-0920-3
    [28] Chen P F. 2017. The continued debate on solar coronal EUV waves[J]. Science in China Series G, 60(2): 29631. doi: 10.1007/s11433-016-0397-0
    [29] Cheng X, Zhang J, Olmedo O, et al. 2012. Investigation of the formation and separation of an extreme-ultraviolet wave from the expansion of a coronal mass ejection[J]. The Astrophysical Journal, 745(1): L5. doi: 10.1088/2041-8205/745/1/L5
    [30] Cliver E W, Laurenza M, Storini M, et al. 2005. On the origins of solar EIT waves[J]. The Astrophysical Journal, 631(1): 604-611. doi: 10.1086/432250
    [31] Cohen O, Attrill G D R, Manchester W I, et al. 2009. Numerical simulation of an EUV coronal wave based on the 2009 February 13 CME event observed by STEREO[J]. The Astrophysical Journal, 705(1): 587-602. doi: 10.1088/0004-637X/705/1/587
    [32] Cunha-Silva R D, Selhorst C L, Fernandes F C R, et al. 2018. Well-defined EUV wave associated with a CME-driven shock[J]. Astronomy & Astrophysics, 612: A100.
    [33] Dai Y, Auchère F, Vial J -C, et al. 2010. Large-scale extreme-ultraviolet disturbances associated with a limb coronal mass ejection[J]. The Astrophysical Journal, 708(2): 913-919. doi: 10.1088/0004-637X/708/2/913
    [34] Dai Y, Ding M D, Chen P F, et al. 2012. Quadrature observations of wave and non-wave components and their decoupling in an extreme-ultraviolet wave event[J]. The Astrophysical Journal, 759(1): 55. doi: 10.1088/0004-637X/759/1/55
    [35] Delannée C, Aulanier G. 1999. CME associated with transequatorial loops and a bald patch flare[J]. Solar Physics, 190: 107-129. doi: 10.1023/A:1005249416605
    [36] Delannée C. 2000. Another view of the EIT wave phenomenon[J]. The Astrophysical Journal, 545(1): 512-523. doi: 10.1086/317777
    [37] Delannée C, Török T, Aulanier G, et al. 2008. A new model for propagating parts of EIT waves: A current shell in a CME[J]. Solar Physics, 247(1): 123-150. doi: 10.1007/s11207-007-9085-4
    [38] Devi P, Chandra R, Joshi R, et al. 2022. Prominence oscillations activated by an EUV wave[J]. Advances in Space Research, 70(6): 1592-1600. doi: 10.1016/j.asr.2022.02.053
    [39] Dissauer K, Temmer M, Veronig A M, et al. 2016. Projection effects in coronal dimmings and associated EUV wave event[J]. The Astrophysical Journal, 830(2): 92. doi: 10.3847/0004-637X/830/2/92
    [40] Downs C, Roussev I I, van der Holst B, et al. 2012. Understanding SDO/AIA observations of the 2010 June 13 EUV wave event: Direct insight from a global thermodynamic MHD simulation[J]. The Astrophysical Journal, 750(2): 134. doi: 10.1088/0004-637X/750/2/134
    [41] Downs C, Warmuth A, Long D M, et al. 2021. Validation of global EUV wave MHD simulations and observational techniques[J]. The Astrophysical Journal, 911(2): 118. doi: 10.3847/1538-4357/abea78
    [42] Feng L, Lu L, Inhester B, et al. 2020. Three-dimensional reconstructions of coronal wave surfaces using a new mask-fitting method[J]. Solar Physics, 295(10): 141. doi: 10.1007/s11207-020-01710-3
    [43] Foley C R, Harra L K, Matthews S A, et al. 2003. Evidence for a flux rope driven EUV wave and CME: Comparison with the piston shock model[J]. Astronomy & Astrophysics, 399: 749-754.
    [44] Francile C, Costa A, Luoni M L, et al. 2013. Hα Moreton waves observed on December 06, 2006. A 2D case study[J]. Astronomy & Astrophysics, 552: A3.
    [45] Fulara A, Chandra R, Chen P F, et al. 2019. Kinematics and energetics of the EUV waves on 11 April 2013[J]. Solar Physics, 294(5): 56. doi: 10.1007/s11207-019-1445-3
    [46] Gallagher P T, Long D M. 2011. Large-scale bright fronts in the solar corona: A review of "EIT waves"[J]. Space Science Reviews, 158(2-4): 365-396. doi: 10.1007/s11214-010-9710-7
    [47] Gan W-Q, Zhu C, Deng Y-Y, et al. 2019. Advanced space-based solar observatory (ASO-S): An overview[J]. Research in Astronomy and Astrophysics, 19(11): 156. doi: 10.1088/1674-4527/19/11/156
    [48] Gary D E, Dulk G A, House L L, et al. 1982. Evidence for a shock wave in visible light and radio observations of the 1980 June 29 event[J]. Advances in Space Research, 2(11): 253-253. doi: 10.1016/0273-1177(82)90207-1
    [49] Gilbert H R, Holzer T E. 2004. Chromospheric waves observed in the He I spectral line (λ = 10830 Å): A closer look[J]. The Astrophysical Journal, 610(1): 572-587. doi: 10.1086/421452
    [50] Gilbert H R, Daou, A G, Young D, et al. 2008. The filament-Moreton wave interaction of 2006 December 6[J]. The Astrophysical Journal, 685(1): 629-645. doi: 10.1086/590545
    [51] Gopalswamy N, Yashiro S, Temmer M, et al. 2009. EUV wave reflection from a coronal hole[J]. The Astrophysical Journal Letters, 691(2): L123-L127. doi: 10.1088/0004-637X/691/2/L123
    [52] Grechnev V V, Uralov A M, Chertok I M, et al. 2014. A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm II CMEs, shock waves, and drifting radio bursts[J]. Solar Physics, 289(4): 1279-1312. doi: 10.1007/s11207-013-0397-2
    [53] Guo Y, Ding M D, Chen P F. 2015. Slow patchy extreme-ultraviolet propagating fronts associated with fast coronal magneto-acoustic waves in solar eruptions[J]. The Astrophysical Journal Supplement Series, 219(2): 36. doi: 10.1088/0067-0049/219/2/36
    [54] Harra L K, Sterling A C. 2003. Imaging and spectroscopic investigations of a solar coronal wave: Properties of the wave front and associated erupting material[J]. The Astrophysical Journal, 587(1): 429-438. doi: 10.1086/368079
    [55] Harra L K, Sterling A C, Gömöry P, et al. 2011. Spectroscopic observations of a coronal Moreton wave[J]. The Astrophysical Journal Letters, 737(1): L4. doi: 10.1088/2041-8205/737/1/L4
    [56] Hou Z, Tian H, Wang J-S, et al. 2022. Three-dimensional propagation of the global extreme-ultraviolet wave associated with a solar eruption on 2021 October 28[J]. The Astrophysical Journal, 928(2): 98. doi: 10.3847/1538-4357/ac590d
    [57] Ireland J, Inglis A R, Shih A Y, et al. 2019. AWARE: An aAlgorithm for the automated characterization of EUV waves in the solar atmosphere[J]. Solar Physics, 294(11): 158. doi: 10.1007/s11207-019-1505-8
    [58] Jin M, Ding M D, Chen P F, et al. 2009. Coronal mass ejection induced outflows observed with Hinode/EIS[J]. The Astrophysical Journal, 702(1): 27-38. doi: 10.1088/0004-637X/702/1/27
    [59] Jin Y-J, Zheng H-N, Su Z-P. 2018. Propagation and damping of two-fluid magnetohydrodynamic waves in stratified solar atmosphere[J]. Chinese Physics Letters, 35(7): 075201. doi: 10.1088/0256-307X/35/7/075201
    [60] Kienreich I W, Veronig A M, Muhr N, et al. 2011. Case study of four homologous large-scale coronal waves observed on 2010 April 28 and 29[J]. The Astrophysical Journal Letters, 727(2): L43. doi: 10.1088/2041-8205/727/2/L43
    [61] Kienreich I W, Muhr N, Veronig A M, et al. 2013. Solar terrestrial relations observatory-A (STEREO-A) and project for on-board autonomy 2 (PROBA2) quadrature observations of reflections of three EUV waves from a coronal hole[J]. Solar Physics, 286(1): 201-219. doi: 10.1007/s11207-012-0023-8
    [62] Klassen A, Aurass H, Mann G, et al. 2000. Catalogue of the 1997 SOHO-EIT coronal transient waves and associated type II radio burst spectra[J]. Astronomy and Astrophysics Supplement Series, 141: 357-369. doi: 10.1051/aas:2000125
    [63] Koukras A, Marqué C, Downs C, et al. 2020. Analyzing the propagation of EUV waves and their connection with type II radio bursts by combining numerical simulations and multi-instrument observations[J]. Astronomy & Astrophysics, 644: A90.
    [64] Krause G, Cécere M, Francile C, et al. 2015. Two step mechanism for Moreton wave excitations in a blast-wave scenario: The 2006 December 06 case study[J]. Solar and Stellar Astrophysics, 453(3): 2799-2807.
    [65] Kumar P, Cho K-S, Chen P F, et al. 2013. Multiwavelength study of a solar eruption from AR NOAA 11112: II Large-scale coronal wave and loop oscillation[J]. Solar Physics, 282(2): 523-541. doi: 10.1007/s11207-012-0158-7
    [66] Kumar P, Manoharan P K. 2013. Eruption of a plasma blob, associated M-class flare, and large-scale extreme-ultraviolet wave observed by SDO[J]. Astronomy & Astrophysics, 553: A109.
    [67] Kwon R-Y, Ofman L, Olmedo O, et al. 2013. STEREO observations of fast magnetosonic waves in the extended solar corona associated with EIT/EUV waves[J]. The Astrophysical Journal, 766(1): 55. doi: 10.1088/0004-637X/766/1/55
    [68] Li C, Fang C, Li Z, et al. 2022. The Chinese Hα Solar Explorer (CHASE) mission: An overview[J]. Science in China Series G, 65(8): 289602. doi: 10.1007/s11433-022-1893-3
    [69] Li T, Zhang J, Yang S-H, et al. 2012a. Kinematics and amplitude evolution of global coronal extreme ultraviolet waves[J]. Research in Astronomy and Astrophysics, 12(1): 104-114. doi: 10.1088/1674-4527/12/1/009
    [70] Li T, Zhang J, Yang S-H, et al. 2012b. SDO/AIA observations of secondary waves generated by interaction of the 2011 June 7 global EUV wave with solar coronal structures[J]. The Astrophysical Journal, 746(1): 13. doi: 10.1088/0004-637X/746/1/13
    [71] Liu N, Zheng H, Su Z. 2017. Three-dimensional ray-tracing simulation of fast magnetoacoustic waves in a stratified solar atmosphere[J]. Science in China E: Technological Sciences, 60(10): 1570-1576. doi: 10.1007/s11431-016-0589-2
    [72] Liu R, Liu C, Xu Y, et al. 2013. Observation of a Moreton wave and wave-filament interactions associated with the renowned X9 flare on 1990 May 24[J]. The Astrophysical Journal, 773(2): 166. doi: 10.1088/0004-637X/773/2/166
    [73] Liu R, Wang Y, Lee J, et al. 2019. Impacts of EUV wavefronts on coronal structures in homologous coronal mass ejections[J]. The Astrophysical Journal, 870(1): 15.
    [74] Liu W, Title A M, Zhao J, et al. 2011. Direct imaging of quasi-periodic fast propagating waves of ~2000 km/s in the low solar corona by the solar dynamics observatory atmospheric imaging assembly[J]. The Astrophysical Journal Letters, 736(1): L13. doi: 10.1088/2041-8205/736/1/L13
    [75] Liu W, Ofman L, Nitta N V, et al. 2012. Quasi-periodic fast-mode wave trains within a global EUV wave and sequential transverse oscillations detected by SDO/AIA[J]. The Astrophysical Journal, 753(1): 52. doi: 10.1088/0004-637X/753/1/52
    [76] Liu W, Jin M, Downs C, et al. 2018. A truly global extreme ultraviolet wave from the SOL2017-09-10 X8.2+ solar flare-coronal mass ejection[J]. The Astrophysical Journal Letters, 864(2): L24. doi: 10.3847/2041-8213/aad77b
    [77] Long D M, Gallagher P T, McAteer R T J, et al. 2008. The kinematics of a globally propagating disturbance in the solar corona[J]. The Astrophysical Journal Letters, 680(1): L81. doi: 10.1086/589742
    [78] Long D M, Baker D, Williams D R, et al. 2015. The energetics of a global shock wave in the low solar corona[J]. The Astrophysical Journal, 799(2): 224. doi: 10.1088/0004-637X/799/2/224
    [79] Long D M, Bloomfield D S, Chen P F, et al. 2017a. Understanding the physical nature of coronal "EIT Waves"[J]. Solar Physics, 292(1): 7. doi: 10.1007/s11207-016-1030-y
    [80] Long D M, Valori G, Pérez-Suárez D, et al. 2017b. Measuring the magnetic field of a trans-equatorial loop system using coronal seismology[J]. Astronomy & Astrophysics, 603: A101.
    [81] Long D M, Jenkins J, Valori G. 2019. Quantifying the relationship between Moreton-Ramsey waves and “EIT Waves” using observations of four homologous wave events[J]. The Astrophysical Journal, 882(2): 90. doi: 10.3847/1538-4357/ab338d
    [82] Lulić S, Vršnak B, Žic T, et al. 2013. Formation of coronal shock waves[J]. Solar Physics, 286(2): 509-528. doi: 10.1007/s11207-013-0287-7
    [83] Ma S, Wills-Davey M J, Lin J, et al. 2009. A new view of coronal waves from STEREO[J]. The Astrophysical Journal, 707(1): 503-509. doi: 10.1088/0004-637X/707/1/503
    [84] Madjarska M S, Doyle J G, Shetye J. 2015. A coronal wave and an asymmetric eruptive filament in SUMER, CDS, EIT, and TRACE co-observations[J]. Astronomy & Astrophysics, 575: A39.
    [85] Magdalenić J, Vršnak B, Pohjolainen S, et al. 2008. A flare-generated shock during a coronal mass ejection on 24 December 1996[J]. Solar Physics, 253(1-2): 305-317. doi: 10.1007/s11207-008-9220-x
    [86] Mei Z X, Udo Z, Lin J. 2012. Numerical experiments of disturbance to the solar atmosphere caused by eruptions[J]. Science China Physics, Mechanics, and Astronomy, 55(7): 1316-1329.
    [87] Mei Z X, Keppens R, Cai Q W, et al. 2020. The triple-layered leading edge of solar coronal mass ejections[J]. The Astrophysical Journal Letters, 898(1): L21. doi: 10.3847/2041-8213/aba2ce
    [88] Meyer F. 1968. Flare-produced coronal waves[C]// Proceedings of IAU Symposium, 35: 485.
    [89] Miao Y H, Liu Y, Shen Y D, et al. 2019. A quasi-periodic propagating wave and extreme-ultraviolet waves excited simultaneously in a solar eruption event[J]. The Astrophysical Journal Letters, 871(1): L2. doi: 10.3847/2041-8213/aafaf9
    [90] Miao Y H, Liu Y, Elmhamdi A, et al. 2020. Two quasi-periodic fast-propagating magnetosonic wave events observed in active region NOAA 11167[J]. The Astrophysical Journal, 889(2): 139. doi: 10.3847/1538-4357/ab655f
    [91] Miklenic C, Veronig A M, Temmer M, et al. 2011. Coronal dimmings and the early phase of a CME observed with STEREO and Hinode/EIS[J]. Solar Physics, 273(1): 125-142. doi: 10.1007/s11207-011-9852-0
    [92] Miteva R, Klein K -L, Kienreich I, et al. 2014. Solar energetic particles and associated EIT disturbances in solar cycle 23[J]. Solar Physics, 289(7): 2601-2631. doi: 10.1007/s11207-014-0499-5
    [93] Moreton G E, Ramsey H E. 1960. Recent observations of dynamical phenomena associated with solar flares[J]. Publications of the Astronomical Society of the Pacific, 72(428): 357.
    [94] Muhr N, Veronig A M, Kienreich I W, et al. 2011. Analysis of characteristic parameters of large-scale coronal waves observed by the solar-terrestrial relations observatory/extreme ultraviolet imager[J]. The Astrophysical Journal, 739(2): 89. doi: 10.1088/0004-637X/739/2/89
    [95] Muhr N, Veronig A M, Kienreich I W, et al. 2014. Statistical analysis of large-scale EUV waves observed by STEREO/EUVI[J]. Solar Physics, 289(12): 4563-4588. doi: 10.1007/s11207-014-0594-7
    [96] Narukage N, Hudson H S, Morimoto T, et al. 2002. Simultaneous observation of a Moreton wave on 1997 November 3 in Hα and soft X-Rays[J]. The Astrophysical Journal Letters, 572(1): L109-L112. doi: 10.1086/341599
    [97] Narukage N, Ishii T T, Nagata S, et al. 2008. Three successive and interacting shock waves generated by a solar flare[J]. The Astrophysical Journal Letters, 684(1): L45. doi: 10.1086/592108
    [98] Neupert W M. 1989. Transient coronal extreme ultraviolet emission before and during the impulsive phase of a solar flare[J]. The Astrophysical Journal, 344: 504. doi: 10.1086/167819
    [99] Nitta N V, Schrijver C J, Title A M, et al. 2013. Large-scale coronal propagating fronts in solar eruptions as observed by the atmospheric imaging assembly on board the solar dynamics observatory—an ensemble study[J]. The Astrophysical Journal, 776(1): 58. doi: 10.1088/0004-637X/776/1/58
    [100] Nitta N V, Liu W, Gopalswamy N, et al. 2014. The relation between large-scale coronal propagating fronts and type II radio bursts[J]. Solar Physics, 289(12): 4589-4606. doi: 10.1007/s11207-014-0602-y
    [101] Öhman Y, Lindgren A, Lindgren U. 1963. A photometric study of activations of prominences probably due to moving disturbances on the Sun[J]. Arkiv for Astronomi, 3: 121-126.
    [102] Olmedo O, Vourlidas A, Zhang J, et al. 2012. Secondary waves and/or the "reflection" from and "transmission" through a coronal hole of an extreme ultraviolet wave associated with the 2011 February 15 X2.2 flare observed with SDO/AIA and STEREO/EUVI[J]. The Astrophysical Journal, 756(2): 143. doi: 10.1088/0004-637X/756/2/143
    [103] Patsourakos S, Vourlidas A, Wang Y M, et al. 2009. What is the nature of EUV waves? First STEREO 3D observations and comparison with theoretical models[J]. Solar Physics, 259(1-2): 49-71. doi: 10.1007/s11207-009-9386-x
    [104] Patsourakos S, Vourlidas A. 2012. On the nature and genesis of EUV waves: A synthesis of observations from SOHO, STEREO, SDO, and hinode (invited review)[J]. Solar Physics, 281(1): 187-222.
    [105] Pesce-Rollins M, Omodei N, Krucker S, et al. 2022. The coupling of an EUV coronal wave and ion acceleration in a fermi-LAT behind-the-limb solar flare[J]. The Astrophysical Journal, 929(2): 172. doi: 10.3847/1538-4357/ac5f0c
    [106] Piantschitsch I, Vršnak B, Hanslmeier A, et al. 2017. A numerical simulation of coronal waves interacting with coronal holes I basic features[J]. The Astrophysical Journal, 850(1): 88. doi: 10.3847/1538-4357/aa8cc9
    [107] Piantschitsch I, Terradas J. 2021. Geometrical properties of the interaction between oblique incoming coronal waves and coronal holes[J]. Astronomy & Astrophysics, 651: A67.
    [108] Podladchikova O, Berghmans D. 2005. Automated detection of eit waves and dimmings[J]. Solar Physics, 228(1-2): 265-284. doi: 10.1007/s11207-005-5373-z
    [109] Pohjolainen S, Maia D, Pick M, et al. 2001. On-the-disk development of the halo coronal mass ejection on 1998 May 2[J]. The Astrophysical Journal, 556(1): 421-431. doi: 10.1086/321577
    [110] Pomoell J, Vainio R, Kissmann R. 2008. MHD modeling of coronal large-amplitude waves related to CME lift-off[J]. Solar Physics, 253(1-2): 249-261. doi: 10.1007/s11207-008-9186-8
    [111] Priest E R. 2014. Magnetohydrodynamics of the Sun[M]. Cambridge University Press, 155-156.
    [112] Qiu Y, Rao S H, Li C, et al. 2022. Calibration procedures for the CHASE/HIS science data[J]. Science China Physics, Mechanics, and Astronomy, 65(8): 289603.
    [113] Qu Z N, Jiang L Q, Chen S L. 2017. Observations of a fast-mode magnetosonic wave propagating along a curving coronal loop on 2011 November 11[J]. The Astrophysical Journal, 851(1): 41. doi: 10.3847/1538-4357/aa9beb
    [114] Russell A J B, Stackhouse D J. 2013. Solar flares and focused energy transport by MHD waves[J]. Astronomy & Astrophysics, 558: A76.
    [115] Schrijver C J, Aulanier G, Title A M, et al. 2011. The 2011 February 15 X2 flare, ribbons, coronal front, and mass ejection: Interpreting the three-dimensional views from the solar dynamics observatory and STEREO guided by magnetohydrodynamic flux-rope modeling[J]. The Astrophysical Journal, 738(2): 167. doi: 10.1088/0004-637X/738/2/167
    [116] Selwa M, Poedts S, DeVore C R. 2013. Numerical simulations of dome-shaped EUV waves from different active-region configurations[J]. Solar Physics, 284(2): 515-539. doi: 10.1007/s11207-013-0302-z
    [117] Shen Y, Liu Y, Su J, et al. 2013. Diffraction, refraction, and reflection of an extreme-ultraviolet wave observed during its interactions with remote active regions[J]. The Astrophysical Journal Letters, 773(2): L33. doi: 10.1088/2041-8205/773/2/L33
    [118] Shen Y, Ichimoto K, Ishii T, et al. 2014a. A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave[J]. The Astrophysical Journal, 786(2): 151. doi: 10.1088/0004-637X/786/2/151
    [119] Shen Y, Liu Y D, Chen P F, et al. 2014b. Simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament induced by a single shock wave[J]. The Astrophysical Journal, 795(2): 130. doi: 10.1088/0004-637X/795/2/130
    [120] Shen Y, Liu Y, Tian Z, et al. 2017. On a small-scale EUV wave: The driving mechanism and the associated oscillating filament[J]. The Astrophysical Journal, 851(2): 101. doi: 10.3847/1538-4357/aa9af0
    [121] Shen Y, Liu Y, Liu Y D, et al. 2018a. Homologous large-amplitude nonlinear fast-mode magnetosonic waves driven by recurrent coronal jets[J]. The Astrophysical Journal, 861(2): 105. doi: 10.3847/1538-4357/aac9be
    [122] Shen Y, Tang Z, Miao Y, et al. 2018b. EUV waves driven by the sudden expansion of transequatorial loops caused by coronal jets[J]. The Astrophysical Journal Letters, 860(1): L8. doi: 10.3847/2041-8213/aac8dd
    [123] Shen Y, Chen P F, Liu Y D, et al. 2019. First unambiguous imaging of large-scale quasi-periodic extreme-ultraviolet wave or shock[J]. The Astrophysical Journal, 873(1): 22. doi: 10.3847/1538-4357/ab01dd
    [124] 申远灯, 李波, 陈鹏飞, 等. 2020. 日冕极紫外波研究进展[J]. 科学通报, 65: 3909-3923 doi: 10.1360/TB-2020-0748

    Shen Y D, Li B, Chen P F, et al. 2020. Research progress of coronal EUV waves[J]. Chinese Science Bulletin, 65: 3909-3923 (in Chinese). doi: 10.1360/TB-2020-0748
    [125] Shen Y, Zhou X P, Duan Y D, et al. 2022. Coronal quasi-periodic fast-mode propagating wave trains[J]. Solar Physics, 297(2): 20. doi: 10.1007/s11207-022-01953-2
    [126] Smith S F, Harvey K L. 1971. Observational effects of flare-associated waves[J]. Advanced Solid-State Lasers, 27: 156.
    [127] Srivastava A K, Singh T, Ofman L, et al. 2016. Inference of magnetic field in the coronal streamer invoking kink wave motions generated by multiple EUV waves[J]. Monthly Notices of the Royal Astronomical Society, 463(2): 1409-1415. doi: 10.1093/mnras/stw2017
    [128] Sterling A C, Hudson H S. 1997. Yohkoh SXT observations of X-Ray ''dimming'' associated with a halo coronal mass ejection[J]. The Astrophysical Journal, 491(1): L55-L58. doi: 10.1086/311043
    [129] Su W, Cheng X, Ding M D, et al. 2015. A type II radio burst without a coronal mass ejection[J]. The Astrophysical Journal, 804(2): 88. doi: 10.1088/0004-637X/804/2/88
    [130] Sun Z, Tian H, Chen P F, et al. 2022, Cross-loop propagation of a quasi-periodic extreme-ultraviolet wave train triggered by successive stretching of magnetic field structures during a solar eruption[J]. The Astrophysical Journal Letters, in press, arXiv: 2210.06769.
    [131] Svestka Z. 1976. Solar Flares[M]. Berlin: Springer-Verlag.
    [132] Temmer M, Veronig A M, Gopalswamy N, et al. 2011. Relation between the 3D-geometry of the coronal wave and associated CME during the 26 April 2008 event[J]. Solar Physics, 273(2): 421-432. doi: 10.1007/s11207-011-9746-1
    [133] Thompson B J, Plunkett S P, Gurman J B, et al. 1998. SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997[J]. Geophysical Research Letters, 25(14): 2465-2468. doi: 10.1029/98GL50429
    [134] Thompson B J, Reynolds B, Aurass H, et al. 2000. Observations of the 24 September 1997 coronal flare waves[J]. Solar Physics, 193: 161-180. doi: 10.1023/A:1005222123970
    [135] Thompson B J, Myers D C. 2009. A catalog of coronal "EIT wave" transients[J]. The Astrophysical Journal Supplement Series, 183(2): 225-243. doi: 10.1088/0067-0049/183/2/225
    [136] Tian H, McIntosh S W, Xia L -D, et al. 2012. What can we learn about solar CMEs, coronal dimmings, and EUV jets through spectroscopic observations?[J]. The Astrophysical Journal, 748(2): 106. doi: 10.1088/0004-637X/748/2/106
    [137] Trenholme D, Ramsay G, Foley C. 2004. Properties of serendipitous X-ray flares discovered in XMM-Newton observations[J]. Monthly Notices of the Royal Astronomical Society, 355(4): 1125-1131. doi: 10.1111/j.1365-2966.2004.08388.x
    [138] Tripathi D, Raouafi N-E. 2007. On the relationship between coronal waves associated with a CME on 5 March 2000[J]. Astronomy & Astrophysics, 473(3): 951-957.
    [139] Uchida Y. 1968. Propagation of hydromagnetic disturbances in the solar corona and Moreton's wave phenomenon[J]. Solar Physics, 4(1): 30-44. doi: 10.1007/BF00146996
    [140] Uchida Y. 1974. Behaviour of the flare-produced coronal MHD wavefront and the occurrence of type II radio bursts[J]. Solar Physics, 39(2): 431-449. doi: 10.1007/BF00162436
    [141] Veronig A M, Temmer M, Vršnak B, et al. 2006. Interaction of a Moreton/EIT wave and a coronal hole[J]. The Astrophysical Journal, 647(2): 1466-1471. doi: 10.1086/505456
    [142] Veronig A M, Temmer M, Vršnak B. 2008. High-cadence observations of a global coronal wave by STEREO EUVI[J]. The Astrophysical Journal Letters, 681(2): L113. doi: 10.1086/590493
    [143] Veronig A M, Gömöry P, Kienreich, I W, et al. 2011. Plasma diagnostics of an EIT wave observed by Hinode/EIS and SDO/AIA[J]. The Astrophysical Journal Letters, 743(1): L10. doi: 10.1088/2041-8205/743/1/L10
    [144] Vršnak B, Warmuth A, Brajša R, et al. 2002. Flare waves observed in Helium I 10 830 Å. A link between Hα Moreton and EIT waves[J]. Astronomy & Astrophysics, 394: 299-310.
    [145] Vršnak B, Warmuth A, Temmer M, et al. 2006. Multi-wavelength study of coronal waves associated with the CME-flare event of 3 November 2003[J]. Astronomy & Astrophysics, 448(2):739-752.
    [146] Wang C, Chen F, Ding M. 2021. Exploring the nature of EUV waves in a radiative magnetohydrodynamic simulation[J]. The Astrophysical Journal Letters, 911(1): L8. doi: 10.3847/2041-8213/abefe6
    [147] Wang H, Shen C, Lin J. 2009. Numerical experiments of wave-like phenomena caused by the disruption of an unstable magnetic configuration[J]. The Astrophysical Journal, 700(2): 1716-1731. doi: 10.1088/0004-637X/700/2/1716
    [148] Wang H, Liu S, Gong J, et al. 2015. Contribution of velocity vortices and fast shock reflection and refraction to the formation of EUV waves in solar eruptions[J]. The Astrophysical Journal, 805(2): 114. doi: 10.1088/0004-637X/805/2/114
    [149] Wang J, Yan X, Kong D, et al. 2020. A small-scale filament eruption inducing a Moreton wave, an EUV wave, and a coronal mass ejection[J]. The Astrophysical Journal, 894(1): 30. doi: 10.3847/1538-4357/ab8565
    [150] Wang Y M. 2000. EIT waves and fast-mode propagation in the solar corona[J]. The Astrophysical Journal, 543(1): L89-L93.
    [151] Warmuth A, Vršnak B, Aurass H, et al. 2001. Evolution of two EIT/Hα Moreton waves[J]. The Astrophysical Journal, 560(1): L105-L109.
    [152] Warmuth A, Vršnak B, Magdalenić J, et al. 2004. A multiwavelength study of solar flare waves I observations and basic properties[J]. Astronomy & Astrophysics, 418: 1101-1115.
    [153] Warmuth A, Mann G. 2011. Kinematical evidence for physically different classes of large-scale coronal EUV waves[J]. Astronomy & Astrophysics, 532: A151.
    [154] Warmuth A. 2015. Large-scale globally propagating coronal waves[J]. Living Reviews in Solar Physics, 12(1): 3. doi: 10.1007/lrsp-2015-3
    [155] Webb D F. 2000. Understanding CMEs and their source regions[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 62(16): 1415-1426. doi: 10.1016/S1364-6826(00)00075-4
    [156] Wen Y, Wang J, Maia D J F, et al. 2006. Spatial and temporal scales of coronal magnetic restructuring in the development of coronal mass ejections[J]. Solar Physics, 239(1-2): 257-276. doi: 10.1007/s11207-006-0181-7
    [157] West M J, Zhukov A N, Dolla L, et al. 2011. Coronal seismology using EIT waves: Estimation of the coronal magnetic field Strength in the quiet Sun[J]. The Astrophysical Journal, 730(2): 122. doi: 10.1088/0004-637X/730/2/122
    [158] White S M, Thompson B J. 2005. High-cadence radio observations of an EIT wave[J]. The Astrophysical Journal Letters, 620(1): L63-L66. doi: 10.1086/428428
    [159] White S M, et al. 2013. Direct comparison of a solar Moreton wave, EUV wave and CME[R]. Technical Report of Air Force Research Laboratory, 22:1–22.
    [160] Wills-Davey M J, DeForest C E, Stenflo J O. 2007. Are ''EIT waves'' fast-mode MHD waves?[J]. The Astrophysical Journal, 664(1): 556-562. doi: 10.1086/519013
    [161] Wills-Davey M J, Attrill G D R. 2009. EIT waves: A changing understanding over a solar cycle[J]. Space Science Reviews, 149(1-4): 325-353. doi: 10.1007/s11214-009-9612-8
    [162] Wongwaitayakornkul P, Haw M A, Li H, et al. 2019. Magnetically induced current piston for generating extreme-ultraviolet fronts in the solar corona[J]. The Astrophysical Journal, 874(2): 137. doi: 10.3847/1538-4357/ab09f2
    [163] Wu S T, Zheng H, Wang S, et al. 2001. Three-dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope[J]. Journal of Geophysical Research, 106(A11): 25089-25102.
    [164] Xie X, Mei Z, Huang M, et al. 2019. Numerical experiments of various types of disturbances in the low and middle corona caused by solar eruptions[J]. Monthly Notices of the Royal Astronomical Society, 490(2): 2918-2935.
    [165] Xu L, Liu S, Yan Y, et al. 2020. EUV wave detection and characterization using deep learning[J]. Solar Physics, 295(3): 44. doi: 10.1007/s11207-020-01612-4
    [166] Xue Z K, Qu Z Q, Yan X L, et al. 2013. Deformation and deceleration of coronal wave[J]. Astronomy & Astrophysics, 556: A152.
    [167] Yang H Q, Chen P F. 2010. The dependence of the EIT wave velocity on the magnetic field strength[J]. Solar Physics, 266(1): 59-69. doi: 10.1007/s11207-010-9595-3
    [168] Yang L, Zhang J, Liu W, et al. 2013. SDO/AIA and Hinode/EIS observations of interaction between an EUV wave and active region loops[J]. The Astrophysical Journal, 775(1): 39. doi: 10.1088/0004-637X/775/1/39
    [169] Yuan D, Shen Y, Liu Y, et al. 2013. Distinct propagating fast wave trains associated with flaring energy releases[J]. Astronomy & Astrophysics, 554: A144.
    [170] Zhang Q M, Ji H S. 2018. Vertical oscillation of a coronal cavity triggered by an EUV wave[J]. The Astrophysical Journal, 860(2): 113. doi: 10.3847/1538-4357/aac37e
    [171] Zhang Y, Kitai R, Narukage N, et al. 2011. Propagation of Moreton waves[J]. Astronomical Society of Japan, 63: 685.
    [172] Zhao X H, Wu S T, Wang A H, et al. 2011. Uncovering the wave nature of the EIT wave for the 2010 January 17 event through its correlation to the background magnetosonic speed[J]. The Astrophysical Journal, 742(2): 131. doi: 10.1088/0004-637X/742/2/131
    [173] Zheng H-N, Zhang Y-Y, Wang S, et al. 2006. Propagation of fast magnetoacoustic waves in stratified solar atmosphere[J]. Chinese Physics Letters, 23: 399-402. doi: 10.1088/0256-307X/23/2/034
    [174] Zheng R, Jiang Y, Yang J, et al. 2012a. An extreme ultraviolet wave associated with a micro-sigmoid eruption[J]. The Astrophysical Journal Letters, 753(2): L29. doi: 10.1088/2041-8205/753/2/L29
    [175] Zheng R, Jiang Y, Yang J, et al. 2012b. A fast propagating extreme-ultraviolet wave associated with a mini-filament eruption[J]. The Astrophysical Journal, 753(2): 112. doi: 10.1088/0004-637X/753/2/112
    [176] Zheng R, Jiang Y, Yang J, et al. 2012c. Homologous EUV waves in the emerging flux region observed by the solar dynamics observatory[J]. The Astrophysical Journal, 747(1): 67. doi: 10.1088/0004-637X/747/1/67
    [177] Zheng R, Jiang Y, Yang J, et al. 2013. An extreme-ultraviolet wave associated with a surge[J]. The Astrophysical Journal, 764(1): 70. doi: 10.1088/0004-637X/764/1/70
    [178] Zheng R, Chen Y, Feng S, et al. 2018. An extreme-ultraviolet wave generating upward secondary waves in a streamer-like solar structure[J]. The Astrophysical Journal Letters, 858(1): L1. doi: 10.3847/2041-8213/aabe87
    [179] Zheng R, Xue Z, Chen Y, et al. 2019. The initial morphologies of the wavefronts of extreme ultraviolet waves[J]. The Astrophysical Journal, 871(2): 232. doi: 10.3847/1538-4357/aaf9b0
    [180] Zheng R, Chen Y, Wang B, et al. 2020. An extreme ultraviolet wave associated with a solar filament activation[J]. The Astrophysical Journal, 894(2): 139. doi: 10.3847/1538-4357/ab863c
    [181] Zheng R, Wang B, Zhang L, et al. 2022. Twin extreme ultraviolet waves in the solar corona[J]. The Astrophysical Journal Letters, 929(1): L4. doi: 10.3847/2041-8213/ac61e3
    [182] Zhou X, Shen Y, Su J, et al. 2021. CME-driven and flare-ignited fast magnetosonic waves detected in a solar eruption[J]. Solar Physics, 296(11): 169. doi: 10.1007/s11207-021-01913-2
    [183] Zhou X, Shen Y, Liu Y D, et al. 2022a. Observations of a flare-ignited broad quasiperiodic fast-propagating wave train[J]. The Astrophysical Journal Letters, 930(1): L5. doi: 10.3847/2041-8213/ac651e
    [184] Zhou X, Shen Y, Tang Z, et al. 2022b. Total reflection of a flare-driven quasi-periodic extreme ultraviolet wave train at a coronal hole boundary[J]. Astronomy & Astrophysics, 659: A164.
    [185] Zhukov A N, Rodriguez L, de Patoul J. 2009. STEREO/SECCHI observations on 8 December 2007: Evidence against the wave hypothesis of the EIT wave origin[J]. Solar Physics, 259(1-2): 73-85. doi: 10.1007/s11207-009-9375-0
    [186] Zirin H, Lackner D R. 1969. The solar flares of August 28 and 30, 1966[J]. Solar Physics, 6(1): 86-103. doi: 10.1007/BF00146799
    [187] Zong W, Dai Y. 2015. Coronal and chromospheric signatures of large-scale disturbances associated with a major solar eruption[J]. The Astrophysical Journal, 809(2): 151. doi: 10.1088/0004-637X/809/2/151
    [188] Zong W, Dai Y. 2017. Mode conversion of a solar extreme-ultraviolet wave over a coronal cavity[J]. The Astrophysical Journal Letters, 834(2): L15. doi: 10.3847/2041-8213/834/2/L15
  • 加载中
图(7)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  26
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 录用日期:  2022-10-08
  • 修回日期:  2022-10-07
  • 网络出版日期:  2022-10-18

目录

    /

    返回文章
    返回