• ISSN 2097-1893
  • CN 10-1855/P

地球等离子体层研究进展

吕景天 张效信 何飞 黄聪

引用本文: 吕景天,张效信,何飞,黄聪. 2022. 地球等离子体层研究进展. 地球与行星物理论评(中英文),54(0):1-17
Lü J T, Zhang X X, He F, Huang C. 2022. State studies of Earth's plasmasphere. Reviews of Geophysics and Planetary Physics, 54(0): 1-17 (in Chinese)

地球等离子体层研究进展

doi: 10.19975/j.dqyxx.2022-064
基金项目: 国家自然科学基金重点资助项目(41931073);科技部重点研发计划资助项目(2021YFA0718600);国家自然科学基金面上资助项目(42074223)
详细信息
    作者简介:

    吕景天(1989-),男,博士研究生,主要从事近地空间辐射环境的研究. E-mail:lvjt@cma.gov.cn

    通讯作者:

    张效信(1963-),男,研究员,主要从事空间物理学及空间天气方面的研究. E-mail:xxzhang@cma.gov.cn

  • 中图分类号: P352

State studies of Earth's plasmasphere

Funds: Supported by the National Natural Science Foundation of China (Grant No. 41931073), the National Key R&D Program of China (Grant No. 2021YFA0718600) and the National Natural Science Foundation of China (Grant No. 42074223)
  • 摘要: 地球等离子体层作为内磁层的重要组成部分,在空间天气过程的发生和发展过程中都起着非常重要的作用. 地球等离子体层是由上行电离层粒子被地球磁力线捕获而形成的圆环状冷的等离子体区域. 等离子体层的外边界称为等离子体层顶,在该区域的等离子体层密度在0.5个地球半径内下降了1~2个数量级. 地球等离子体层结构的动态变化特征是空间环境扰动状态的指示器,其结构形态和动力学过程受地磁场和电场控制,而地磁场短期变化源于太阳活动引起的日地扰动. 地磁暴期间等离子体层的大规模结构演化影响等离子体层中波的产生和传播,从而影响波-粒子相互作用,导致内磁层中电子和离子的空间分布发生变化,进而影响其它磁层和电离层过程. 对地球等离子体层进行进一步研究,对揭示太阳风-磁层-电离层耦合过程中的质量输运和能量转移、空间天气预报等方面都具有重要的意义. 本文对等离子体层和地磁活动的关系、等离子体层中的波、顶部电离层及等离子体层电子含量的变化规律和等离子体层模型等方面的研究进展进行了介绍. 最后,我们还对等离子体层研究方面一些亟待解决的问题进行了展望.

     

  • 图  1  离子密度、温度和组成比的统计分布,黑色粗实线为相应L位置观测结果的中值和标准差(修改自Goldstein et al., 2019

    Figure  1.  Statistical distributions of ion density, temperature, and composition ratio. Thick black lines indicate per-L median and standard deviations (modified from Goldstein et al., 2019)

    图  2  从2001年5月5日至2001年6月28日,约54天的等离子体层总质量含量与该时间段的地磁指数Dst和Kp(修改自Gallagher et al., 2021

    Figure  2.  The total content of the inner plasmasphere (1.5≤ L ≤ 3.0) by mass is plotted for roughly 54 days from 2011-05-05 to 2001-06-28. Geomagnetic indices Dst and Kp are shown in the bottom panel (modified from Gallagher et al., 2021)

    图  3  Dargent等(2020)对重联率依赖性的模拟. (a)对于重联率的模拟;(b)用于归一化重联率的磁场和密度的渐进值;(c)所有模拟时间的散点图(修改自Dargent et al., 2020

    Figure  3.  (a) Reconnection rate R of the plume simulation. (b) Asymptotic values of magnetic field and density used to normalize the reconnection rate. (c) Scatter plot for all the times in the simulations (modified from Dargent et al., 2020)

    图  4  2015年4月4日,VAP卫星所观测到的不同能量通道上的“回旋镖形”色散特征,其起源与等离子体层羽的比较. (a-h)色散特征;(i)色散回溯结果,不同颜色代表不同的能量通道(修改自Zhao et al., 2021

    Figure  4.  "Boomerang-shaped" stripes on different energy channels observed by Van Allen Probes on April 4, 2015, and its origins compared with that of the plasmaspheric plume. (a-h) Show the "Boomerang-shaped" stripes on different energy channels; (i) Shows the solid and hollow circles represent the trace-back results from "boomerang-shaped" stripes observed by VAP-A and VAP-B, respectively (modified from Zhao et al., 2021)

    图  5  表面波(a、d-f、g-i)和关联的锯齿极光(b-c)的观测证据(修改自He et al., 2020

    Figure  5.  Coordinated observations of PSW and associated SA on July 16, 2017 (modified from He et al., 2020)

    图  6  2007年1月至2017年12月的月均F10.7指数和平均白天和夜间PTEC(修改自Jin et al., 2021

    Figure  6.  Monthly mean F10.7 index and mean daytime and nighttime PTEC from January 2007 to December 2017 (modified from Jin et al., 2021)

    图  7  2008年不同经度观测到的TPEC的季节变化(修改自Zhang et al., 2017

    Figure  7.  Seasonal variation of the observed TPEC at different longitudes for 2008 (modified from Zhang et al., 2017)

    图  8  THEMIS卫星的12次等离子体层顶穿越事件,黑点代表真实穿越位置,蓝线代表卫星轨道(修改自Zheng et al., 2019

    Figure  8.  Twelve crossing events of THEMIS satellites. The black spot in each picture indicates the true crossing position and the blue line denotes the orbit (modified from Zheng et al., 2019)

    图  9  2013年6月1日发生的地磁暴期间DEN3D模型的电子密度剖面情况. 上图显示了SYM-H指数(红色)和AL指数的绝对值(蓝色)(修改自Chu et al., 2017b

    Figure  9.  Overview of electron density profiles along magnetic field lines during a geomagnetic storm that occurred on June 1, 2013. The figure on top shows the SYM-H index (red) and absolute values of the AL index (blue). The four contours show the field-aligned density profiles in the noon-midnight meridian plane modeled by the DEN3D model. The four times are indicated by the vertical dashed lines (modified from Chu et al., 2017b)

    图  10  2016年7月至2018年1月期间,离子体层同化模型和VAP-A观测数据的长期比较(修改自Zhelavskaya et al., 2021

    Figure  10.  Long-term comparison of the assimilative model and RBSP-A density measurements during July 2016 to January 2018 (modified from Zhelavskaya et al., 2021)

  • [1] André N, Lemaire J F. 2006. Convective instabilities in the plasmasphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 68(2): 213-227. doi: 10.1016/j.jastp.2005.10.013
    [2] Bandić M, Verbanac G, Moldwin M B, et al. 2016. MLT dependence in the relationship between plasmapause, solar wind, and geomagnetic activity based on CRRES: 1990–1991[J]. Journal of Geophysical Research: Space Physics, 121(5): 4397-4408. DOI: 10.1002/2015JA022278.
    [3] Berube D, Moldwin M B, Fung S F, Green J L. 2005. A plasmaspheric mass density model and constraints on its heavy ion concentration[J]. Journal of Geophysical Research, 110: A04212. DOI: 10.1029/2004JA010684.
    [4] Bespalov P A, Chugunov Y V, Davydenko S S. 1996. Plasmasphere rotation and the nature of the atmospheric electricity. Planetary electric generator with the altitude variation of the atmospheric conductivity[J]. Advances in Space Research, 18(3): 29-32. doi: 10.1016/0273-1177(95)00832-Y
    [5] Burch J L. 2000. Image mission overview[J]. Space Science Reviews, 91(1-2): 1-14.
    [6] Burch J L, Mitchell D G, Sandel B R, et al. 2001. Global dynamics of the plasmasphere and ring current during magnetic storms[J]. Geophysical Research Letters, 28(6): 1159-1162. DOI: 10.1029/2000GL012413.
    [7] Burch J L, Goldstein J, Sandel B R. 2004. Cause of plasmasphere corotation lag[J]. Geophysical Research Letters, 31: L05802. DOI: 10.1029/2003GL019164.
    [8] Burley R J, Green J L, Coyle S E. 2000. The image science and mission operations center[J]. Space Science Reviews, 91(1-2): 483-496.
    [9] Carpenter D L. 1963. Whistler evidence of a 'knee' in the magnetospheric ionization density profile[J]. Journal of Geophysical Research, 68(6): 1675-1682. doi: 10.1029/JZ068i006p01675
    [10] Carpenter D L. 1966. Whistler studies of the plasmapause in the magnetosphere, 1: temporal variation in the position of the knee and some evidence on plasma motions near the knee[J]. Journal of Geophysical Research, 71(3): 693-709. doi: 10.1029/JZ071i003p00693
    [11] Carpenter D L. 1970. Whistler evidence of the dynamic behavior of the duskside bulge in the plasmasphere[J]. Journal of Geophysical Research, 75(19): 3837-3847. doi: 10.1029/JA075i019p03837
    [12] Carpenter D L, Anderson R. 1992. An ISEE/whistler model of equatorial electron density in the magnetosphere[J]. Journal of Geophysical Research, 97(A2): 1097-1108. DOI: 10.1029/91JA01548.
    [13] Carpenter D L. 2004. Remote sensing the Earth's plasmasphere[J]. Radio Science Bull, 308: 13-29.
    [14] Chappell C R, Harris K K, Sharp G W. 1970. A study of the influence of magnetic activity on the location of the plasmapause as measured by OGO 5[J]. Journal of Geophysical Research, 75(1): 50-56. DOI: 10.1029/JA075i001p00050.
    [15] Chen Z, Jin M, Deng Y, et al. 2019. Improvement of a deep learning algorithm for total electron content maps: image completion[J]. Journal of Geophysical Research: Space Physics, 124(1): 790-800. doi: 10.1029/2018JA026167
    [16] Chi P J, Engebretson M J, Moldwin M B, et al. 2013. Sounding of the plasmasphere by Mid-continent MAgnetoseismic Chain (McMAC) magnetometers[J]. Journal of Geophysical Research: Space Physics, 118(6): 3077-3086. DOI: 10.1002/jgra.50274.
    [17] Cho J, Lee D Y, Kim J H, et al. 2015. New model fit functions of the plasmapause location determined using THEMIS observations during the ascending phase of Solar Cycle 24[J]. Journal of Geophysical Research: Space Physics, 120(1): 2877-2889. DOI: 10.1002/2015JA021030.
    [18] Chu X N, Bortnik J, Li W, et al. 2017a. Erosion and refilling of the plasmasphere during a geomagnetic storm modeled by a neural network[J]. Journal of Geophysical Research: Space Physics, 122(7): 7118-7129. DOI: 10.1002/2017JA023948.
    [19] Chu X N, Bortnik J, Li W, et al. 2017b. A neural network model of three-dimensional dynamic electron density in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 122(9): 9183-9197. DOI: 10.1002/2017JA024464.
    [20] Comfort R H, Waite J H, Chappell C R. 1985. Thermal ion temperatures from the retarding ion mass spectrometer on de 1[J]. Journal of Geophysical Research: Space Physics, 90(A4): 3475-3486. doi: 10.1029/JA090iA04p03475
    [21] Dargent J, Aunai N, Lavraud B, et al. 2020. Simulation of plasmaspheric plume impact on dayside magnetic reconnection[J]. Geophysical Research Letters, 47: e2019GL086546. DOI: 10.1029/2019GL086546.
    [22] Darrouzet F, Gallagher D L, André N, et al. 2009a. Plasmaspheric density structures and dynamics: properties observed by the CLUSTER and IMAGE missions[J]. Space Science Reviews, 145(1-2): 55-106. DOI: 10.1007/s11214-008-9438-9.
    [23] Darrouzet F, Keyser J D, Pierrard V. 2009b. The Earth's Plasmasphere: A CLUSTER and IMAGE Perspective[M]. Springer.
    [24] Davies K. 1980. Recent progress in satellite radio beacon studies with particular emphasis on the ats-6 radio beacon experiment[J]. Space Science Reviews, 25(4): 357-430.
    [25] Degeling A W, Rae I J, Watt C E J, et al. 2018. Control of ULF wave accessibility to the inner magnetosphere by the convection of plasma density[J]. Journal of Geophysical Research: Space Physics, 123(2): 1086-1099. doi: 10.1002/2017JA024874
    [26] Denton M H, Borovsky J E. 2014. Observations and modeling of magnetic flux tube refilling of the plasmasphere at geosynchronous orbit[J]. Journal of Geophysical Research: Space Physics, 119(11): 9246-9255. DOI: 10.1002/2014JA020491.
    [27] Fok M C, Wolf R A, Spiro R W, Moore T E. 2001. Comprehensive computational model of earth's ring current[J]. Journal of Geophysical Research: Space Physics, 106(A5): 8417. doi: 10.1029/2000JA000235
    [28] Fok M C, Glocer A, Zheng Q, et al. 2011. Recent developments in the radiation belt environment model[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 73(11-12): 1435-1443. doi: 10.1016/j.jastp.2010.09.033
    [29] Fok M C, Buzulukova N Y, Chen S H, et al. 2014. The comprehensive inner magnetosphere-ionosphere model[J]. Journal of Geophysical Research: Space Physics, 119: 7522-7540. DOI: 10.1002/2014JA020239.
    [30] Frank L A. 1971. Relationship of the plasma sheet, ring current, trapping boundary, and plasmapause near the magnetic equator and local midnight[J]. Journal of Geophysical Research, 76(10): 2265-2275. DOI: 10.1029/JA076i010p02265.
    [31] Fuselier S A, Burch J L, Cassak P A, et al. 2016. Magnetospheric ion influence on magnetic reconnection at the duskside magnetopause[J]. Geophysical Research Letters, 43(4): 1435-1442. DOI: 10.1002/2015GL067358.
    [32] Gallagher D L, Craven P D, Comfort R H. 1998. A simple model of magnetospheric trough total density[J]. Journal of Geophysical Research, 103(A5): 9293-9297. DOI: 10.1029/97JA03665.
    [33] Gallagher D L, Craven P D, Comfort R H. 2000. Global core plasma model[J]. Journal of Geophysical Research, 105(A8): 18819-18833. DOI: 10.1029/1999JA000241.
    [34] Gallagher D L, Adrian M L, Liemohn M W. 2005. Origin and evolution of deep plasmaspheric notches[J]. Journal of Geophysical Research, 110: A09201. DOI: 10.1029/2004JA010906.
    [35] Gallagher D L, Adrian M L. 2007. Two-dimensional drift velocities from the image euv plasmaspheric imager[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 69(3): 341-350. doi: 10.1016/j.jastp.2006.05.028
    [36] Gallagher D L, Comfort R H. 2016. Unsolved problems in plasmasphere refilling[J]. Journal of Geophysical Research: Space Physics, 121(2): 1447-1451. doi: 10.1002/2015JA022279
    [37] Gallagher D L, Comfort R H, Katus R M, et al. 2021. The breathing plasmasphere: Erosion and refilling[J]. Journal of Geophysical Research: Space Physics, 126: e2020JA028727. DOI: 10.1029/2020JA028727.
    [38] Galvan D A, Moldwin M B, Sandel B R, Crowley G. 2010. On the causes of plasmaspheric rotation variability: image EUV observations[J]. Journal of Geophysical Research, 115(A1): A01214.
    [39] Goldstein J, Gallagher D, Craven P D, et al. 2000. The extreme ultraviolet imager investigation for the image mission[J]. Space Science Reviews, 91(1-2): 197-242.
    [40] Goldstein J, Spasojević M, Reiff P H, et al. 2003. Identifying the plasmapause in IMAGE EUV data using IMAGE RPI in situ steep density gradients[J]. Journal of Geophysical Research, 108: 1147. DOI: 10.1029/2002JA009475.
    [41] Goldstein J, Sandel B R. 2005. The Global Pattern of Evolution of Plasmaspheric Drainage Plumes[M]// Burch J, Schulz M, Spence H. Magnetosphere Interactions: New Perspectives from Imaging. Washington, DC: American Geophysical Union. https://doi.org/10.1029/159GM02.
    [42] Goldstein J, Gallagher D, Craven P D, et al. 2019. Temperature dependence of plasmaspheric ion composition[J]. Journal of Geophysical Research: Space Physics, 124(1): 6585-6595. DOI: 10.1029/2019JA026822.
    [43] Gringauz K I. 1963. The structure of the ionized gas envelope of earth from direct measurements in the u. s. s. r. of local charged particle concentrations[J]. Planetary and Space Science, 11(3): 281-296. doi: 10.1016/0032-0633(63)90030-8
    [44] Hao Y X, Zong Q G, Zhou X Z, et al. 2017. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions[J]. Geophysical Research Letters, 44(15): 7618-7627. doi: 10.1002/2017GL074006
    [45] Harris K K, Sharp G W, Chappell C R. 1970. Observations of the plasmapause from OGO 5[J]. Journal of Geophysical Research, 75(1): 219-224. DOI: 10.1029/JA075i001p00219.
    [46] He F, Zhang X X, Chen B, Fok M C. 2011. Reconstruction of the plasmasphere from Moon-based EUV images[J]. Journal of Geophysical Research, 116(1): A11203. DOI: 10.1029/2010JA016364.
    [47] He F, Zhang X X, Chen B, et al. 2013. Moon-based EUV imaging of the earth's plasmasphere: model simulations[J]. Journal of Geophysical Research: Space Physics, 118(11): 7085-7103. doi: 10.1002/2013JA018962
    [48] He F, Zhang X X, Chen B, et al. 2016. Determination of the earth's plasmapause location from the CE-3 EUVC images[J]. Journal of Geophysical Research: Space Physics, 121(1): 296-304. doi: 10.1002/2015JA021863
    [49] He F, Zhang X X, Lin R, et al. 2017. A new solar wind-driven global dynamic plasmapause model: 2. Model and validation[J]. Journal of Geophysical Research: Space Physics, 122(7): 7172-7187. DOI: 10.1002/2017JA023913.
    [50] He F, Guo R L, Dunn W R, et al. 2020. Plasmapause surface wave oscillates the magnetosphere and diffuse aurora[J]. Nature Communications, 11(1): 1-11. doi: 10.1038/s41467-019-13993-7
    [51] Huang X, Reinisch B W, Song P, et al. 2004. Developing an empirical density model of the plasmasphere using IMAGE/RPI observations[J]. Advances in Space Research, 33(6): 829-832. DOI: 10.1016/j.asr.2003.07.007.
    [52] Huang Y, Xu R L, Shen C, Zhao H. 2011. Rotation of the earth's plasmasphere at different radial distances[J]. Advances in Space Research, 48(7): 1167-1171. doi: 10.1016/j.asr.2011.05.028
    [53] Jin S, Gao C, Yuan L, et al. 2021. Long-term variations of plasmaspheric total electron content from topside GPS observations on LEO satellites[J]. Remote Sensing, 13(4): 545. DOI: 10.3390/rs13040545.
    [54] Kashcheyev A, Nava B. 2019. Validation of NeQuick 2 model topside ionosphere and plasmasphere electron content using COSMIC POD TEC[J]. Journal of Geophysical Research: Space Physics, 124, 9525– 9536. https://doi.org/10.1029/2019JA026971
    [55] Kelley M C. 1989. The Earth's Ionosphere: Plasma Physics and Electrodynamics[M]. California: Academic Press, Inc, 487.
    [56] Kersley L, Klobuchar J A. 1980. Storm associated protonospheric depletion and recovery[J]. Planetary & Space Science, 28(5): 453-458.
    [57] Keyser J, Carpenter D, Darrouzet F, et al. 2009. CLUSTER and IMAGE: New ways to study the Earth's plasmasphere[J]. Space Science Review[J], 145(1-2): 7-53. DOI: 10.1007/s11214-008-9464-7.
    [58] Khazanov G V, Moore T E, Krivorutsky E N. 1996. Lower hybrid turbulence and ponderomotive force effects in space plasmas subjected to large-amplitude low-frequency waves[J]. Geophysical Research Letters, 23(8): 797-800. DOI: 10.1029/96GL00844.
    [59] Kotova G A. 2007. The Earth's plasmasphere: state of studies (a review)[J]. Geomagnetism and Aeronomy, 47(4): 409-422. doi: 10.1134/S0016793207040019
    [60] Kotova G, Verigin M, Bezrukikh V. 2015. Physics-based reconstruction of the 3- density distribution in the entire quiet time plasmasphere from measurements along a single pass of an orbiter[J]. Journal of Geophysical Research: Space Physics, 120(9): 7512-7521. doi: 10.1002/2015JA021281
    [61] Krall J, Huba J D, Denton R E, et al. 2014. The effect of the thermosphere on quiet time plasmasphere morphology[J]. Journal of Geophysical Research: Space Physics, 119(1): 5032-5048. DOI: 10.1002/2014JA019850.
    [62] Kwon H J, Kim K H, Jee G, et al. 2015. Plasmapause location under quiet geomagnetic conditions (Kp≤1): THEMIS observations[J]. Geophysical Research Letters, 42: 7303-7310. DOI: 10.1002/2015GL066090.
    [63] Larsen B, Klumpar D, Gurgiolo C. 2007. Correlation between plasmapause position and solar wind parameters[J]. Journal of Atmospheric and Solar- Terrestrial Physics, 69(3): 334-340. doi: 10.1016/j.jastp.2006.06.017
    [64] Lee D H, Kim K. 1999. Compressional MHD waves in the magnetosphere: A new approach[J]. Journal of Geophysical Research, 104(A6): 12379-12385. DOI: 10.1029/1999JA900053.
    [65] Lemaire J, Schunk R W. 1992. Plasmaspheric wind[J]. Journal of Atmospheric and Terrestrial Physics, 54(3-4): 467-477. doi: 10.1016/0021-9169(92)90026-H
    [66] Lemaire J F, Gringauz K I, Carpenter D L, Bassolo V. 1998. Discovery of the Plasmasphere and Initial Studies of its Properties[M]// The Earth's Plasmasphere. Cambridge: Cambridge University Press, 1 – 39. https://doi.org/10.1017/CBO9780511600098.005.
    [67] Li L, Xu R L. 2005. Model of the evolution of the plasmasphere during a geomagnetic storm[J]. Advances in Space Research, 36(10): 1895-1899. doi: 10.1016/j.asr.2003.10.057
    [68] Li L, Zhou X Z, Zong Q G, et al. 2017. Charged particle behavior in localized ultralow frequency waves: Theory and observations[J]. Geophysical Research Letters, 44(12): 5900-5908. doi: 10.1002/2017GL073392
    [69] Li W, Thorne R M, Nishimura Y, et al. 2010. THEMIS analysis of observed equatorial electron distributions responsible for the chorus excitation[J]. Journal of Geophysical Research, 115: A00F11. DOI: 10.1029/2009JA014845.
    [70] Liemohn M W, Ridley A J, Gallagher D L, et al. 2004. Dependence of plasmaspheric morphology on the electric field description during the recovery phase of the 17 April 2002 magnetic storm[J]. Journal of Geophysical Research, 109(1): 103-105. DOI: 10.1029/2003JA010304.
    [71] Liu W, Cao J B, Li X, et al. 2013. Poloidal ULF wave observed in the plasmasphere boundary layer[J]. Journal of Geophysical Research: Space Physics, 118(7): 4298-4307. DOI: 10.1002/jgra.50427.
    [72] Liu X, Liu W, Cao J B, et al. 2015. Dynamic plasmapause model based on THEMIS measurements[J]. Journal of Geophysical Research: Space Physics, 120(12): 10543-10556. DOI: 10.1002/2015JA021801.
    [73] Liu Z Y, Zong Q G, Zhou X Z, et al. 2019. ULF waves modulating and acting as mass spectrometer for dayside ionospheric outflow ions[J]. Geophysical Research Letters, 46(15): 8633-8642. DOI: 10.1029/2019GL083849.
    [74] Menk F, Kale Z, Sciffer M, et al. 2014. Remote sensing the plasmasphere, plasmapause, plumes and other features using ground-based magnetometers[J]. Journal of Space Weather and Space Climate, 4(6): 34-36. DOI: 10.1051/swsc/2014030.
    [75] Mishin E V, Burke W J. 2005. Stormtime coupling of the ring current, plasmasphere, and topside ionosphere: Electromagnetic and plasma disturbances[J]. Journal of Geophysical Research, 110: A07209. DOI: 10.1029/2005JA011021.
    [76] Moldwin M B, Downward L, Rassoul H, et al. 2002. A new model of the location of the plasmapause: CRRES results[J]. Journal of Geophysical Research: Space Physics, 107(A11): 133. DOI: 10.1029/2001JA009211.
    [77] Newberry I T, Comfort R H, Richards P G, Chappell C R. 1989. Thermal He+ in the plasmasphere: Comparison of observations with numerical calculations[J]. Journal of Geophysical Research: Space Physics, 94(A11): 15265-15276. doi: 10.1029/JA094iA11p15265
    [78] Obana Y, Miyashita Y, Maruyama N, et al. 2021. Field-aligned electron density distribution of the inner magnetosphere inferred from coordinated observations of Arase and Van Allen Probes[J]. Journal of Geophysical Research: Space Physics, 126: e2020JA029073. DOI: 10.1029/2020JA029073.
    [79] Ober D M, Horwitz J, Gallagher D. 1997. Formation of density troughs embedded in the outer plasmasphere by subauroral ion drift events[J]. Journal of Geophysical Research: Space Physics, 102(A7): 14595-14602. DOI: 10.1029/97JA01046.
    [80] O'Brien T, Moldwin M. 2003. Empirical plasmapause models from magnetic indices[J]. Geophysical Research Letters, 30(4): 1152. DOI: 10.1029/2002GL016007.
    [81] Olsen R C, Shawhan S D, Gallagher D L, et al. 1987. Plasma observations at the Earth's magnetic equator[J]. Journal of Geophysical Research, 92(A3): 2385-2407. doi: 10.1029/JA092iA03p02385
    [82] Ouellette J E, Lyon J G, Brambles O J, et al. 2016. The effects of plasmaspheric plumes on dayside reconnection[J]. Journal of Geophysical Research: Space Physics, 121(5): 4111-4118. DOI: 10.1002/2016JA022597.
    [83] Ozhogin P, Tu J, Song P, Reinisch B W. 2012. Field-aligned distribution of the plasmaspheric electron density: An empirical model derived from the IMAGE RPI measurements[J]. Journal of Geophysical Research, 117: A06225. DOI: 10.1029/2011JA017330.
    [84] Park C G. 1972. Technical report: Methods of determining electron concentration in the magnetosphere from nose whistlers[R]. Stanford University, California.
    [85] Park C G, Carpenter D L, Wiggin D B. 1978. Electron density in the plasmasphere: whistler data on solar cycle, annual and diurnal variations[J]. Journal of Geophysical Research, 83(A7): 3137-3144. doi: 10.1029/JA083iA07p03137
    [86] Pierrard V, Goldstein J, André N, et al. 2009. Recent progress in physics-based models of the plasmasphere[J]. Space Science Reviews, 145: 193-229. doi: 10.1007/s11214-008-9480-7
    [87] Pierrard V, Voiculescu M. 2011. The 3D model of the plasmasphere coupled to the ionosphere[J]. Geophysical Research Letters, 38: L12104. DOI: 10.1029/2011GL047767.
    [88] Prol F S, Hoque M M. 2021. Topside ionosphere and plasmasphere modelling using GNSS radio occultation and POD data[J]. Remote Sensing, 13(8): 1559. DOI: 10.3390/rs13081559.
    [89] Pu Z Y, Kivelson M G. 1983. Kelvin: Helmholtz instability at the magnetopause: Solution for compressible plasmas[J]. Journal of Geophysical Research: Space Physics, 88(A2): 841-852. doi: 10.1029/JA088iA02p00841
    [90] Reinisch B W, Haines D M, Bibl K, et al. 2000. The radio plasma imager investigation on the IMAGE spacecraft[J]. Space Science Reviews, 91(1): 319-359.
    [91] Reinisch B W, Huang X, Song P, et al. 2004. Plasmaspheric mass loss and refilling as a result of a magnetic storm[J]. Journal of Geophysical Research, 109(6): A01202. DOI: 10.1029/2003JA009948.
    [92] Ren J, Zong Q G, Miyoshi Y, et al. 2017. Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundarylayer: Van Allen Probes observation[J]. Journal of Geophysical Research: Space Physics, 122(10): 9969-9982. doi: 10.1002/2017JA024316
    [93] Ren J, Zong Q G, Miyoshi Y, et al. 2018. A comparative study of ULF waves' role in the dynamics of charged particles in the plasmasphere: Van Allen Probes observation[J]. Journal of Geophysical Research: Space Physics, 123(7): 5334-5343. doi: 10.1029/2018JA025255
    [94] Ren J. 2019. ULF Waves' Interaction with Cold and Thermal Particles in the Inner Magnetosphere[M]. Springer.
    [95] Ren J, Zong Q G, Zhou X Z, et al. 2019. Cold plasmaspheric electrons affected by ULF waves in the inner magnetosphere: A Van Allen Probes statistical study[J]. Journal of Geophysical Research: Space Physics, 124(10): 7954-7965. doi: 10.1029/2019JA027009
    [96] Ren J, Zong Q G. 2022. The interactions between ULF waves and cold charged particles in the Earth's magnetosphere[J]. Reviews of Geophysics and Planetary Physics, 53(4): 432-442. DOI: 10.19975/j.dqyxx.2022-005.
    [97] Samsonov A A, Sibeck D G, Imber J. 2007. MHD simulation for the interaction of an interplanetary shock with the Earth's magnetosphere[J]. Journal of Geophysical Research: Space Physics, 112(A12): A12220.
    [98] Sandel B R, Broadfoot A L, Curtis C C, et al. 2000. The extreme ultraviolet imager investigation for the IMAGE mission[J]. Space Science Reviews, 91(1): 197-242. DOI: 10.1023/A:1005263510820.
    [99] Sandel B R, Denton M H. 2007. Global view of refilling of the plasmasphere[J]. Geophysical Research Letters, 34: L17102. DOI: 10.1029/2007GL030669.
    [100] Sheeley B W, Moldwin M B, Rassoul H K, Anderson R R. 2001. An empirical plasmasphere and trough density model: CRRES observations[J]. Journal of Geophysical Research, 106(A11): 25631-25641. DOI: 10.1029/2000JA000286.
    [101] Singh A K, Singh R P. 1999. Duct lifetimes at mid-latitudes[J]. Periodica Polytechnica, Electrical Engineering, 43(1): 43-52.
    [102] Singh A K. 2010. Remote sensing of Earth's plasmasphere[J]. Advances in Geosciences, 21(5): 415-427.
    [103] Singh R P, Singh A K, Singh D K. 1998. Plasmaspheric parameters as derived from whistler spectrograms: A review[J]. Journal of Atmospheric and Terrestrial Physics, 60(5): 495-508. doi: 10.1016/S1364-6826(98)00001-7
    [104] Singh U P, Singh R P. 1997. Study of plasmasphere–ionosphere coupling fluxes[J]. Journal of Atmospheric and Terrestrial Physics, 59(11): 1321-1327. doi: 10.1016/S1364-6826(96)00171-X
    [105] Spasojevic M, Sandel B. 2010. Global estimates of plasmaspheric losses during moderate disturbance intervals[J]. Annales Geophysicae, 28(1): 27-36. DOI: 10.5194/angeo-28-27-2010.
    [106] Thompson D C, Scherliess L, Sojka J J, Schunk R W. 2009. Plasmasphere and upper ionosphere contributions and corrections during the assimilation of GPS slant TEC[J]. Radio Science, 44: RS0A02. DOI: 10.1029/2008RS004016.
    [107] Toledo-Redondo S, André M, Vaivads A, et al. 2016. Cold ion heating at the dayside magnetopause during magnetic reconnection[J]. Geophysical Research Letters, 43(1): 58-66. DOI: 10.1002/2015GL067187.
    [108] Tu J, Song P, Reinisch B W, et al. 2006. Empirical specification of field-aligned plasma density profiles for plasmasphere refilling[J]. Journal of Geophysical Research, 111: A06216. DOI: 10.1029/2005JA011582.
    [109] Verbanac G. 2015. The relationship between plasmapause, solar wind and geomagnetic activity between 2007 and 2011[J]. Annales Geophysicae, 28(1): 27-36.
    [110] Verigin M, Kotova G, Bezrukikh V, Akentieva O. 2012. Restoration of the proton density distribution in the Earth's plasmasphere from measurements along the INTERBALL-1 satellite orbit[J]. Geomagnetism and Aeronomy, 52(6): 725-729. doi: 10.1134/S0016793212060138
    [111] Walsh B M, Sibeck D G, Nishimura Y, Angelopoulos V. 2013. Statistical analysis of the plasmaspheric plume at the magnetopause[J]. Journal of Geophysical Research: Space Physics, 118(8): 4844-4851. DOI: 10.1002/jgra.50458.
    [112] Wang Y, Tu J, Song P. 2016. Mass loading at the magnetopause through the plasmaspheric plume[J]. Journal of Geophysical Research: Space Physics, 121(10): 9501-9516. DOI: 10.1002/2016JA022395.
    [113] Yizengaw E, Moldwin M B, Galvan D, et al. 2008. Global plasmaspheric TEC and its relative contribution to GPS TEC[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 70(11-12): 1541-1541.
    [114] Yue C, Li W, Nishimura Y, et al. 2016. Rapid enhancement of low-energy (< 100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms[J]. Journal of Geophysical Research: Space Physics, 121(7): 6430-6443. doi: 10.1002/2016JA022808
    [115] Zhang H, Sibeck D G, Zong Q G, et al. 2012. Global magnetospheric response to an interplanetary shock: THEMIS observations[J]. Annales Geophysicae, 30(2): 379-387. doi: 10.5194/angeo-30-379-2012
    [116] Zhang M L, Liu L B, Wan W X, Ning B Q. 2016. Variation of the plasmaspheric electron content derived from the podTEC observations of COSMIC LEO satellites to GPS signals[J]. Chinese Journal of Geophysics, 59: 1-7.
    [117] Zhang M L, Liu L, Wan W, Ning B. 2017. Comparison of the observed topside ionospheric and plasmaspheric electron content derived from the cosmic podTEC measurements with the iri_plas model results[J]. Advances in Space Research, 60(2): 222-227. doi: 10.1016/j.asr.2016.10.025
    [118] Zhang Q, Lockwood M, Cfoster J, et al. 2018. Observations of the step-like accelerating processes of cold ions in the reconnection layer at the dayside magnetopause[J]. Science Bulletin, 63(1): 31-37. DOI: 10.1016/j.scib.2018.01.003.
    [119] Zhang X X, Chen B, He F. et al. 2019. Wide-field auroral imager onboard the Fengyun satellite[J]. Light: Science and Applications, 8(1): 776-787. DOI: 10.1038/s41377-019-0157-7.
    [120] Zhao X X, Hao Y X, Zong Q G, et al. 2020. Origin of electron boomerang stripes: Localized ULF wave-particle interactions[J]. Geophysical Research Letters, 47(17): e2020GL087960.
    [121] Zhao X X, Hao Y X, Zong Q G, et al. 2021. Origin of electron boomerang stripes: Statistical study[J]. Geophysical Research Letters, 48(11): e2021GL093377.
    [122] Zhelavskaya I S, Shprits Y Y, Spasojevic M. 2017. Empirical modeling of the plasmasphere dynamics using neural networks[J]. Journal of Geophysical Research: Space Physics, 122(11): 11227-11244. DOI: 10.1002/2017JA024406.
    [123] Zhelavskaya I S, Aseev N A, Shprits Y Y. 2021. A combined neural network- and physics-based approach for modeling plasmasphere dynamics[J]. Journal of Geophysical Research: Space Physics, 126: e2020JA028077. DOI: 10.1029/2020JA028077.
    [124] Zheng Z, Lei J, Yue X, et al. 2019. Development of a 3-D plasmapause model with a back-propagation neural network[J]. Space Weather, 17(1): 1689-1703. DOI: 10.1029/2019SW002360.
    [125] Zong Q G, Zhou X Z, Li X, et al. 2007. Ultralow frequency modulation of energetic particles in the dayside magnetosphere[J]. Geophysical Research Letters, 34(12): L17106.
    [126] Zong Q G, Zhou X Z, Wang Y F, et al. 2009. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt[J]. Journal of Geophysical Research, 114: A10204. DOI: 10.1029/2009JA014393.
    [127] Zong Q G, Wang Y F, Zhang H, et al. 2012. Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves[J]. Journal of Geophysical Research, 117: A11206. DOI: 10.1029/2012JA018024.
    [128] Zong Q G, Rankin R, Zhou X Z. 2017a. The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earth's magnetosphere[J]. Reviews of Modern Plasma Physics, 1(1): 90-95. DOI: 10.1029/2012JA018024.
    [129] Zong Q G, Wang Y F, Ren J, et al. 2017b. Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves[J]. Earth and Planetary Physics, 1: 2-12. DOI: 10.26464/epp2017002.
  • 加载中
图(10)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  5
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 录用日期:  2022-11-11
  • 修回日期:  2022-11-10
  • 网络出版日期:  2022-11-21

目录

    /

    返回文章
    返回