• ISSN 2097-1893
  • CN 10-1855/P

1972—2022年地球自转速率的变化特性及其中的气候事件表征研究

许雪晴 周永宏 胥灿灿

引用本文: 许雪晴,周永宏,胥灿灿. 2022. 1972—2022年地球自转速率的变化特性及其中的气候事件表征研究. 地球与行星物理论评(中英文),54(0):1-9
Xu X Q, Zhou Y H, Xu C C. 2022. Variation in the rotation rate of Earth and its role as a climate change indicator between 1972 and 2022. Reviews of Geophysics and Planetary Physics, 54(0): 1-9 (in Chinese)

1972—2022年地球自转速率的变化特性及其中的气候事件表征研究

doi: 10.19975/j.dqyxx.2022-062
基金项目: 国家自然科学基金资助项目(12233010, 12173070);中国科学院青年创新促进会资助项目(2019265)
详细信息
    通讯作者:

    许雪晴(1984-),女,研究员,主要从事地球自转变化的激发机理研究. Email: xqxu@shao.ac.cn

  • 中图分类号: P183.3

Variation in the rotation rate of Earth and its role as a climate change indicator between 1972 and 2022

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 12233010, 12173070) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2019265)
  • 摘要: 作为反映地球自转速率累积变化的参数(世界时UT1-UTC)和时变特性的参数(日长变化ΔLOD),UT1-UTC在现实项目中有重要应用,而ΔLOD则主要用于科学研究,联合两者探讨地球自转速率变化的规律有重要的意义. 本工作针对近50年的世界时观测数据分析其特性,重点关注近期出现的异常现象:2020年5月以来,地球自转趋势由原来的长期减慢逆转为加快;同时对日长变化序列进行分解,分析地球自转速率变化的可能激发源,并评估其中的气候因素对近期地球自转加快的贡献. 结果表明,扣除其他影响因素后,日长年际项与气候变化指数表现出高度的一致性;近三年期间,检测到两次中等强度的拉尼娜事件以及第二次事件的延续,其对近期地球自转加快的贡献大约为9%.

     

  • 图  1  1972年1月至2022年9月地球自转速率变化观测序列.(a) UT1-UTC;(b)UT1-TAI;(c)ΔLOD

    Figure  1.  Earth's rotation rate observations between January 1972 and September 2022. (a) UT1-UTC; (b) UT1-TAI; (c) ΔLOD

    图  2  1972年1月至2022年9月ΔLOD的分解序列

    Figure  2.  Decomposed ΔLOD observations between January 1972 and September 2022

    图  3  1972年1月至2022年9月仅与流体贡献相关的ΔLOD年际项(黑线)、AAM年际变化(浅蓝线)与ENSO指数序列对比.(a)ΔLOD和AAM年际项;(b)大气压变化指数;(c)海温变化指数

    Figure  3.  Climate-related ΔLOD (black curve), interannual AAM (light blue curve), and ENSO indices between January 1972 and September 2022. (a) interannual variations of ΔLOD and AAM; (b) MSOI; (c) NINO 3.4

    表  1  1972年1月至2022年9月期间发生的气候事件的类别、持续时间以及呈现的温度变化和造成的自转速率变化极值信息统计

    Table  1.   Climate event statistics of the type, duration, and extreme values of temperature changes and induced rotation rate variations from January 1972 to September 2022

    事件
    类别
    跨越
    时间/年
    持续
    月长/月
    SST变化
    极值/℃
    日长年际
    变化极值/ms
    事件
    类别
    跨越
    时间/年
    持续
    月长/月
    SST变化
    极值/℃
    日长年际
    变化极值/ms
    El Nino1972—1973112.10.16 El Nino2002—200391.30.12
    La Nina1973—197415−2.0−0.22El Nino2004—200580.70.13
    La Nina1974—197619−1.7−0.20La Nina2005—20065−0.9−0.13
    El Nino1976—197760.9El Nino2006—200750.90.20
    El Nino1977—197850.80.24La Nina2007—200813−1.6
    El Nino1979—198050.60.18La Nina2008—20095−0.8−0.14
    El Nino1982—1983152.20.43El Nino2009—201091.60.10
    La Nina1983—198419−1.0−0.30La Nina2010—201112−1.6−0.16
    La Nina1984—198519−1.1La Nina2011—201210−1.1
    El Nino1986—1988181.70.14El Nino2014—2016192.60.42
    La Nina1988—198913−1.8−0.27La Nina2016—20165−0.7−0.04
    El Nino1991—1992141.70.09La Nina2017—20187−1.0−0.08
    El Nino1994—199571.10.16El Nino2018—2019100.90.14
    La Nina1995—19968−1.0−0.13La Nina2020—202110−1.3−0.22
    El Nino1997—1998132.40.36La Nina2021—202213−1.1−0.19
    La Nina1998—200132−1.7−0.30
    下载: 导出CSV
  • [1] Capotondi A, Wittenberg A T, Newman M, et al. 2015. Understanding ENSO diversity[J]. Bulletin of the American Meteorological Society, 96(6): 921-938. doi: 10.1175/BAMS-D-13-00117.1
    [2] Chao B F. 1989. Length-of-day variations caused by El Ninio southern oscillation and quasi-biennial oscillation[J]. Science, 243(4893): 923-925. doi: 10.1126/science.243.4893.923
    [3] Chao B F, Chung W Y, Shih Z R, Hsieh Y K. 2014. Earth’s rotation variations: A wavelet analysis[J]. Terra Nova, 26(4): 260-264. doi: 10.1111/ter.12094
    [4] Chen J L. 2005. Global mass balance and the length-of-day variations[J]. Journal of Geophysical Research: Solid Earth, 110(B8): B08404(1-10).
    [5] Chen J L, Wilson C R, Kuang W J, Chao B F. 2019. Interannual oscillations in Earth rotation[J]. Journal of Geophysical Research: Solid Earth, 124(12): 13404-13414. doi: 10.1029/2019JB018541
    [6] de Viron O, Dickey J O. 2014. The two types of El-Nino and their impacts on the length of day[J]. Journal of Oceanography, 41(3): 3407-3412.
    [7] Dickey J O, Marcus S L, Hide R. 1992. Global propagation of interannual fluctuations in atmospheric angular momentum[J]. Nature, 357(6378): 484-488. doi: 10.1038/357484a0
    [8] Dickey J O, Marcus S L, Chin T M. 2007. Thermal wind forcing and atmospheric angular momentum: Origin of the Earth’s delayed response to ENSO[J]. Geophysical Research Letters, 34(17): 17803(1-5).
    [9] Ding H. 2019. Attenuation and excitation of the similar to 6 year oscillation in the length-of-day variation[J]. Earth and Planetary Science Letters, 507: 131-139. doi: 10.1016/j.jpgl.2018.12.003
    [10] Ding H, An Y, Shen W. 2021. New evidence for the fluctuation characteristics of intradecadal periodic signals in length-of-day variation[J]. Journal of Geophysical Research: Solid Earth, 126: e2020JB020990.
    [11] Duan P S, Liu G Y, Hu X G, et al. 2018. Mechanism of the interannual oscillation in length of day and its constraint on the electromagnetic coupling at the core-mantle boundary[J]. Earth and Planetary Science Letters, 482: 245-252. doi: 10.1016/j.jpgl.2017.11.007
    [12] Duan P S, Huang C L. 2020. Intradecadal variations in length of day and their correspondence with geomagnetic jerks[J]. Nature Communications, 11: 2273(1-8).
    [13] Eubanks T M, Smith D E, Turcotte D L. 1993. Variations in the orientation of the Earth[J]. Geodynamics Series, 24: 1-54.
    [14] Fang S W, Yu J Y. 2020. A control of ENSO transition complexity by tropical Pacific mean SSTs through tropical interaction[J]. Geophysical Research Letters, 47(12): e2020GL087933.
    [15] Feng L C, Zhang R H, Yu B, Han X. 2020. Roles of wind stress and subsurface cold water in the second-year cooling of the 2017/18 La Niña event[J]. Advances in Atmospheric Sciences, 37(8): 847-860. doi: 10.1007/s00376-020-0028-4
    [16] Gambis D. 2004. Monitoring Earth orientation using space-geodetic techniques: State-of-the-art and prospective[J]. Journal of Geodesy, 78(4-5): 295-303. doi: 10.1007/s00190-004-0394-1
    [17] Haddad M, Bonaduce A. 2017. Interannual variations in length of day with respect to El Niño- Southern Oscillation’s impact (1962-2015)[J]. Arabian Journal of Geosciences, 10(11): 1-10.
    [18] Hsu C C, Duan P S, Xu X Q, et al. 2021. A new ~7 year periodic signal in length of day from a FDSR method[J]. Journal of Geodesy, 95(5): 55. doi: 10.1007/s00190-021-01503-x
    [19] 贾凡. 2014. 全球变暖背景下热带太平洋的响应及其机制[D]. 青岛: 中国海洋大学. Jia F. 2014.

    Jia F. 2014. The impact of global warming on the tropical Pacific Ocean and the possible mechanisms[D]. Qingdao: Ocean University of China (in Chinese).
    [20] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American meteorological Society, 77(3): 437-471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [21] Kim J S, Seo K W, Jeon T, et al. 2019. Missing hydrological contribution to sea level rise[J]. Geophysical Research Letters, 46(21): 12049-12055. doi: 10.1029/2019GL085470
    [22] 孔昭洋, 周永宏, 许雪晴, 安显然. 2021. 日长变化、AAM和ENSO年际信号的相关分析及2020—2021年拉尼娜事件[J]. 天文学进展, 39(4): 532-543 doi: 10.3969/j.issn.1000-8349.2021.04.07

    Kong Z Y, Zhou Y H, Xu X Q, An X R. 2021. Correlation analyses among ∆LOD, AAM and ENSO, and the 2020-2021 La Nina event[J]. Progress in astronomy, 29(4): 532-543 (in Chinese). doi: 10.3969/j.issn.1000-8349.2021.04.07
    [23] Lambert S B, Marcus S L, Viron O D. 2017. Atmospheric torques and Earth’s rotation: What drove the millisecond-level length-of-day response to the 2015-2016 El Nino[J]. Earth System Dynamics Discussions, 8(1): 1-14. doi: 10.5194/esd-8-1-2017
    [24] 廖德春, 周永宏, 廖新浩. 2003. 天⽂观测已检测到2002年的弱El Nino事件[J]. 科学通报, 48(11): 1135-1138 doi: 10.3321/j.issn:0023-074X.2003.11.004

    Liao D C, Zhou Y H, Liao X H. 2003. The 2002 weak El Nino detected in astronomical observations[J]. Chinese Science Bulletin, 48(11): 1135-1138 (in Chinese). doi: 10.3321/j.issn:0023-074X.2003.11.004
    [25] 廖德春, 周永宏, 廖新浩. 2007. SSTA年代际变化对ENSO事件的调制作用以及它与LOD、SOI等的关系研究[J]. 天文学报, 48(1): 36-48 doi: 10.3321/j.issn:0001-5245.2007.01.006

    Liao D C, Zhou Y H, Liao X H. 2007. Modulation of the SSTA decadal variation on ENSO events and relationships of SSTA with LOD, SOI, etc[J]. Acta Astronomica Sinica, 48(1): 36-48 (in Chinese). doi: 10.3321/j.issn:0001-5245.2007.01.006
    [26] 刘民, 孙毅, 古兆兵, 等. 2021.2020年再议协调世界时 UTC 闰秒问题[J]. 时间频率学报, 44(3): 153-162

    Liu M, Sun Y, Gu Z B, et al. 2021. Re-discussed about leap second in coordinate universal time in 2020[J]. Journal of Time and Frequency, 44(3): 153-162 (in Chinese).
    [27] Ratcliff J T, Gross R S. 2019. Combinations of Earth orientation measurements: SPACE2018, COMB2018, and POLE2018, Pasadena, CA: Jet Propulsion Laboratory[S]. National Aeronautics and Space Administration, hdl. handle. net/ 2014/ 46964.
    [28] Salstein D A, Rosen R D, Kann D M, Miller A J. 1993. The sub-bureau for atmospheric angular momentum of the International Earth rotation service: A meteorological data center with geodetic applications[J]. Bulletin of the American Meteorological Society, 74(1): 6780.
    [29] Shepherd A, Gilbert L, Muir A S, et al. 2019. Trends in Antarctic Ice Sheet elevation and mass[J]. Geophysical Research Letters, 46(14): 8174-8183. doi: 10.1029/2019GL082182
    [30] 师思, 周永宏, 许雪晴. 2017.1979—2016年间日长变化在年际、季节性、亚季节性及高频尺度上的大气激发[J]. 天文学进展, 35(4): 448-461 doi: 10.3969/j.issn.1000-8349.2017.04.05

    Shi S, Zhou Y H, Xu X Q. 2017. Atmospheric excitation of the variation of length of day on interannual, seasonal, sub-seasonal and high-frequency timescales 1979-2016[J]. Progress in Astronomy, 35(4): 448-461 (in Chinese). doi: 10.3969/j.issn.1000-8349.2017.04.05
    [31] Timmermann A, An S I, Kug J S, et al. 2018. El Niño–Southern oscillation complexity[J]. Nature, 559(7715): 535-545. doi: 10.1038/s41586-018-0252-6
    [32] Xu X Q, Zhou Y H, Duan P S, et al. 2022. Contributions of oceanic and continental AAM to interannual variation in ΔLOD with the detection of 2020-2021 La Nina event[J]. Journal of Geodesy, 96(6): 1-10.
    [33] Yan H M, Chao B F. 2012. Effect of global mass conservation among geophysical fluids on the seasonal length of day variation[J]. Journal of Geophysical Research, 117(B2): B02401(1-6).
    [34] 叶叔华, 黄珹. 2000. 天文地球动力学[M]. 山东: 山东科技大学出版社.

    Ye S H, Huang C. 2000. Astronomical Geodynamics[M]. Shandong: Press of Shandong University of Science and Technology (in Chinese).
    [35] 赵铭. 2006. 天体测量学导论[M]. 北京: 中国科学技术出版社.

    Zhao M. 2006. An Introduction to Astrometry[M]. Beijing: Press of China Science and Technology (in Chinese).
    [36] 钟敏, 闫昊明, 朱耀仲, 雷小平. 2002. ⼤⽓⻆动量变化以及对地球⾃转季节变化的激发[J]. 天文学报, 43(1): 90-98 doi: 10.3321/j.issn:0001-5245.2002.01.013

    Zhong M, Yan H M, Zhu Y Z, Lei X P. 2002. Atmospheric angular momentum fluctuations and the excitation on Earth rotation at seasonal scale[J]. Acta Astronomica Sinica, 43(1): 90-98 (in Chinese). doi: 10.3321/j.issn:0001-5245.2002.01.013
    [37] Zhou Y H, Chen J L. 2006. Revised atmospheric excitation function series related to Earth’s variable rotation under consideration of surface topography[J]. Journal of Geophysical Research, 111(D12): D12108. doi: 10.1029/2005JD006608
    [38] Zhou Y H, Chen J L, Salstein D A. 2008. Tropospheric and stratospheric wind contributions to Earth’s variable rotation from NCEP/NCAR reanalyses (2000-2005)[J]. Geophysical Journal International, 174(2): 453-463. doi: 10.1111/j.1365-246X.2008.03843.x
    [39] Zotov L, Bizouard C. 2015. Regional atmospheric influence on the Chandler wobble[J]. Advances in Space Research, 55(5): 1300-1306. doi: 10.1016/j.asr.2014.12.013
    [40] Zotov L, Bizouard C, Shum C K, et al. 2022. Analysis of Earth’s polar motion and length of day trends in comparison with estimates using second degree stokes coefficients from satellite gravimetry[J]. Advances in Space Research, 69(1): 308-318. doi: 10.1016/j.asr.2021.09.010
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  10
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 录用日期:  2022-11-11
  • 网络出版日期:  2022-11-21

目录

    /

    返回文章
    返回