• ISSN 2097-1893
  • CN 10-1855/P

遥感SiCH-2卫星光学系统“猫眼”效应的卫星激光测距

龙明亮 张海峰 林海生 吴志波 邓华荣 秦思 张忠萍

引用本文: 龙明亮,张海峰,林海生,吴志波,邓华荣,秦思,张忠萍. 2023. 遥感SiCH-2卫星光学系统“猫眼”效应的卫星激光测距. 地球与行星物理论评(中英文),54(5):581-586
Long M L, Zhang H F, Lin H S, Wu Z B, Deng H R, Qin S, Zhang Z P. 2023. 'Cat's eye' effect for satellite laser ranging based on the optical system of remote sensing satellite SiCH-2. Reviews of Geophysics and Planetary Physics, 54(5): 581-586 (in Chinese)

遥感SiCH-2卫星光学系统“猫眼”效应的卫星激光测距

doi: 10.19975/j.dqyxx.2022-061
基金项目: 上海市自然科学基金面上资助项目(20ZR1467500);国家自然科学基金资助项目(12003056,11903066);上海市科技创新行动仪器共享配套操作与应用资助项目(21142201900)
详细信息
    通讯作者:

    龙明亮(1989-),男,副研究员. 主要从事卫星/空间碎片激光测距技术及应用研究. E-mail:F_CEO_beifeng@126.com

  • 中图分类号: P129

"Cat's eye" effect for satellite laser ranging based on the optical system of remote sensing satellite SiCH-2

Funds: Supported by the Natural Science Foundation of Shanghai (Grant No. 20ZR1467500), National Natural Science Foundation of China (Grant Nos. 12003056, 11903066), and Shanghai Science and Technology Innovation Action (Grant No. 21142201900)
  • 摘要: 乌克兰地球遥感卫星SiCH-2由2011年发射升空,目前已停止工作,处于失效失控状态,作为空间碎片目标由北美防空司令部(NORAD)提供两行根数(TLE)预报. 本文分析了光学系统的“猫眼”效应,以上海天文台卫星激光测距(SLR)系统实现对SiCH-2卫星进行激光测距,测量回波强度大,测距精度优于10 cm. 测距能力表明SiCH-2对激光反射回波达到合作目标带反射器的卫星激光测距水平,与光电探测设备“猫眼”效应分析的探测能力相当,测距数据结果表明该卫星处于自转状态,自转周期为4.3 s. 本文国内外首次实现基于“猫眼”效应对在轨目标的激光测距,为远距离空间目标的探测提供了新的方法,促进高精度激光探测技术的应用发展,有利于对失效或轨道异常的光学系统类光电探测系列卫星进行监视监测.

     

  • 图  1  光电设备光学系统的“猫眼”效应光路示意图

    Figure  1.  Schematic diagram of the light path of the "cat's eye" effect from the optical system in the optical equipment

    图  2  上海天文台SLR系统框图

    Figure  2.  Shanghai Astronomical Observatory SLR system block diagram

    图  3  SiCH-2地球遥感卫星示意图

    Figure  3.  Schematic diagram of SiCH-2 Earth remote sensing satellite

    图  4  空间目标SiCH-2(碎片编号ID:37794)的SLR测量

    Figure  4.  SLR measurement for SiCH-2 (ID: 37794)

    表  1  空间目标SiCH-2的卫星激光测距结果统计

    Table  1.   Statistics of satellite laser ranging results of space target SiCH-2

    数量日期测量点数精度/cm时间偏差/ms距离偏差/m最大距离/km最小距离/km
    12021-06-0826178.9222.12239.881496.41413
    22021-06-11823310.5444.88−49.181404.21076.2
    32021-08-2929906.6352.227856.2717.3
    42021-08-3144935.7410.957.9942.5812.5
    下载: 导出CSV
  • [1] Bai Z-X, Chen H, Gao X-Q, et al. 2019. Highly compact nanosecond laser for space debris tracking[J]. Optical Materials, 98: 109470. doi: 10.1016/j.optmat.2019.109470
    [2] Bonin J-A, Chambers D-P, Cheng M-K. 2018. Using satellite laser ranging to measure ice mass change in Greenland and Antarctica[J]. The Cryosphere, 12: 71-79. doi: 10.5194/tc-12-71-2018
    [3] Courde C, Torre J M, Samain E, et al. 2017. Lunar laser ranging in infrared at the Grasse laser station[J]. Astronomy & Astrophysics, 602: 90.
    [4] 杜晓辉, 张学民. 2021. SWARM卫星观测到的一次台风消亡产生的电离层扰动[J]. 地球与行星物理论评, 52(6): 662-674.

    Du X-H, Zhang X-M. 2021. An ionospheric disturbance caused by the disintegration of a typhoon observed by the SWARM satellites[J]. Reviews of Geophysics and Planetary Physics, 52(6): 662-674 (in Chinese).
    [5] 都元松, 董文锋, 罗威, 等. 2018. "猫眼效应"激光主动探测技术影响因素分析[J]. 现代防御技术, 46(5): 88-93 doi: 10.3969/j.issn.1009-086x.2018.05.14

    Du Y S, Dong W F, Luo W, et al. 2018. Analysis of Laser Active Detection Technique Based on "Cat's Eye Effect"[J]. Modern Defence Technology, 46(5): 88-93 (in Chinese). doi: 10.3969/j.issn.1009-086x.2018.05.14
    [6] Kravchenko O, Lavrenyuk M, Kussul N. 2014. Orthorectification of Sich-2 satellite images using elastic models[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2014).
    [7] 李旭东, 王立平, 米建军, 等. 2022. 光电成像系统“猫眼效应”目标回波特征研究[J]. 激光与红外, 52(4): 559-563.

    Li X-D, Wang L-P, Mi J-J, et al. 2022. Study on optic-echo characteristic of the cat's-eye effect target in the electro-optic system[J]. Laser & Infrared, 52(4): 559-563 (in Chinese).
    [8] 龙明亮, 张海峰, 门琳琳, 等. 2020.10 kHz重复率全天时卫星激光测距[J]. 红外与毫米波学报, 39(6): 778-785 doi: 10.11972/j.issn.1001-9014.2020.06.016

    Long M-L, Zhang H-F, Men L-L, et al. 2020. Satellite laser ranging at 10 kHz repetition rate in all day[J]. Journal of Infrared and Millimeter Waves, 39(6): 778-785 (in Chinese). doi: 10.11972/j.issn.1001-9014.2020.06.016
    [9] 龙明亮, 邓华荣, 张海峰, 等. 2021.1 kHz重复频率多脉冲皮秒激光器研制及其空间碎片激光测距应用[J]. 光学学报, 41(6): 149-156

    Long M-L, Deng H-R, Zhang H-F, et al. 2021. Development of multiple pulse picosecond laser with 1 kHz repetition rate and its application in space debris laser ranging[J]. Acta Optica Sinica, 41(6): 149-156 (in Chinese).
    [10] Lucchesi D M, Anselmo L, Bassan M, et al. 2015. Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE)[J]. Classical & Quantum Gravity, 2015, 32(15): 155012.
    [11] 罗青山, 郭唐永, 姚运生, 等. 2016. GRACE重力卫星激光反射器分析[J]. 激光与光电子学进展, 53(11): 112301

    Luo Q-S, Guo T-Y, Yao Y-S, et al. 2016. Analysis of laser retro-reflector on GRACE Gravity Satellite[J]. Laser & Optoelectronics Progress, 53(11): 112301 (in Chinese).
    [12] Oh H, Park E, Lim H-C, et al. 2017. Orbit determination of high-Earth-orbit satellites by satellite laser ranging[J]. Astrophysics and Space Science, 34: 271-279.
    [13] Schreiber K-U, Kodet J. 2018. The application of coherent local time for optical time transfer and the quantification of systematic errors in datellite laser ranging[J]. Space Science Reviews, 214: 22. doi: 10.1007/s11214-017-0457-2
    [14] Shao K, Gu D-F, Ju B, et al. 2020. Analysis of Tiangong2 orbit determination and prediction using onboard dualfrequency GNSS data[J]. GPS Solutions, 24: 11. doi: 10.1007/s10291-019-0927-y
    [15] Sheng Q, Wang A, Wang M, et al. 2022a. Enhancing the field of view of a distributed-cavity laser incorporating cat-eye optics by compensating the field-curvature[J]. Optics & Laser Technology, 151: 108011.
    [16] Sheng Q, Wang A, Yue Q, et al. 2022b. Enhancing the field of view of cat-eye retroreflectors by simply matching the mirror radius of curvature and the lens focal length[J]. Results in Physics, 37: 105558. doi: 10.1016/j.rinp.2022.105558
    [17] 孙伟伟, 杨刚, 陈超, 等. 2020. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 24(5): 479-510

    Sun W-W, Yang G, Chen C, et al. 2020. Development status and literature analysis of China’s Earth observation remote sensing satellites[J]. Journal of Remote Sensing, 24(5): 479-510 (in Chinese).
    [18] 吴志波, 邓华荣, 张海峰, 等. 2019. 卫星激光测距系统稳定性分析及提高[J]. 红外与毫米波学报, 38(4): 479-492 doi: 10.11972/j.issn.1001-9014.2019.04.014

    Wu Z-B, Deng H-R, Zhang H-F, et al. 2019. Analysis and improvement on the stability of satellite laser ranging system[J]. Journal of Infrared and Millimeter Waves, 38(4): 479-492 (in Chinese). doi: 10.11972/j.issn.1001-9014.2019.04.014
    [19] 谢俊峰. 朱广彬, 付兴科, 等. 2016. 资源三号卫星激光测距定轨精度分析[J]. 测绘科学, 41(10): 108-112 doi: 10.16251/j.cnki.1009-2307.2016.10.015

    Xie J-F, Zhu G-B, Fu X-K, et al. 2016. Accuracy analysis of orbit determination with satellite laser ranging for ZY-3 satellite[J]. Science of Surveying and Mapping, 2016, 41(10): 108-112 (in Chinese). doi: 10.16251/j.cnki.1009-2307.2016.10.015
    [20] 张海峰, 龙明亮, 邓华荣, 等. 2020. 地基空间碎片激光测距技术发展与应用[J]. 光子学报, 49(11): 45-58 doi: 10.3788/gzxb20204911.1149004

    Zhang H-F, Long M_L, Deng H-R, et al. 2020. Development and application for ground-based space debris laser ranging[J]. Acta Photonica Sinica, 49(11): 45-58 (in Chinese). doi: 10.3788/gzxb20204911.1149004
    [21] Zhang H-F, Long M-L, Yang H-F, et al. 2020. Overview of satellite laser ranging for BeiDou Navigation Satellite System[J]. Aerospace China, 21(4): 31-41.
    [22] 张岚, 孙文科. 2022. 重力卫星GRACE Mascon产品的应用研究进展与展望[J]. 地球与行星物理论评, 53(1): 35-52

    Zhang L, Sun W. 2022. Progress and prospect of GRACE Mascon product and its application[J]. Reviews of Geophysics and Planetary Physics, 53(1): 35-52 (in Chinese).
    [23] 赵勋杰, 高稚允, 张英远. 2003. 基于"猫眼"效应的激光侦察技术及其在军事上的应用[J]. 光学技术, 29(4): 415-417 doi: 10.3321/j.issn:1002-1582.2003.04.029

    Zhao X-J, Gao Z-Y, Zhang Y-Y. 2003. Technique of active laser reconnaissance and the applications in the military[J]. Optical Technique, 29(4): 415-417 (in Chinese). doi: 10.3321/j.issn:1002-1582.2003.04.029
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  143
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-05
  • 修回日期:  2022-09-07
  • 录用日期:  2022-09-14
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回