"Cat's eye" effect for satellite laser ranging based on the optical system of remote sensing satellite SiCH-2
-
摘要: 乌克兰地球遥感卫星SiCH-2由2011年发射升空,目前已停止工作,处于失效失控状态,作为空间碎片目标由北美防空司令部(NORAD)提供两行根数(TLE)预报. 本文分析了光学系统的“猫眼”效应,以上海天文台卫星激光测距(SLR)系统实现对SiCH-2卫星进行激光测距,测量回波强度大,测距精度优于10 cm. 测距能力表明SiCH-2对激光反射回波达到合作目标带反射器的卫星激光测距水平,与光电探测设备“猫眼”效应分析的探测能力相当,测距数据结果表明该卫星处于自转状态,自转周期为4.3 s. 本文国内外首次实现基于“猫眼”效应对在轨目标的激光测距,为远距离空间目标的探测提供了新的方法,促进高精度激光探测技术的应用发展,有利于对失效或轨道异常的光学系统类光电探测系列卫星进行监视监测.Abstract: Remote sensing satellite SiCH-2 from Ukraine was launched in 2011. At present, it has stopped working and is out of control, and it has been forecasted to become space debris by a two-line root (TLE) from the North American Air Defense Command (NORAD). Here, the "cat's eye" effect of the optical system is analyzed, and the satellite laser ranging (SLR) system at Shanghai Observatory is used to measure the echo intensity of satellite SiCH-2, which is very strong, and the ranging accuracy, which is better than 10 cm. The analysis of the measurement capability results shows that the laser reflection echo from satellite SiCH-2 reaches the laser ranging level of the satellite with the reflector, and is consistent with the detection ability of the photoelectric detection equipment "cat's eye" effect analysis. The measurement results also show that satellite SiCH-2 is in a state of rotation, with a period of 4.3 s. In this study, the laser ranging of on-orbit targets based on the "cat's eye" effect is realized for the first time, which provides a new method for analyzing long-distance space targets, promotes the application and development of high-precision laser ranging technology, and is beneficial to monitor the photoelectric detection series of satellites that fail or have abnormal orbits.
-
表 1 空间目标SiCH-2的卫星激光测距结果统计
Table 1. Statistics of satellite laser ranging results of space target SiCH-2
数量 日期 测量点数 精度/cm 时间偏差/ms 距离偏差/m 最大距离/km 最小距离/km 1 2021-06-08 2617 8.92 22.12 239.88 1496.4 1413 2 2021-06-11 8233 10.54 44.88 −49.18 1404.2 1076.2 3 2021-08-29 2990 6.63 52.2 27 856.2 717.3 4 2021-08-31 4493 5.74 10.9 57.9 942.5 812.5 -
[1] Bai Z-X, Chen H, Gao X-Q, et al. 2019. Highly compact nanosecond laser for space debris tracking[J]. Optical Materials, 98: 109470. doi: 10.1016/j.optmat.2019.109470 [2] Bonin J-A, Chambers D-P, Cheng M-K. 2018. Using satellite laser ranging to measure ice mass change in Greenland and Antarctica[J]. The Cryosphere, 12: 71-79. doi: 10.5194/tc-12-71-2018 [3] Courde C, Torre J M, Samain E, et al. 2017. Lunar laser ranging in infrared at the Grasse laser station[J]. Astronomy & Astrophysics, 602: 90. [4] 杜晓辉, 张学民. 2021. SWARM卫星观测到的一次台风消亡产生的电离层扰动[J]. 地球与行星物理论评, 52(6): 662-674.Du X-H, Zhang X-M. 2021. An ionospheric disturbance caused by the disintegration of a typhoon observed by the SWARM satellites[J]. Reviews of Geophysics and Planetary Physics, 52(6): 662-674 (in Chinese). [5] 都元松, 董文锋, 罗威, 等. 2018. "猫眼效应"激光主动探测技术影响因素分析[J]. 现代防御技术, 46(5): 88-93 doi: 10.3969/j.issn.1009-086x.2018.05.14Du Y S, Dong W F, Luo W, et al. 2018. Analysis of Laser Active Detection Technique Based on "Cat's Eye Effect"[J]. Modern Defence Technology, 46(5): 88-93 (in Chinese). doi: 10.3969/j.issn.1009-086x.2018.05.14 [6] Kravchenko O, Lavrenyuk M, Kussul N. 2014. Orthorectification of Sich-2 satellite images using elastic models[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2014). [7] 李旭东, 王立平, 米建军, 等. 2022. 光电成像系统“猫眼效应”目标回波特征研究[J]. 激光与红外, 52(4): 559-563.Li X-D, Wang L-P, Mi J-J, et al. 2022. Study on optic-echo characteristic of the cat's-eye effect target in the electro-optic system[J]. Laser & Infrared, 52(4): 559-563 (in Chinese). [8] 龙明亮, 张海峰, 门琳琳, 等. 2020.10 kHz重复率全天时卫星激光测距[J]. 红外与毫米波学报, 39(6): 778-785 doi: 10.11972/j.issn.1001-9014.2020.06.016Long M-L, Zhang H-F, Men L-L, et al. 2020. Satellite laser ranging at 10 kHz repetition rate in all day[J]. Journal of Infrared and Millimeter Waves, 39(6): 778-785 (in Chinese). doi: 10.11972/j.issn.1001-9014.2020.06.016 [9] 龙明亮, 邓华荣, 张海峰, 等. 2021.1 kHz重复频率多脉冲皮秒激光器研制及其空间碎片激光测距应用[J]. 光学学报, 41(6): 149-156Long M-L, Deng H-R, Zhang H-F, et al. 2021. Development of multiple pulse picosecond laser with 1 kHz repetition rate and its application in space debris laser ranging[J]. Acta Optica Sinica, 41(6): 149-156 (in Chinese). [10] Lucchesi D M, Anselmo L, Bassan M, et al. 2015. Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE)[J]. Classical & Quantum Gravity, 2015, 32(15): 155012. [11] 罗青山, 郭唐永, 姚运生, 等. 2016. GRACE重力卫星激光反射器分析[J]. 激光与光电子学进展, 53(11): 112301Luo Q-S, Guo T-Y, Yao Y-S, et al. 2016. Analysis of laser retro-reflector on GRACE Gravity Satellite[J]. Laser & Optoelectronics Progress, 53(11): 112301 (in Chinese). [12] Oh H, Park E, Lim H-C, et al. 2017. Orbit determination of high-Earth-orbit satellites by satellite laser ranging[J]. Astrophysics and Space Science, 34: 271-279. [13] Schreiber K-U, Kodet J. 2018. The application of coherent local time for optical time transfer and the quantification of systematic errors in datellite laser ranging[J]. Space Science Reviews, 214: 22. doi: 10.1007/s11214-017-0457-2 [14] Shao K, Gu D-F, Ju B, et al. 2020. Analysis of Tiangong2 orbit determination and prediction using onboard dualfrequency GNSS data[J]. GPS Solutions, 24: 11. doi: 10.1007/s10291-019-0927-y [15] Sheng Q, Wang A, Wang M, et al. 2022a. Enhancing the field of view of a distributed-cavity laser incorporating cat-eye optics by compensating the field-curvature[J]. Optics & Laser Technology, 151: 108011. [16] Sheng Q, Wang A, Yue Q, et al. 2022b. Enhancing the field of view of cat-eye retroreflectors by simply matching the mirror radius of curvature and the lens focal length[J]. Results in Physics, 37: 105558. doi: 10.1016/j.rinp.2022.105558 [17] 孙伟伟, 杨刚, 陈超, 等. 2020. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 24(5): 479-510Sun W-W, Yang G, Chen C, et al. 2020. Development status and literature analysis of China’s Earth observation remote sensing satellites[J]. Journal of Remote Sensing, 24(5): 479-510 (in Chinese). [18] 吴志波, 邓华荣, 张海峰, 等. 2019. 卫星激光测距系统稳定性分析及提高[J]. 红外与毫米波学报, 38(4): 479-492 doi: 10.11972/j.issn.1001-9014.2019.04.014Wu Z-B, Deng H-R, Zhang H-F, et al. 2019. Analysis and improvement on the stability of satellite laser ranging system[J]. Journal of Infrared and Millimeter Waves, 38(4): 479-492 (in Chinese). doi: 10.11972/j.issn.1001-9014.2019.04.014 [19] 谢俊峰. 朱广彬, 付兴科, 等. 2016. 资源三号卫星激光测距定轨精度分析[J]. 测绘科学, 41(10): 108-112 doi: 10.16251/j.cnki.1009-2307.2016.10.015Xie J-F, Zhu G-B, Fu X-K, et al. 2016. Accuracy analysis of orbit determination with satellite laser ranging for ZY-3 satellite[J]. Science of Surveying and Mapping, 2016, 41(10): 108-112 (in Chinese). doi: 10.16251/j.cnki.1009-2307.2016.10.015 [20] 张海峰, 龙明亮, 邓华荣, 等. 2020. 地基空间碎片激光测距技术发展与应用[J]. 光子学报, 49(11): 45-58 doi: 10.3788/gzxb20204911.1149004Zhang H-F, Long M_L, Deng H-R, et al. 2020. Development and application for ground-based space debris laser ranging[J]. Acta Photonica Sinica, 49(11): 45-58 (in Chinese). doi: 10.3788/gzxb20204911.1149004 [21] Zhang H-F, Long M-L, Yang H-F, et al. 2020. Overview of satellite laser ranging for BeiDou Navigation Satellite System[J]. Aerospace China, 21(4): 31-41. [22] 张岚, 孙文科. 2022. 重力卫星GRACE Mascon产品的应用研究进展与展望[J]. 地球与行星物理论评, 53(1): 35-52Zhang L, Sun W. 2022. Progress and prospect of GRACE Mascon product and its application[J]. Reviews of Geophysics and Planetary Physics, 53(1): 35-52 (in Chinese). [23] 赵勋杰, 高稚允, 张英远. 2003. 基于"猫眼"效应的激光侦察技术及其在军事上的应用[J]. 光学技术, 29(4): 415-417 doi: 10.3321/j.issn:1002-1582.2003.04.029Zhao X-J, Gao Z-Y, Zhang Y-Y. 2003. Technique of active laser reconnaissance and the applications in the military[J]. Optical Technique, 29(4): 415-417 (in Chinese). doi: 10.3321/j.issn:1002-1582.2003.04.029 -