• ISSN 2097-1893
  • CN 10-1855/P

地震学揭示大陆如何实现幕式生长

杨旭松 田小波

引用本文: 杨旭松,田小波. 2023. 地震学揭示大陆如何实现幕式生长. 地球与行星物理论评(中英文),54(1):102-104
Yang X S, Tian X B. 2023. Seismic evidence reveals how continents grow episodically. Reviews of Geophysics and Planetary Physics, 54(1): 102-104 (in Chinese)

地震学揭示大陆如何实现幕式生长

doi: 10.19975/j.dqyxx.2022-060
基金项目: 国家自然科学基金资助项目(41888101,42030308);国家重点研发计划资助项目(2017YFC0601206)
详细信息
    通讯作者:

    杨旭松,男,博士研究生,主要从事壳幔结构与性质的研究. E-mail:yangxusong94@gmail.com

  • 中图分类号: P315

Seismic evidence reveals how continents grow episodically

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 41888101, 42030308) , and the National Key R&D Program of China (Grant No. 2017YFC0601206)
  • 图  1  Yang等(2022)得到的东准噶尔地区地壳结构与地磁异常三维视图. 正地磁异常标志着古生代岛弧的位置;莫霍面片段1、3、5代表岛弧的莫霍面;莫霍面片段2、4、6代表海洋盆地的莫霍

    Figure  1.  A 3D view of the deep structure and magnetic anomalies across Northern Xinjiang by Yang et al. (2022). Paleozoic island arcs are illustrated by positive magnetic anomaly strips; Moho fragments 1, 3, and 5 represent the moho of arcs, whereas fragments 2, 4, and 6 represent the moho of intra-arc basins

    图  2  Yang等(2022)提出的哈萨克斯坦山弯构造对准噶尔地区海洋盆地保护作用示意图. T代表塔里木块体;T-M代表图瓦—蒙古山弯构造,古亚洲洋俯冲回撤在其南缘形成了一个多岛海系统;K代表哈萨克斯坦山弯构造. 马蹄形的哈萨克斯坦山弯构造在与塔里木块体和图瓦蒙古山弯构造碰撞过程中吸收了大部分的应力,因此其内部的多岛海系统受其保护得以保存下来

    Figure  2.  Tectonic model of trapped oceanic basins protected by the Kazakhstan orocline during multiple amalgamations by Yang et al. (2022). T: Tarim craton; T-M: Tuva-Mongol Orocline, which contains an archipelago system on its southern side, generated by subduction retreat of the Paleo-Asian Ocean slab; K: Kazakhstan orocline. The Kazakhstan orocline is a huge U-shaped structure that bore the main stress of the collision and protected the inside archipelago

  • [1] Bradshaw J D. 1989. Cretaceous geotectonic patterns in the New Zealand region[J]. Tectonics, 8(4): 803-820. doi: 10.1029/TC008i004p00803
    [2] Cawood P A, Hawkesworth C J, Dhuime B. 2013. The continental record and the generation of continental crust[J]. The Geological Society of America Bulletin, 125: 14-32. doi: 10.1130/B30722.1
    [3] Clift P D, Vannucchi P, Morgan J P. 2009. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust[J]. Earth-Science Reviews, 97(1-4): 80-104. doi: 10.1016/j.earscirev.2009.10.003
    [4] Dhuime B, Wuestefeld A, Hawkesworth C J. 2015. Emergence of modern continental crust about 3 billion years ago[J]. Nature Geoscience, 8(7): 552-555. doi: 10.1038/ngeo2466
    [5] Foster D A, Mueller P A, Goscombe B D, Gray D R. 2014. Accreted Turbidite Fans and Remnant Ocean Basins in Phanerozoic Orogens: A Template for a Significant Precambrian Crustal Growth and Recycling Process[M]//Dilek Y, Furnes H. Evolution of Archean Crust and Early Life . Modern Approaches in Solid Earth Sciences. Dordrecht: Springer Science+Business Media, 293-331. https://doi.org/10.1007/978-94-007-7615-9_10.
    [6] Gray D R, Foster D A, Goscombe B, et al. 2006. 40Ar/39Ar thermochronology of the Pan-African Damara Orogen, Namibia, with implications for tectonothermal and geodynamic evolution[J]. Precambrian Research, 150(1-2): 49-72. doi: 10.1016/j.precamres.2006.07.003
    [7] Hawkesworth C, Cawood P, Kemp T, et al. 2009. A matter of preservation[J]. Science, 323(5910): 49-50. doi: 10.1126/science.1168549
    [8] Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society, London, Special Publications, 226(1): 73-100.
    [9] Kemp A I S, Hawkesworth C J, Paterson B A, Kinny P D. 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J]. Nature, 439(7076): 580-583. doi: 10.1038/nature04505
    [10] Liu Y, Junge A, Yang B, et al. 2019. Electrically anisotropic crust from three-dimensional magnetotelluric modeling in the western Junggar, NW China[J]. Journal of Geophysical Research: Solid Earth, 124(9): 9474-9494. doi: 10.1029/2019JB017605
    [11] Morgan J P, Vannucchi P. 2022. Transmogrification of ocean into continent: implications for continental evolution[J]. Proceedings of the National Academy of Sciences, 119(15): e2122694119. doi: 10.1073/pnas.2122694119
    [12] Mulder J A, Cawood P A. 2022. Evaluating preservation bias in the continental growth record against the monazite archive[J]. Geology, 50(2): 243-247. doi: 10.1130/G49416.1
    [13] Norris R J, Craw D. 1987. Aspiring terrane: An oceanic assemblage from New Zealand and its implications for terrane accretion in the southwest Pacific[J]. Terrane Accretion and Orogenic Belts, 19: 169-177.
    [14] Şengör A M C, Natal'In B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 364(6435): 299-307. doi: 10.1038/364299a0
    [15] Tang M, Chen K, Rudnick R L. 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics[J]. Science, 351(6271): 372-375. doi: 10.1126/science.aad5513
    [16] Wan B, Yang X, Tian X, et al. 2020. Seismological evidence for the earliest global subduction network at 2 Ga ago[J]. Science Advances, 6(32): eabc5491. doi: 10.1126/sciadv.abc5491
    [17] Wu S, Huang R, Xu Y, et al. 2018. Seismological evidence for a remnant oceanic slab in the western Junggar, Northwest China[J]. Journal of Geophysical Research: Solid Earth, 123(5): 4157-4170. doi: 10.1029/2017JB015332
    [18] Xu Y X, Yang B, Zhang A Q, et al. 2020. Magnetotelluric imaging of a fossil oceanic plate in northwestern Xinjiang, China[J]. Geology, 48(4): 385-389. doi: 10.1130/G47053.1
    [19] Yang X, Tian X, Windley B F, et al. 2022. The role of multiple trapped oceanic basins in continental growth: Seismic evidence from the southern Altaids[J]. Geophysical Research Letters, 49(11): e2022GL098548. DOI: 10.1029/2022GL098548e2022GL098548.
  • 加载中
图(2)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  14
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 录用日期:  2022-07-19
  • 网络出版日期:  2022-07-21
  • 刊出日期:  2023-01-01

目录

    /

    返回文章
    返回