• ISSN 2097-1893
  • CN 10-1855/P

太阳风与彗星相互作用

侯传鹏 何建森 彭镜宇

引用本文: 侯传鹏,何建森,彭镜宇. 2023. 太阳风与彗星相互作用. 地球与行星物理论评(中英文),54(4):372-384
Hou C P, He J S, Peng J Y. 2023. Interactions between solar wind and comets. Reviews of Geophysics and Planetary Physics, 54(4): 372-384 (in Chinese)

太阳风与彗星相互作用

doi: 10.19975/j.dqyxx.2022-056
基金项目: 国家重点研发资助项目(2021YFA0718600);国家自然科学基金资助项目(41874200,42174194,42150105);民用航天技术预研资助项目(D020301,D020302,D050106)
详细信息
    作者简介:

    侯传鹏(1997-),男,博士研究生,主要从事太阳、日球层与小天体物理的研究. E-mail:hcp1@pku.edu.cn

    通讯作者:

    何建森(1981-),男,研究员,主要从事太阳、日球层与小天体的研究. E-mail:jshept@pku.edu.cn

  • 中图分类号: P352

Interactions between solar wind and comets

Funds: National Key R\&D Program of China (Grant No. 2021YFA0718600), the National Natural Science Foundation of China (Grant Nos. 41874200, 42174194, 42150105), and the Pre-research Project on Civil Aerospace Technologies (Grant Nos. D020301, D020302, D050106)
  • 摘要: 彗星是太阳系中一类形状不规则的小天体,主要由可挥发物质组成. 在彗星接近太阳的过程中,彗核中挥发物被加热释放的中性成分在光致电离、电荷交换和电子碰撞过程后带电,并在太阳风的作用下形成射线状的等离子体彗尾. 另一方面,源自彗星的中性成分带电后,将被太阳风携带,称为拾起离子. 这些拾起离子多为比H+更重的水族离子(H2O+、O+),因此,在拾起或称质量加载过程中,动量守恒导致太阳风被减速. 太阳风等离子体携带的行星际磁场也将在彗核周围堆积. 同时,由于太阳风速度方向和行星际磁场方向的夹角,拾起离子的速度分布呈现束流、环状分布. 拾起离子与太阳风离子可能通过离子-离子不稳定性激发波动,进而贡献湍流的演化. 彗星中性成分和太阳风等离子体在电荷交换过程中还将辐射X射线和极紫外辐射,为通过谱线强度分析确定太阳风的成分和状态提供了可能. 研究彗星活动及其与太阳风的相互作用,对于了解彗星物质组成和结构动力学、日球层太阳风的改造演化、太阳系中有机物乃至生命起源,都有重要的意义. 本文从原位探测、遥感观测、理论模拟的三个角度回顾了太阳风与彗星相互作用的研究进展,并对未来的研究发展趋势进行展望. 在原位探测上,本文介绍了哈雷彗星和彗星67P/Churyumov-Gerasimenko的相关观测,比较了不同彗星活动性下,彗星与太阳风的相互作用过程. 在遥感观测上,本文介绍了PSP携带的WISPR白光成像仪和SOHO/LASCO C2对低活动性彗星322P的观测. 在理论模拟中,我们介绍了对前述观测的数值模拟验证工作,以及掠日彗星在近日点附近与太阳风相互作用的相关模拟工作. 对于日心距离不同、气体活动性不同、探测器容易或不易到达等彗星,我们认为数值模拟、局地观测、地基及空基的遥感观测等多种手段的结合能够更有效率、更加全面地了解彗星与太阳风相互作用过程. 我们认为通过相互作用的机理和效应的研究,将有助于诊断日冕及日球层太阳风的状态,认识彗星等太阳系小天体的演化历史和将来命运.

     

  • 图  1  太阳风与彗星相互作用示意图(修改自Cravens, 2002

    Figure  1.  Schematic of the interaction of solar wind and a comet (modified from Cravens, 2002)

    图  2  探测器Giotto在距离哈雷彗星$ 1.7\times {10}^{6} $ km处,测量的质子的相空间分布. 图中等值线的数值单位为$ \mathrm{c}{\mathrm{m}}^{-3}\mathrm{k}{\mathrm{m}}^{-3}{\mathrm{s}}^{3} $,蓝线为以(0, 0)为圆心的弧,红线为以(−$ {V}_{\mathrm{A}} $, 0)为圆心的弧,其中VA是阿尔芬速度. 黑色圆圈标记为拾起离子的理论位置(修改自Neugebauer et al., 1989

    Figure  2.  Proton phase space density measured by the spacecraft Giotto with a distance of $ 1.7\times {10}^{6} $ km from the nucleus of Halley's comet (modified from Neugebauer et al., 1989). The unit of phase space density is $ \mathrm{c}{\mathrm{m}}^{-3}\mathrm{k}{\mathrm{m}}^{-3}{\mathrm{s}}^{3} $. The blue dashed line represents a surface of constant speed centered on (0, 0). The red dotted line represents a surface of constant speed centered on (−$ {V}_{A} $, 0), and $ {V}_{\mathrm{A}} $ represents the Alfvén speed. The black circle represents the expected location of pickup ions

    图  3  低活动彗星与太阳风相互作用示意图(修改自Glassmeier, 2017

    Figure  3.  Schematic of the interaction between a low-activity comet and solar wind (modified from Glassmeier, 2017)

    图  4  Rosetta对彗星67P/C-G附近时间平均的离子通量测量结果,时间范围为2015-01-23 19:00—20:00, 彗星67P/C-G距离太阳约2.5 AU(修改自Broiles et al., 2015

    Figure  4.  Time-averaged ion flux measured by Rosetta on January 23, 2015 19:00–20:00. The distance between 67P/C-G and the sun is around 2.5 AU (modified from Broiles et al., 2015)

    图  5  彗星与太阳风相互作用过程中磁场配置(修改自Koenders et al., 2016). 橙色线为磁力线. (a)太阳风与强活动性彗星的相互作用;(b)太阳风与弱活动性彗星的相互作用

    Figure  5.  Magnetic configuration during the interaction of a comet and solar wind (modified from Koenders et al., 2016). The orange line represents the magnetic field line. (a) Interaction between a strongly active comet and solar wind; (b) Interaction between a weakly or intermediately active comet and solar wind

    图  6  彗星67P/C-G通过近日点后测量到的磁场的功率谱密度(修改自Glassmeier, 2017

    Figure  6.  Power spectrum density of the magnetic field after comet 67P/C-G passed the perihelion (modified from Glassmeier, 2017)

    图  7  日冕中掠日彗星C/2011 W3(Lovejoy)在近日点附近的彗尾形态(修改自Downs et al., 2013

    Figure  7.  The tail of Comet Lovejoy near its perihelion in the corona (modified from Downs et al., 2013)

    图  8  根据日冕的磁场和太阳风模拟计算得到的彗尾O5+离子的运动轨迹. 黄色线为彗星Lovejoy的轨道,蓝色线为日冕中的磁力线,红线为O5+离子的运动轨迹(修改自Hou et al., 2021

    Figure  8.  Trajectory of O5+ calculated from the simulation data of the magnetic field and solar wind in the corona (modified from Hou et al., 2021). The yellow line represents the orbit of comet Lovejoy. The blue lines represent the magnetic field line in the corona. The red lines represent the trajectory of O5+

    图  9  太阳风与彗星相互作用中的物理量分布(修改自Ogino et al., 1988).(a)质量密度的等值线; (b)压力的等值线,箭头表示速度矢量

    Figure  9.  Distribution of physical quantities during the interaction of the solar wind and comet Halley (modified from Ogino et al., 1988). (a) Contour of mass density; (b) Contour of pressure. Arrows represent the velocity vector

    图  10  不同日心距离下彗星67P/C-G与太阳风相互作用的模拟(修改自Rubin et al., 2015). 太阳风沿着−x方向. 对流电场沿着−z方向. 图中颜色为太阳风的质量密度,左右两列为不同的视角

    Figure  10.  Simulation of the interaction of comet 67P/C-G with the solar wind at different heliocentric distances (modified from Rubin et al., 2015). The solar wind is along the −x direction. The convectional electric field is along the −z direction. The colors in the figure represent the mass density of the solar wind and the left and right columns are different views

    图  11  不同质量损失率下掠日彗星对太阳风速度的影响模拟(修改自Rasca et al., 2014).(a)质量损失率为$ 1.7\times {10}^{4} $ kg/s;(b)质量损失率为$ 1.7\times {10}^{5} $ kg/s. tc=0表示彗星通过近日点

    Figure  11.  Simulation of the influence of the sun-grazing comet on solar wind speed (modified from Rasca et al., 2014). (a) Mass loss rate of $ 1.7\times {10}^{4} $ kg/s; (b) Mass loss rates of $ 1.7\times {10}^{5} $ kg/s. tc = 0 for a comet passing the perihelion

    图  12  太阳风与弱活动性彗星相互作用过程中密度分布模拟(修改自Deca et al., 2017

    Figure  12.  Simulation of the density distribution during the interaction of the solar wind with a weakly active comet (modified from Deca et al., 2017)

    图  13  2019年9月2日09:47,模拟在三种不同程度活动性下,彗星322P/SOHO对太阳风速度的影响. (a)低活动性;(b)中活动性;(c)高活动性(修改自He et al., 2021

    Figure  13.  Distribution of the disturbed/undisturbed velocity (unit: km·s−1) for the three different levels of activities of comet 322P/SOHO . (a) low, (b) intermediate, (c) high at 09:47 UT on September 2, 2019 (modified from He et al., 2021)

    图  14  在PSP与彗星322P/SOHO相遇时,沿着PSP轨迹对模拟的采样结果(修改自He et al., 2021).(a)密度;(b)速度;(c)径向磁场分量;(d)热压

    Figure  14.  Samples along the PSP trajectory during its encounter with comet 322P/SOHO (modified from He et al., 2021). (a) Density; (b) Velocity; (c) Radial magnetic field component; (d) Thermal pressure

  • [1] Adhikari L, Zank G, Hu Q, Dosch A. 2014. Turbulence transport modeling of the temporal outer heliosphere[J]. The Astrophysical Journal, 793: 52 . doi: 10.1088/0004-637X/793/1/52
    [2] Adhikari L, Zank G P, Zhao L. 2021. The transport and evolution of MHD turbulence throughout the heliosphere: Models and observations[J]. Fluids 6: 368.
    [3] Alfven H t. 1957. On the theory of comet tails[J]. Tellus, 9: 92-96 .
    [4] Alho M, Wedlund C S, Nilsson H, et al. 2019. Hybrid modeling of cometary plasma environments-II. Remote-sensing of a cometary bow shock[J]. Astronomy & Astrophysics, 630: A45.
    [5] Behar E, Lindkvist J, Nilsson H, et al. 2016. Mass-loading of the solar wind at 67P/C-G-observations and modelling[J]. Astronomy & Astrophysics, 596: A42.
    [6] Bemporad A, Poletto G, Raymond JC, et al. 2005. UVCS observation of sungrazer C/2001 C2: possible comet fragmentation and plasma-dust interactions[J]. The Astrophysical Journal, 620: 523. doi: 10.1086/427063
    [7] Bemporad A, Poletto G, Raymond J, Giordano S. 2007. A review of SOHO/UVCS observations of sungrazing comets[J]. Planetary and Space Science, 55: 1021-1030.
    [8] Biermann L. 1952. Physical processes in comet tails and their relation to solar activity[J]. Liege International Astrophysical Colloquia, 251-262.
    [9] Biermann L, Brosowski B, Schmidt H. 1967. The interaction of the solar wind with a comet[J]. Solar Physics, 1: 254-284 . doi: 10.1007/BF00150860
    [10] Bodewits D, Juhász Z, Hoekstra R, Tielens A. 2004. Catching some Sun: Probing the solar wind with cometary X-ray and far-ultraviolet emission[J]. The Astrophysical Journal, 606: L81. doi: 10.1086/421064
    [11] Bodewits D, Christian DJ, Torney M, et al. 2007. Spectral analysis of the Chandra comet survey[J]. Astronomy & Astrophysics, 469: 1183-1195.
    [12] Broiles T, Burch JL, Clark G, et al. 2015. Rosetta observations of solar wind interaction with the comet 67P/C-G[J]. Astronomy & Astrophysics, 583: A21.
    [13] Cravens T. 1997. Comet Hyakutake X-ray source: Charge transfer of solar wind heavy ions[J]. Geophysical Research Letters, 24: 105-108. doi: 10.1029/96GL03780
    [14] Cravens T. 2002. X-ray emission from comets[J]. Science, 296: 1042-1045. doi: 10.1126/science.1070001
    [15] Deca J, Divin A, Henri P, et al. 2017. Electron and ion dynamics of the solar wind interaction with a weakly outgassing comet[J]. Physical review letters, 118: 205101. doi: 10.1103/PhysRevLett.118.205101
    [16] Downs C, Linker JA, Mikić Z, et al. 2013. Probing the solar magnetic field with a Sun-grazing comet[J]. Science, 340: 1196-1199 . doi: 10.1126/science.1236550
    [17] Giordano S, Raymond J C, Lamy P, et al. 2014. Probing the solar wind acceleration region with the Sun-grazing comet C/2002 S2[J]. The Astrophysical Journal, 798: 47. doi: 10.1088/0004-637X/798/1/47
    [18] Glassmeier K H, Coates AJ, Acuna MH, et al. 1989. Spectral characteristics of low-frequency plasma turbulence upstream of comet P/Halley[J]. Journal of Geophysical Research: Space Physics, 94: , 37-48 . doi: 10.1029/JA094iA01p00037
    [19] Glassmeier K H. 2017. Interaction of the solar wind with comets: A Rosetta perspective[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375: 20160256 .
    [20] Goetz C, Koenders C, Richter I, et al. 2016. First detection of a diamagnetic cavity at comet 67P/C-G[J]. Astronomy & Astrophysics, 588: A24 .
    [21] Hasan A, Eissa F, Ali R, et al. 2001. State-selective charge transfer studies relevant to solar wind-comet interactions[J]. The Astrophysical Journal, 560: L201 . doi: 10.1086/324058
    [22] He J, Cui B, Yang L, et al. 2021. The encounter of the Parker Solar Probe and a Comet-like object near the Sun: Model predictions and measurements[J]. The Astrophysical Journal, 910: 7 . doi: 10.3847/1538-4357/abdf4a
    [23] Hou C, He J, Zhang L, et al. 2021. Dynamics of the charged particles released from a Sun-grazing comet in the solar corona[J]. Earth and Planetary Physics, 5: 232-238.
    [24] Isenberg P A. 1987. Evolution of interstellar pickup ions in the solar wind[J]. Journal of Geophysical Research: Space Physics, 92(A2): 1067-1073. doi: 10.1029/JA092iA02p01067
    [25] Jia Y-D, Russell C, Liu W, Shou Y. 2014. Multi-fluid model of a Sun-grazing comet in the rapidly ionizing, magnetized low corona[J]. The Astrophysical Journal, 796: 42. doi: 10.1088/0004-637X/796/1/42
    [26] Jones G H, Balogh A, McComas D J, MacDowall R J. 2003. Strong interplanetary field enhancements at Ulysses—evidence of dust trails' interaction with the solar wind?[J]. Icarus, 166: 297-310. doi: 10.1016/j.icarus.2003.09.007
    [27] Koenders C, Glassmeier K-H, Richter I, et al. 2015. Dynamical features and spatial structures of the plasma interaction region of 67P/Churyumov–Gerasimenko and the solar wind[J]. Planetary and Space Science, 105: 101-116 . doi: 10.1016/j.pss.2014.11.014
    [28] Koenders C, Goetz C, Richter I, et al. 2016. Magnetic field pile-up and draping at intermediately active comets: Results from comet 67P/Churyumov–Gerasimenko at 2.0 AU[J]. Monthly Notices of the Royal Astronomical Society, 462: S235-S241. doi: 10.1093/mnras/stw2480
    [29] Krasnopolsky V A, Mumma MJ, Abbott M, et al. 1997. Detection of soft X-rays and a sensitive search for noble gases in Comet Hale-Bopp (C/1995 O1)[J]. Science, 277: 1488-1491. doi: 10.1126/science.277.5331.1488
    [30] Lisse C, Dennerl K, Englhauser J, et al. 1996. Discovery of X-ray and extreme ultraviolet emission from comet C/Hyakutake 1996 B2[J]. Science, 274: 205-209. doi: 10.1126/science.274.5285.205
    [31] Lisse C, Christian DJ, Dennerl K, et al. 2001. Charge exchange-induced X-ray emission from Comet C/1999 S4 (LINEAR)[J]. Science, 292: 1343-1348 . doi: 10.1126/science.292.5520.1343
    [32] Lisse C, Christian DJ, Dennerl K, et al. 2005. Chandra observations of comet 2P/Encke 2003: First detection of a collisionally thin, fast solar wind charge exchange system[J]. The Astrophysical Journal, 635: 1329. doi: 10.1086/497570
    [33] McCauley P I, Saar S H, Raymond J C, et al. 2013. Extreme-ultraviolet and X-ray observations of Comet Lovejoy (C/2011 W3) in the lower corona[J]. The Astrophysical Journal, 768: 161 . doi: 10.1088/0004-637X/768/2/161
    [34] Meier P, Glassmeier K H, Motschmann U. 2016. Modified ion-Weibel instability as a possible source of wave activity at Comet 67P/Churyumov-Gerasimenko[J]. Annales Geophysicae, 34(9): 691-707 (Copernicus GmbH).
    [35] Neubauer F, Glassmeier KH, Pohl M, et al. 1986. First results from the Giotto magnetometer experiment at comet Halley[J]. Nature, 321: 352-355. doi: 10.1038/321352a0
    [36] Neugebauer M, Lazarus AJ, Balsiger H, et al. 1989. The velocity distributions of cometary protons picked up by the solar wind[J]. Journal of Geophysical Research: Space Physics, 94: 5227-5239. doi: 10.1029/JA094iA05p05227
    [37] Neugebauer M. 1990. Spacecraft observations of the interaction of active comets with the solar wind[J]. Reviews of Geophysics, 28: 231-252. doi: 10.1029/RG028i002p00231
    [38] Nilsson H, Wieser GS, Behar E, et al. 2015. Evolution of the ion environment of comet 67P/C-G-Observations between 3.6 and 2.0 AU[J]. Astronomy & Astrophysics, 583: A20 .
    [39] Ogino T, Walker R J, Ashour-Abdalla M. 1988. A three-dimensional MHD simulation of the interaction of the solar wind with comet Halley[J]. Journal of Geophysical Research: Space Physics, 93: 9568-9576 . doi: 10.1029/JA093iA09p09568
    [40] Raeder J, Neubauer F, Ness N, Burlaga L. 1988. Macroscopic Perturbations of the IMF by P/Halley as Seen by the Giotto Magnetometer[M]// Exploration of Halley's Comet, 61-64. Springer.
    [41] Rasca A, Oran R, Horányi M. 2014. Mass loading of the solar wind by a sungrazing comet[J]. Geophysical Research Letters, 41: 5376-5381. doi: 10.1002/2014GL060990
    [42] Raymond J, Giordano S. 2019. Probing coronal magnetic fields with Sungrazing Comets: H i Lyα from pickup Ions[J]. The Astrophysical Journal, 887: 45. doi: 10.3847/1538-4357/ab4e95
    [43] Rubin M, Gombosi T I, Hansen K C, et al. 2015. Modeled interaction of comet 67P/C-G with the solar wind inside 2 AU[J]. Earth, Moon, and Planets, 116: 141-157 .
    [44] Sagdeev R, Shapiro V, Shevchenko V, Szego K. 1986. MHD turbulence in the solar wind-comet interaction region[J]. Geophysical Research Letters, 13: 85-88. doi: 10.1029/GL013i002p00085
    [45] Schrijver C, Brown JC, Battams K, et al. 2012. Destruction of Sun-grazing comet C/2011 N3 (SOHO) within the low solar corona[J]. Science, 335: 324-328 . doi: 10.1126/science.1211688
    [46] Snodgrass C, Jones G H. 2019. The European Space Agency’s comet interceptor lies in wait[J]. Nature Communications, 10: 1-4 . doi: 10.1038/s41467-018-07882-8
    [47] Tsurutani B T, Page DE, Smith E J, et al. 1989. Low-frequency plasma waves and ion pitch angle scattering at large distances (> 3.5× 105 km) from Giacobini-Zinner: Interplanetary magnetic field α dependences[J]. Journal of Geophysical Research: Space Physics, 94: 18-28. doi: 10.1029/JA094iA01p00018
    [48] Tsurutani B T, Lakhina GS, Sen A, et al. 2018. A review of Alfvénic turbulence in high-speed solar wind streams: Hints from cometary plasma turbulence[J]. Journal of Geophysical Research: Space Physics, 123: 2458-2492 . doi: 10.1002/2017JA024203
    [49] 涂传诒, 宗秋刚, 何建森, 等. 2021. 日地空间物理学[M]. 北京: 科学出版社, 第二版.

    Tu C Y, Zong Q G, He J S, et al. 2021. Solar-terrestrial Space Physics[M]. Beijing: Science Press, Second Edition (in Chinese).
    [50] Wei Y, Yao Z, Wan W. 2018. China’s roadmap for planetary exploration[J]. Nature Astronomy, 2(5): 346-348. doi: 10.1038/s41550-018-0456-6
    [51] Wu C S, Davidson R. 1972. Electromagnetic instabilities produced by neutral-particle ionization in interplanetary space[J]. Journal of Geophysical Research, 77: 5399-5406. doi: 10.1029/JA077i028p05399
    [52] 张荣桥, 黄江川, 赫荣伟, 等. 2019. 小行星探测发展综述[J].深空探测学报, 6(5): 417-423.

    Zhang R Q, Huang J C, He R W, et al. 2019. The development overview of asteroid exploration[J]. Journal of Deep Space Exploration, 6(5): 417-423. (in Chinese)
    [53] Zhang X, Huang J, Wang T, Huo Z. 2019. ZhengHe-a mission to a near-earth asteroid and a main belt comet[C]// 50th Annual Lunar and Planetary Science Conference, 1045.
  • 加载中
图(14)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  178
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-02
  • 修回日期:  2022-10-27
  • 录用日期:  2022-10-31
  • 网络出版日期:  2022-11-17
  • 刊出日期:  2022-12-12

目录

    /

    返回文章
    返回