• ISSN 2097-1893
  • CN 10-1855/P

腾冲火山起源的地球物理和地球化学研究进展

陈克非 林叶 申文豪 徐锡伟 汪文帅 刘少林

引用本文: 陈克非,林叶,申文豪,徐锡伟,汪文帅,刘少林. 2023. 腾冲火山起源的地球物理和地球化学研究进展. 地球与行星物理论评(中英文),54(2):216-230
Chen K F, Lin Y, Shen W H, Xu X W, Wang W S, Liu S L. 2023. The origin of the Tengchong volcano: A review of geophysical and geochemical studies. Reviews of Geophysics and Planetary Physics, 54(2): 216-230 (in Chinese)

腾冲火山起源的地球物理和地球化学研究进展

doi: 10.19975/j.dqyxx.2022-053
基金项目: 应急管理部国家自然灾害防治研究院基本科研业务专项资助项目(项目编号:ZDJ2019-18);国家自然科学基金资助项目(42174111);岩石圈演化国家重点实验室开放课题资助项目(SKL-K202101)
详细信息
    作者简介:

    陈克非,博士后,从事岩石学研究. E-mail:ckf050118@126.com

    通讯作者:

    刘少林,研究员,从事地震波传播与成像研究. E-mail:shaolinliu88@163.com

  • 中图分类号: P315

The origin of the Tengchong volcano: A review of geophysical and geochemical studies

Funds: Supported by the National Institute of Natural Hazards, Ministry of Emergency Management of China (Grant No. ZDJ2019-18), the National Natural Science Foundation of China (Grant No. 42174111), the State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences (Grant No. SKL-K202101)
  • 摘要: 腾冲新生代火山位于印度板块与欧亚板块碰撞边界上. 该区域构造活动强烈,火山具有潜在的喷发性,研究腾冲火山起源对于认识板块俯冲过程、火山活动规律具有重要意义. 本文总结了近年来腾冲火山起源的最新进展,包括地球物理和地球化学的新成果,探讨了火山岩浆来源和火山形成的深部动力学机制. 这些研究发现腾冲火山的形成主要与板块俯冲有关,早期俯冲形成的残余大洋板片和现今俯冲的印度板块都可能是交代物质的来源,大洋板片在深部释放融流体形成富集软流圈地幔和岩石圈地幔. 后期岩石圈的伸展作用可能诱导了富集软流圈地幔的部分熔融,导致岩浆物质喷出地表. 根据87Sr/86Sr与SiO2的相关性,得到腾冲玄武岩遭受到地壳混染作用不明显,而安山岩和英安岩遭受地壳混染作用明显. 地球物理成像显示腾冲火山下方地壳中有不同尺度的岩浆囊,其中上地壳有若干小岩浆囊,在中下地壳有大岩浆囊. 地震成像显示地壳中的低速体向下延伸至上地幔,很可能反映地壳中的岩浆囊有地幔热物质的持续供给.

     

  • 图  1  印度板块和欧亚板块俯冲和碰撞带的主要构造单元. (a)构造概览图,红色三角形表示缅甸和中国云南的第四纪火山,紫色五角星表示发生在腾冲及周围的大地震,其震级大于MW7.5,黑线代表青藏高原及其附近的主要断层(修改自Mo et al., 2006),红色矩形为研究区域. (b)腾冲火山区及周边块体边界(修改自Zhou et al., 2012).(c)腾冲火山区不同时期岩浆岩的分布(修改自Cheng et al., 2020

    Figure  1.  Major tectonic units in the collision and subduction zones between the Indian and Eurasian plates. (a) Overview of the main tectonic settings. The red triangles denote Quaternary volcanoes in Myanmar and Yunnan, China. The purple stars denote great earthquakes with magnitudes larger than MW7.5 around Tengchong. The black lines mark the major faults in and near the Tibetan Plateau (Mo et al., 2006). The red rectangle indicates the study area. (b) Boundaries of the blocks in the Tengchong volcanic field and surrounding area (modified from Zhou et al., 2012). (c) Distribution of magmatic rocks in different periods within the Tengchong volcanic field (modified from Cheng et al., 2020)

    图  2  腾冲火山岩(a)全碱硅分类图和(b)SiO2–K2O图(数据来源于Chen et al., 2002; Cheng et al., 2018; Cheng et al., 2020; 樊祺诚等, 1999; Guo et al., 2015; Liu et al., 2017; Tian et al., 2018; Zhang et al., 2012; Zhou et al., 2012; Zou et al., 2017

    Figure  2.  The (a) total alkali and silica diagram and (b) cross plot of K2O versus SiO2 for Tengchong volcanic rocks. The data were from previous studies (data from Chen et al., 2002; Cheng et al., 2018; Cheng et al., 2020; Fan et al., 1999; Guo et al., 2015; Liu et al., 2017; Tian et al., 2018; Zhang et al., 2012; Zhou et al., 2012; Zou et al., 2017)

    图  3  腾冲火山岩(a)143Nd/144Nd–87Sr/86Sr图和(b)87Sr/86Sr–SiO2图(数据来源于Chen et al., 2002; Cheng et al., 2018; Cheng et al., 2020; 樊祺诚等, 1999; Guo et al., 2015; Liu et al., 2017; Tian et al., 2018; Zhang et al., 2012; Zhou et al., 2012; Zou et al., 2017

    Figure  3.  The diagrams of (a) 143Nd/144Nd-87Sr/86Sr and (b) 87Sr/86Sr-SiO2 for the Tengchong volcanic rocks (data from Chen et al., 2002; Cheng et al., 2018; Cheng et al., 2020; Fan et al., 1999; Guo et al., 2015; Liu et al., 2017; Tian et al., 2018; Zhang et al., 2012; Zhou et al., 2012; Zou et al., 2017)

    图  4  腾冲火山岩微量元素蛛网图. 红色实线代表洋岛玄武岩(OIB)微量元素特征,绿色实线表示富集地幔EM-II端元微量元素(数据来源于Chen et al., 2002; Cheng et al., 2018; Cheng et al., 2020; 樊祺诚等, 1999; Guo et al., 2015; Liu et al., 2017; Tian et al., 2018; Zhang et al., 2012; Zhou et al., 2012; Zou et al., 2017

    Figure  4.  Trace element spidergrams for the Tengchong volcanic rocks. The red solid line represents the trace element characteristics of ocean island basalt, and the green solid line indicates type II enriched mantle (EM-II) trace elements (data from Chen et al., 2002; Cheng et al., 2018; Cheng et al., 2020; Fan et al., 1999; Guo et al., 2015; Liu et al., 2017; Tian et al., 2018; Zhang et al., 2012; Zhou et al., 2012; Zou et al., 2017)

    图  6  基于背景噪声成像获得的腾冲火山S波速度结构反演结果(修改自Zhao et al., 2021). 红色三角形代表火山. 黑线表示主要断层,白线表示速度等值线. LCJF表示龙川江断裂,DYJF代表大盈江断裂,NJF为怒江断裂,GLGSZ代表高黎贡剪切带

    Figure  6.  Inversion results of S-wave velocity structure of the Tengchong volcano field based on ambient noise tomography (modified from Zhao et al., 2021). The red triangles represent the volcanoes, black lines indicate major faults, and the white lines are velocity contours. LCJF: Longchuanjiang Fault, DYJF: Dayingjiang Fault, NJF: Nujiang Fault, GLGSZ: Gaoligong Shear Zone

    图  7  基于P波走时成像获得的腾冲火山区下方P波速度结构剖面(修改自Shen et al., 2022). LVZ代表地壳低速异常体. F1为大盈江断裂,F2为腾冲断裂,F3为龙川江断裂. 白色实线代表了速度异常-1.5%的等值线,蓝黑色箭头代表了热物质可能的上升方向

    Figure  7.  Structural profile under Tengchong volcanic field based on P-wave travel time tomography (modified from Shen et al., 2022). LVZ represents low-velocity zone; F1, F2, and F3 denote Dayingjiang fault, Tengchong fault, and Longchuanjiang fault, respectively. White lines are contours of velocity anomaly with an amplitude of -1.5%. The dark blue arrow indicates the possible transportation direction of hot materials

    图  8  地幔转换带中印度板块脱水造成热物质上涌形成腾冲火山(修改自Lei et al., 2009). 印度板块俯冲至地幔转换带释放熔流体导致软流圈熔融物质上涌喷出地表,形成腾冲火山. 三角形显示腾冲板内火山,细曲线表示断裂带,小白点表示地震(1964—2004年,M>3.0)

    Figure  8.  The dehydration of the Indian plate in the mantle transition zone causing the upwelling of hot asthenosphere to form the Tengchong volcano (modified from Lei et al., 2009). The subduction of the Indian plate into the mantle transition zone released melt/fluid, resulting in the upwelling of the asthenosphere material and thus forming the Tengchong volcano. The triangle shows the Tengchong intraplate volcano. Thin curves denote the fractured fault zones. Small white dots denote earthquakes (1964—2004, M > 3.0)

    图  9  俯冲板块在上地幔中的撕裂形成腾冲火山(修改自Zhang et al., 2017). 板块俯冲至410 km,造成410-km间断面的上凸,同时板块在上地幔发生撕裂,形成板片窗口,热物质穿过窗口造成地幔楔部分熔融

    Figure  9.  The tearing of the subduction plate in the upper mantle contributed to the formation of the Tengchong volcano (modified from Zhang et al., 2017). The plate subducted to 410 km, resulting in the uplift of the 410-km discontinuity, and the plate tearing occurred in the upper mantle, forming a plate window. Partial melting in the mantle wedge is caused by upwelling hot asthenosphere that passes through the plate window

  • [1] Bai D H, Meju M A, Liao Z J. 2001. Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, Southern China[J]. Geophysical Journal International, 147(3): 677-687. doi: 10.1046/j.0956-540x.2001.01568.x
    [2] Beier C, Vanderkluysen L, Regelous M, et al. 2012. Lithospheric control on geochemical composition along the Louisville Seamount Chain[J]. Geochemistry, Geophysics, Geosystems, 12(9): Q0AM01. DOI:doi: 10.1029/2011GC003690.
    [3] Chen F, Satir M, Ji J, et al. 2002. Nd-Sr-Pb isotopes of Tengchong Cenozoic volcanic rocks from western Yunnan, China: Evidence for an enriched-mantle source[J]. Journal of Asian Earth Science, 21: 39-45. doi: 10.1016/S1367-9120(02)00007-X
    [4] Chen K, He H, Stuart F, et al. 2022. Binary mixing of lithospheric mantle and asthenosphere beneath Tengchong volcano, SE Tibet: Evidence from noble gas isotopic signatures[J]. International Geology Review, DOI:https://doi.org/10. 1080/00206814.2022.2042744.
    [5] Chen M, Niu F, Liu Q, et al. 2015. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model construction and comparisons[J]. Journal of Geophysical Research: Solid Earth, 120(3): 1762-1786. doi: 10.1002/2014JB011638
    [6] Chen M, Niu F L, Tromp J, et al. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Natura Communications, 8: 15659. doi: 10.1038/ncomms15659
    [7] 陈廷方. 2003. 云南腾冲火山岩岩石学特征[J]. 沉积于特提斯地质, 23(4): 56-61

    Chen T F. 2003. The petrology of the volcanic rocks in Tengchong, Yunnan[J]. Sedimentary Geology and Tethyan Geology, 23(4): 56-61 (in Chinese).
    [8] Cheng T, Nebel O, Sossi P A, et al. 2018. On the Sr-Nd-Pb-Hf isotope code of enriched, Dupal-type sub-continental lithospheric mantle underneath south-western China[J]. Chemical Geology, 489: 46-60. doi: 10.1016/j.chemgeo.2018.05.018
    [9] 成智慧, 郭正府, 张茂亮, 等. 2014. 腾冲新生代火山区CO2气体释放通量及其成因[J]. 岩石学报, 30(12), 3657-3670.

    Cheng Z H, Guo Z F, Zhang M L, et al. 2014. Carbon dioxide emissions from Tengchong Cenozoic volcanic field, Yunnan Province, SW China[J]. Acta Petrologica Sinica, 30(12): 3657-3670 (in Chinese).
    [10] Cheng Z, Guo Z, Dingwell D B, et al. 2020. Geochemistry and petrogenesis of the post-collisional high-K calc-alkaline magmatic rocks in Tengchong, SE Tibet[J]. Journal of Asian Earth Science, 193: 104309. doi: 10.1016/j.jseaes.2020.104309
    [11] 从柏林, 陈秋媛, 张儒瑗, 等. 1994. 中国滇西腾冲新生代火山岩的成因[J]. 中国科学, 24(4): 441-448

    Cong B L, Chen Q Y, Zhang R Y, et al. 1994. Genesis of Cenozoic volcanic rocks in Tengchong, western Yunnan, China[J]. Science in China, 24(4): 441-448 (in Chinese).
    [12] DePaolo D J, Daley E E. 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension[J]. Chemical Geology. 169: 157-185. doi: 10.1016/S0009-2541(00)00261-8
    [13] Duan X, Fan H, Zhang H, et al. 2019. Melt inclusions in phenocrysts track enriched upper mantle source for Cenozoic Tengchong volcanic field, Yunnan Province, SW China[J]. Lithos, 324: 180-201.
    [14] 樊祺诚, 刘若新, 魏海泉, 等. 1999. 腾冲活火山的岩浆演化[J]. 地质论评, 45(7): 895-904 doi: 10.16509/j.georeview.1999.s1.121

    Fan Q C, Liu R X, Wei H Q, et al. 1999. The magmatic evolution of the active volcano in the Tengchong area[J]. Geological Review, 45: 895-904 (in Chinese). doi: 10.16509/j.georeview.1999.s1.121
    [15] Guo Z, Cheng Z, Zhang M, et al. 2015. Post-collisional high-K calcalkaline volcanism in Tengchong volcanic field, SE Tibet: constraints on Indian eastward subduction and slab detachment[J]. Journal of the Geological Society, 172: 624-640. doi: 10.1144/jgs2014-078
    [16] Hall R, Spakman W. 2015. Mantle structure and tectonic history of SE Asia[J]. Tectonophysics, 658: 14-45. doi: 10.1016/j.tecto.2015.07.003
    [17] Harrison T M, Chen W, Leloup P, et al. 1992. An early Miocene transition in deformation regime within the Red River fault zone, Yunnan, and its significance for Indo-Asian tectonics[J]. Journal of Geophysical Research: Solid Earth, 97(B5): 7159-7182. doi: 10.1029/92JB00109
    [18] Hawkesworth C, Turner S, Gallagher K, et al. 1995. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range[J]. Journal of Geophysical Research: Solid Earth, 100: 10271-10286. doi: 10.1029/94JB02508
    [19] 胡家富, 丛连理, 苏有锦, 等. 2003. 云南及周边地区Lg尾波Q值的分布特征[J]. 地球物理学报, 46(6): 809-813 doi: 10.3321/j.issn:0001-5733.2003.06.013

    Hu J F, Cong L L, Su Y J, et al. 2003. Distribution characteristics of Q value of the Lg coda in Yunnan and its adjacent regions[J]. Chinese Journal of Geophysics, 46(6): 809-813 (in Chinese). doi: 10.3321/j.issn:0001-5733.2003.06.013
    [20] Hu J, Yang H, Xu X, et al. 2012. Lithospheric structure and crust-mantle decoupling in the southeast edge of the Tibetan Plateau[J]. Gondwana Research, 22(3): 1060-1067.
    [21] Hu S, He L, Wang J. 2000. Heat flow in the continental area of China: A new data set[J]. Earth & Planetary Science Letters, 179: 407–419.
    [22] Huang J, Zhao D. 2006. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research: Solid Earth, 111: B09305.
    [23] Huang Z, Wang P, Xu M, et al. 2015. Mantle structure and dynamics beneath SE Tibet revealed by new seismic images[J]. Earth and Planetary Science Letters, 411: 100–111. doi: 10.1016/j.jpgl.2014.11.040
    [24] Huang Z, Wang L, Xu M, et al. 2019. P and S wave tomography beneath the SE Tibetan Plateau: Evidence for lithospheric delamination[J]. Journal of Geophysical Research: Solid Earth, 124(10): 10292-10308. doi: 10.1029/2019JB017430
    [25] 皇甫岗. 1997. 腾冲火山研究综述[J]. 地震研究, 20(4): 431-437

    Huangfu G. 1997. Review of studies on Tengchong volcanoes[J]. Journal of Seismological Research, 0(4): 431-437 (in Chinese).
    [26] 季建清. 1998. 中国云南西部腾冲-盈江-纳邦地区岩石学与新生代岩石圈构造演化[D]. 北京: 中国科学院地质与地球物理研究所.

    Ji J Q. 1998. Petrology and cenozoic lithospheric tectonic evolution of Tengchong-Yingjiang-Nabang area, west Yunnan, south-west China[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-88 (in Chinese).
    [27] 姜朝松. 1998. 腾冲地区新生代火山活动分期[J]. 地震研究, 4: 320-320

    Jiang C S. 1998. Period division of volcano activities in the cenozoic era of Tengchong[J]. Journal of Seismological Research, 4: 320-320 (in Chinese).
    [28] 姜枚, 谭捍东, 张聿文, 等. 2012. 云南腾冲火山构造区马站-固东岩浆囊的地球物理模式[J]. 地球学报, 33(5): 731-739 doi: 10.3975/cagsb.2012.05.03

    Jiang M, Tan H D, Zhang Y W, et al. 2012. Geophysical mode of Mazhan-Gudong magma chamber in Tengchong volcano-tectonic area[J]. Acta Geoscientica Sinica, 33(5): 731-739 (in Chinese). doi: 10.3975/cagsb.2012.05.03
    [29] Kumar P, Srijayanthi G, Ravi Kumar M. 2016. Seismic evidence for tearing in the subducting Indian slab beneath the Andaman arc[J]. Geophysical Research Letters, 43(10): 4899-4904. doi: 10.1002/2016GL068590
    [30] Lee H Y, Chung S L, Yang H M. 2016. Late Cenozoic volcanism in central Myanmar: Geochemical characteristics and geodynamic significance[J]. Lithos, 245: 174-190. doi: 10.1016/j.lithos.2015.09.018
    [31] Lei J S, Zhao D P, Su Y J. 2009. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data[J]. Journal of Geophysical Research: Solid Earth, 114(B5): B05302.
    [32] Lei J, Zhao D. 2016. Teleseismic P-wave tomography and mantle dynamics beneath eastern Tibet[J]. Geochemistry, Geophysics, Geosystems, 17(5): 1861-1884.
    [33] Li C, Hilst R D V D, Meltzer A S, et al. 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J]. Earth and Planetary Science Letters, 274(1-2): 157-168. doi: 10.1016/j.jpgl.2008.07.016
    [34] Li L, Shi Y, Williams I S, et al. 2017. Geochemical and zircon isotopic evidence for extensive high level crustal contamination in Miocene to mid-Pleistocene intra-plate volcanic rocks from the Tengchong field, western Yunnan, China[J]. Lithos, 286: 227-240.
    [35] Li M, Li J, Wei Y. 2022. Lithospheric structure beneath the Qinling Orogenic Belt and its surrounding regions: Implications for regional lithosphere deformation[J]. Terra Nova, 34(1): 91-101. doi: 10.1111/ter.12566
    [36] 李霓, 张柳毅. 2011. 云南腾冲新期火山岩矿物及其熔体包裹体研究[J]. 岩石学报, 27(010): 2842-2854

    Li N, Zhang L Y. 2011. A study on volcanic minerals and hosted melt inclusions in newly-erupted Tengchong volcanic rocks, Yunnan Province[J]. Acta Petrologica Sinica, 27(10): 2842-2854 (in Chinese).
    [37] 李欣, 刘嘉麒. 2012. 云南腾冲全新世火山岩地球化学特征及其成因[J]. 岩石学报, 28(5): 1507-1516

    Li X, Liu J Q. 2012. A study on the geochemical characteristics and petrogenesis of Holocene volcanic rocks in the Tengchong volcanic eruption field, Yunnan Province, SW China[J]. Acta Petrologica Sinica, 28(5): 1507-1516 (in Chinese).
    [38] 李雪垒, 胥颐, 汪晟. 2017. 腾冲火山区S波速度结构与岩浆活动特征[J]. 科学通报, 62(26): 3067-3077 doi: 10.1360/N972017-00123

    Li X L, Xu Y, Wang S. 2017. Evidence of magma activity from S-wave velocity structure of the Tengchong volcanic area[J]. Chinese Science Bulletin, 62(26): 3067-3077 (in Chinese). doi: 10.1360/N972017-00123
    [39] Liu F, Li X, Wang G, et al. 2017. Marine carbonate component in the mantle beneath the southeastern Tibetan Plateau: Evidence from magnesium and calcium isotopes[J]. Journal of Geophysical Research: Solid Earth, 122(12): 9729-9744. doi: 10.1002/2017JB014206
    [40] Liu S, Suardi I, Xu X, et al. 2021. The geometry of the subducted slab beneath Sumatra revealed by regional and teleseismic traveltime tomography[J]. Journal of Geophysical Research: Solid Earth, 126(1): e2020JB020169.
    [41] 楼海, 王椿镛, 皇甫岗, 等. 2002. 云南腾冲火山区上部地壳三维地震速度层析成像[J]. 地震学报, 24(3): 243-251 doi: 10.3321/j.issn:0253-3782.2002.03.003

    Lou H, Wang C Y, Huangfu G, et al. 2002. Three-demensional seismic velocity tomography of the upper crust in Tengchong volcanic area, Yunnan province[J]. Acta Seismologica Sinica, 24(3): 243-251 (in Chinese). doi: 10.3321/j.issn:0253-3782.2002.03.003
    [42] Mishra S, Prajapati S, Teotia S. 2020. Mantle Transition Zone (MTZ) discontinuities beneath the Andaman Subduction Zone[J]. Journal of Asian Earth Sciences, 191: 104102. doi: 10.1016/j.jseaes.2019.104102
    [43] Mo X, Zhao Z, Deng J, et al. 2006. Petrology and Geochemistry of Postcollisional Volcanic Rocks from the Tibetan Plateau: Implications for Lithosphere Heterogeneity and Collision-induced Asthenospheric Mantle Flow[M]//Nie J S, Horton B K, Hoke G D. Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geological Society of America Special Papers, 409: 507-530.
    [44] 穆治国, 佟伟, Curtis G H. 1987. 腾冲火山活动的时代和岩浆来源问题[J]. 地球物理学报, 30(3): 261-270 doi: 10.3321/j.issn:0001-5733.1987.03.005

    Mu Z G, Tong W, Garniss H C. 1987. Times of volcanic activity and origin of magma in Tengchong geothermal area, west Yunnan province[J]. Chinese Journal of Geophysics, 30(3): 261-270 (in Chinese). doi: 10.3321/j.issn:0001-5733.1987.03.005
    [45] Peng H C, Badal J, Hu J F, et al. 2021. Lithospheric dynamics in the vicinity of the Tengchong volcanic field (southeastern margin of Tibet): an investigation using P receiver functions[J]. Geophysical Journal International, 224: 1326–1343.
    [46] 秦嘉政, 皇甫岗, 李强, 等. 2000. 腾冲火山及邻区速度结构的三维层析成象[J]. 地震研究, 23(2): 157-167.

    Qin J Z, Huangfu G, Li Q, et al. 2000. 3-D chromatography of velocity structure in Tengchong volcano areas and nearby[J]. Journal of Seismological Research, 23(2): 157-164 (in Chinese).
    [47] 上官志冠, 白春华, 孙明良. 2000. 腾冲热海地区现代幔源岩浆气体释放特征[J]. 中国科学(D辑), 30(4): 407-414

    Shangguan Z G, Bai C H, Sun M L. 2000. Characteristics of gas release from modern mantle derived magma in Rehai area, Tengchong[J]. Science in China (D), 30(4): 407-414 (in Chinese).
    [48] Shen W H, Liu S L, Yang D H, et al, 2022. The crustal and uppermost mantle dynamics of the Tengchong-Baoshan region revealed by P-wave velocity and azimuthal anisotropic tomography[J]. Geophysical Journal International, 230(2): 1092-1105. doi: 10.1093/gji/ggac105
    [49] Tapponnier P, Peltzer G, Le Dain A, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
    [50] Thompson R N, Gibson S A. 1994. Magmatic expression of lithospheric thinning across continental rifts[J]. Tectonophysics, 233: 41-68. doi: 10.1016/0040-1951(94)90219-4
    [51] Tian H, Yang W, Li S, et al. 2018. Low δ26Mg volcanic rocks of Tengchong in southwestern China: a deep carbon cycle induced by supercritical liquids[J]. Geochimica et Cosmochimica Acta, 240: 191-219. doi: 10.1016/j.gca.2018.08.032
    [52] 王椿镛, 楼海, 吴建平, 等. 2002. 腾冲火山地热区地壳结构的地震学研究[J]. 地震学报, 24(3): 231-242 doi: 10.3321/j.issn:0253-3782.2002.03.002

    Wang C Y, Lou H, Wu J P, et al. 2002. Seismological study on the crustal structure of Tengchong volcano-geothermal area[J]. Acta Seismologica Sinica, 24(3): 231-242 (in Chinese). doi: 10.3321/j.issn:0253-3782.2002.03.002
    [53] Wang C Y, Chan W W, Mooney W D. 2003. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 108(B9): 2442.
    [54] Wang C Y, Huangfu G. 2004. Crustal structure in Tengchong volcano-geothermal area, western Yunnan, China[J]. Tectonophysics, 380(1-2): 69-87. doi: 10.1016/j.tecto.2003.12.001
    [55] Wang E, Burchfiel B C. 1997. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis[J]. International Geology Review, 39(3): 191-219. doi: 10.1080/00206819709465267
    [56] 王先彬, 徐胜, 陈践发, 等. 1993. 腾冲火山区温泉气体组分和氦同位素组成特征[J]. 科学通报, 38(9): 814-817 doi: 10.1360/csb1993-38-9-814

    Wang X B, Xu S, Chen J F. 1993. Petrochemical characteristics of Cenozoic volcanic rocks in Tengchong, western Yunnan[J]. Chinese Science Bulletin, 38(9): 814-817 (in Chinese). doi: 10.1360/csb1993-38-9-814
    [57] Wang Y, Zhang X, Jiang C, et al. 2007. Tectonic controls on the late Miocene–Holocene volcanic eruptions of the Tengchong volcanic field along the southeastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Science, 30: 375-389. doi: 10.1016/j.jseaes.2006.11.005
    [58] Wei W, Xu J D, Zhao D P, et al. 2012. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism[J]. Journal of Asian Earth Sciences, 60: 88-103. doi: 10.1016/j.jseaes.2012.08.001
    [59] 徐翠玲, 赵广涛, 何雨, 等. 2012. 滇西腾冲新生代火山岩岩石地球化学特征[J]. 海洋地质与第四纪地质, 32(2): 65-74.

    Xu C L, Zhao G T, He Y Y, et al. 2012. Geochemistry of Cenozoic volcanic rocks from Tengchong, western Yunnan[J]. Marine Geology & Quaternary Geology, 32(2): 65-75 (in Chinese).
    [60] Xu M J, Huang H, Huang Z C, et al. 2018. Insight into the subducted Indian slab and origin of the Tengchong volcano in SE Tibet from receiver function analysis[J]. Earth and Planetary Science Letters, 482: 567–579. doi: 10.1016/j.jpgl.2017.11.048
    [61] Yang H, Hu J, Hu Y, et al. 2013. Crustal structure in the Tengchong volcanic area and position of the magma chambers[J]. Journal of Asian Earth Sciences, 73: 48-56. doi: 10.1016/j.jseaes.2013.04.027
    [62] Yang H, Peng H, Hu J. 2017. The lithospheric structure beneath southeast Tibet revealed by P and S receiver functions[J]. Journal of Asian Earth Sciences, 138: 62-71. doi: 10.1016/j.jseaes.2017.02.001
    [63] Yang J, Faccenda M. 2020. Intraplate volcanism originating from upwelling hydrous mantle transition zone[J]. Nature, 579: 88-91. doi: 10.1038/s41586-020-2045-y
    [64] 杨晓涛, 胥颐, 刘建华, 等. 2011. 腾冲火山区的地震层析成像及其构造意义[J]. 地球物理学报, 54(8): 2050-2059 doi: 10.3969/j.issn.0001-5733.2011.08.012

    Yang X T, Xu Y, Liu J H, et al. 2011. Seismic tomography in the Tengchong volcanic area and its tectonic implication[J]. Chinese Journal of Geophysics, 54(8): 2050-2059 (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.08.012
    [65] 姚金, 李双庆, 贺剑峰, 等. 2018. 青藏高原东南缘腾冲地块新生代玄武岩地球化学特征及其地幔源区性质[J]. 地球科学与环境学报, 40(4): 398-413

    Yao J, Li S Q, He J F, et al. 2018. Geochemical characteristics of Cenozoic basalts in Tengchong block, the southeastern margin of Qinghai-Tibet Plateau, China: Constraints on the nature of mantle source[J]. Journal of Earth Sciences and Environment, 40(4): 398-413 (in Chinese).
    [66] Yao J Y, Liu S L, Wei S J, et al. 2021. Slab models beneath central Myanmar revealed by a joint inversion of regional and teleseismic traveltime data[J]. Journal of Geophysical Research: Solid Earth, 126: e2020JB020164.
    [67] Ye T, Huang Q, Chen X, et al. 2018. Magma chamber and crustal channel flow structures in the Tengchong volcano area from 3-D MT inversion at the intracontinental block boundary southeast of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 123(12): 11112-11126. doi: 10.1029/2018JB015936
    [68] 张龙, 胡毅力, 秦敏, 等. 2015. 云南腾冲火山区地壳及岩石圈厚度研究[J]. 地球物理学报, 58 (5): 1622-1633 doi: 10.6038/cjg20150514

    Zhang L, Hu Y L, Qin M, et al. 2015. Study on crustal and lithosphere thicknesses of Tengchong volcanic area in Yunnan[J]. Chinese Journal of Geophysics, 58(5): 1622-1633 (in Chinese). doi: 10.6038/cjg20150514
    [69] Zhang L Y, Fan W M, Ding L, et al. 2020. Quaternary volcanism in Myanmar: A record of Indian slab tearing in a transition zone from oceanic to continental subduction[J]. Geochemistry, Geophysics, Geosystems, 21, e2020GC009091.
    [70] Zhang M, Guo Z, Xu S, et al. 2021a. Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau[J]. Nature Communication, 12: 4157. doi: 10.1038/s41467-021-24415-y
    [71] Zhang M, Xu S, Zhou X, et al. 2021b. Deciphering a mantle degassing transect related with India-Asia continental convergence from the perspective of volatile origin and outgassing[J]. Geochimica et Cosmochimica Acta, 310: 61-78. doi: 10.1016/j.gca.2021.07.010
    [72] Zhang R, Wu Y, Gao Z, et al. 2017. Upper mantle discontinuity structure beneath eastern and southeastern Tibet: new constraints on the Tengchong intraplate volcano and signatures of detached lithosphere under the western Yangtze Craton[J]. Journal of Geophysical Research: Solid Earth, 122(2): 1367–1380. doi: 10.1002/2016JB013551
    [73] Zhang Y, Liu J, Meng F. 2012. Geochemistry of Cenozoic volcanic rocks in Tengchong, SW China: relationship with the uplift of the Tibetan Plateau[J]. Island Arc, 21(4): 255-269. doi: 10.1111/j.1440-1738.2012.00819.x
    [74] 赵慈平, 冉华, 陈坤华. 2006. 由相对地热梯度推断的腾冲火山区现存岩浆囊[J]. 岩石学报, 22(6): 1517-1528 doi: 10.3321/j.issn:1000-0569.2006.06.010

    Zhao C P, Ran H, Chen K H. 2006. Present-day magma chambers in Tengchong volcano area inferred from relative geothermal gradient[J]. Acta Petrologica Sinica, 22(6): 1517-1528 (in Chinese). doi: 10.3321/j.issn:1000-0569.2006.06.010
    [75] 赵慈平, 冉华, 王云. 2012. 腾冲火山区的现代幔源氦释放: 构造和岩浆活动意义[J]. 岩石学报, 28(4): 1189-1204

    Zhao C P, Ran H, Wang Y. 2012. Present-day mantle-derived helium release in the Tengchong volcanic field, Southwest China: Implications for tectonics and magmatism[J]. Acta Petrologica Sinica, 28(4): 1189-1204 (in Chinese).
    [76] 赵勇伟, 樊祺城. 2010. 腾冲马鞍山、打鹰山、黑空山火山岩浆来源与演化[J]. 岩石学报, 26(4): 1133-1140

    Zhao Y W, Fan Q C. 2010. Magma origin and evolution of Maanshan volcano, Dayingshan volcano and Heikongshan volcano in Tengchong area[J]. Acta Petrologica Sinica, 26: 1133-1140 (in Chinese).
    [77] Zhao Y, Guo Z, Wang K, et al. 2021. A large magma reservoir beneath the Tengchong volcano revealed by ambient noise adjoint tomography[J]. Journal of Geophysical Research: Solid Earth, 126: e2021JB022116. https://doi.org/10.1029/2021JB022116.
    [78] Zhou M, Robinson P, Wang C, et al. 2012. Heterogeneous mantle source and magma differentiation of quaternary arc-like volcanic rocks from Tengchong, SE margin of the Tibetan Plateau[J]. Contributions to Mineralogy and Petrology, 163: 841-860. doi: 10.1007/s00410-011-0702-8
    [79] 周真恒, 向才英, 杨海林. 2000. 腾冲火山岩同位素地球化学研究[J]. 地震研究, 23(2): 194-200 doi: 10.3969/j.issn.1000-0666.2000.02.015

    Zhou Z H, Xiang C Y, Yang H L. 2000. Geochemistry of the isotopes in the volcanic rocks in Tengchong, China[J]. Journal of Seismological Research, 23(2): 194-200 (in Chinese). doi: 10.3969/j.issn.1000-0666.2000.02.015
    [80] 邹长桥, 贺日政, 段永红, 等. 2017. 远震P波层析成像研究阿尔金断裂带东端及其邻区深部结构[J]. 地球物理学报, 60(6): 2279-2290 doi: 10.6038/cjg20170620

    Zou C Q, He R Z, Duan Y H, et al. 2017. Deep structure beneath the eastern Altyn Tagh fault and its vicinity derived from teleseismic P-wave tomography[J]. Chinese Journal of Geophysics, 60(6): 2279-2290 (in Chinese). doi: 10.6038/cjg20170620
    [81] Zou H, Ma M, Fan Q, et al. 2017. Genesis and open-system evolution of Quaternary magmas beneath southeastern margin of Tibet: Constraints from Sr-Nd-Pb-Hf isotope systematics[J]. Lithos, 272: 278-290.
  • 加载中
图(9)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  61
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-29
  • 录用日期:  2022-08-15
  • 修回日期:  2022-08-15
  • 网络出版日期:  2022-08-23
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回