• ISSN 2097-1893
  • CN 10-1855/P

极盖区等离子体云块近十年研究进展

王勇 张清和 邢赞扬 马羽璋 张端

引用本文: 王勇,张清和,邢赞扬,马羽璋,张端. 2022. 极盖区等离子体云块近十年研究进展. 地球与行星物理论评(中英文),53(0):1-19
Wang Y, Zhang Q H, Xing Z Y, Ma Y Z, Zhang D. 2022. Recently research advances on the polar cap patches. Reviews of Geophysics and Planetary Physics, 53(0): 1-19 (in Chinese)

极盖区等离子体云块近十年研究进展

doi: 10.19975/j.dqyxx.2022-050
基金项目: 国家自然科学基金资助项目(42120104003,41874170);中国博士后科学基金面上资助项目(2020M682163);中国电波传播研究所稳定支持科研经费资助项目(A132101W02)
详细信息
    作者简介:

    王勇(1985-),男,博士后,主要从事极区电离层研究. E-mail:wangyong180@163.com

    通讯作者:

    张清和(1979-),男,教授,主要从事极区电离层-磁层耦合及极光研究. E-mail:zhangqinghe@sdu.edu.cn

  • 中图分类号: P352

Recently research advances on the polar cap patches

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 42120104003, 41874170), the China Posdoctoral Science Foundation Funded Project (Grant No. 2020M682163), and the Stable-Support Scientific Project of China Research Institute of Radiowave Propagation (Grant No. A132101W02)
  • 摘要: 极盖区等离子体云块是一种经常出现在极区电离层F层的高密度块状结构,其电子密度一般是背景电子密度的两倍及以上,水平尺度约为100~1000 km. 极盖区等离子体云块的产生及演化过程可以示踪磁层-电离层/热层耦合过程中的能量及动量传输过程. 同时,这种电子密度不均匀体(尤其是其边沿区域)对跨极盖区的无线电波传播具有很强的干扰,经常影响无线电通讯导航定位等应用. 因而,极盖区等离子体云块研究不仅是空间物理领域的热点问题,而且也是空间天气监测及准确预报等应用的重要基础. 本文简述了近十年来极盖区等离子体云块的研究进展,主要内容包括:概括了极盖区等离子体云块几种可能的形成机制;提出了极盖区冷/热等离子体云块的分类研究;统计了极盖区等离子体云块的时空分布特征及其对外部条件的依赖性;追踪了极盖区等离子体云块的完整演化过程;最后,讨论了极盖区等离子体云块引起的离子上行现象及电离层闪烁效应.

     

  • 图  1  (a-f) 速度流携带着日侧高密度等离子体进入极隙区和极盖区,进而形成舌状电离区,然后被日侧磁层顶磁重联调制的脉冲式爆发速度流“切割”成等离子体云块的形成过程概念图. MLT:磁地方时; ESR:欧洲非相干散射雷达;VHF:甚高频雷达(修改自Zhang et al., 2013b

    Figure  1.  (a-f) Schematic explaining how an elongated channel of high plasma density enters the cusp and polar cap region, forms a tongue of ionization (TOI), and then is segmented into patches by transient changes in flow channels generated by pulsed dayside magnetopause reconnection (modified from Zhang et al., 2013b)

    图  2  2012年1月30日,DMSP卫星(F16)观测到的极盖区冷/热等离子体云块事件对比图(修改自Zhang et al., 2017

    Figure  2.  A detailed comparisons of characteristics of polar cap cold/hot patches observed by DMSP F16 satellite on Jan 30, 2012 (modified from Zhang et al., 2017)

    图  3  2005—2018年期间,极盖区等离子体云块月发生数量与太阳黑子数(左列)、AE指数(右列)的相关性. (a, b)表示极盖区冷等离子体云块;(c, d)为热等离子体云块(修改自Zhang et al., 2021

    Figure  3.  Comparison between sunspot number (left)/AE index (right) and number of patches in each month from 2005 to 2018. (a, b) For cold patches; (c, d) For hot patches (modified from Zhang et al., 2021)

    图  4  基于Swarm A(蓝色)和Swarm B(红色)观测数据,等离子体云块发生率统计结果. (a, b)分别为北/南半球. 黑色水平实线标出冬季时间,青色/橙色竖虚线分别给出当地冬季/夏季至点(修改自Spicher et al., 2017

    Figure  4.  Patch occurrence rate observed by Swarm A (blue) and Swarm B (red). (a) The Northern Hemisphere, and (b) the Southern Hemisphere. The black horizontal lines highlight local wintertime taken between both equinoxes, and the vertical cyan and orange dashed lines mark local winter and summer solstices, respectively (modified from Spicher et al., 2017)

    图  5  利用2013年Madrigal GPS TEC观测,在年积日与UT坐标下,不均匀体与背景TEC值的比值(修改自David et al., 2016

    Figure  5.  Based on the Madrigal GPS TEC maps for 2013, the patch-(tongue-)-to-background ratio is plotted as a function of day of year and universal time (modified from David et al., 2016)

    图  6  Swarm卫星观测的极盖区等离子体云块发生率空间分布特征. 这里采用MLat-MLT坐标系. (a, c)来自Swarm A;(b, d)来自Swarm B. (a, b)为北半球(NH);(c, d)为南半球(SH)(修改自Spicher et al., 2017

    Figure  6.  Spatial distribution of polar cap patches provided by Swarm A/B satellites under MLat/MLT coordinate. The left/right panels, respectively, from Swarm A/B. (a, b) The Northern Hemisphere; (c, d) The Southern Hemisphere (modified from Spicher et al., 2017)

    图  7  不同IMF By/Bz分量条件下,极盖区等离子体云块发生率在MLT上的分布(修改自Jin et al., 2019

    Figure  7.  MLT distributions of patch occurrences during different IMF By/Bz conditions (modified from Jin et al., 2019)

    图  8  2011年9月26日17:55—21:45 UT期间,地磁坐标系下TEC map叠加对流结构的时间序列图. 日侧在上方,晨侧在右边. 黑色同心圆为等势线,表征对流结构. 黑色虚线为100 km高度处晨昏线. 蓝色圆圈及椭圆追踪极盖区等离子体云块的演化过程(修改自Zhang et al., 2013a

    Figure  8.  Extracts from a full series of 2D maps of TEC and ionospheric convection on a geomagnetic latitude/MLT during 17:55—21:45 UT on Sep 11, 2011. Noon is on top; dawn is on the left. The black concentric circles suggest the convection cell. The black dashed lines represent the day–night terminator at the altitude of 100 km. The blue circles and ellipses highlight the full evolution of a polar cap patch (modified from Zhang et al., 2013a)

    图  9  在亚暴恢复相,当IMF Bz分量从强负值跳转至~0 nT时,极区电离层响应示意图. (a) IMF BzBy分量时间序列值;(b, d)分别为当IMF Bz分量为强南向时日侧磁重联及极区电离层概念图;(c, e)分别为当IMF Bz分量突变为~0 nT时日侧磁重联及极区电离层概念图. 在图(b)和(c)中,红/蓝箭头线表示磁鞘/磁层的磁力线,洋红色实线代表日侧磁层顶重联区域. 在图(d)和(e)中,带箭头的红色同心圆表征对流结构,黄色圆圈表示开-闭磁力线边界,其中日侧蓝色线段及夜侧红色线段分别表示磁重联发生位置,白色亮斑表征极盖区等离子体云块沿对流结构的演化过程(修改自Zhang et al., 2016a

    Figure  9.  Schematic of the response of the northern polar ionosphere to the IMF Bz component turning from strongly southward to varying around 0 nT during a substorm recovery phase. (a) The IMF By and Bz components; (b) and (d) morphology of dayside magnetic reconnection and the polar ionosphere for strong southward and weak dawnward IMF; and (c) and (e) morphology of dayside magnetic reconnection and polar ionosphere for weak southward and strong duskward IMF. In (b) and (c), red/blue lines (with arrow) show magnetic field lines in magnetosheath/magnetosphere, and magenta solid lines show the reconnection X-line at dayside magnetopause. In (d) and (e), the red concentric with arrows suggest the convection streamlines, the yellow circle suggests the open–close boundary, at which the blue sector for dayside and red sector for nightside, respectively, indicate the magnetic reconnection region; the white patches outline the full evolution of the polar cap patch along the streamlines (modified from Zhang et al., 2016a)

    图  10  (a) 在MLat/MLT坐标系下,DMSP F17的卫星观测叠加地面二维TEC map. 图中彩色粗线表征DMSP F17卫星轨迹,颜色表示O+密度;垂直于轨道的淡紫色线条表示水平速度;蓝色椭圆圈出极盖区等离子体云块. (b) 在南向IMF与正IMF By条件下,北半球极盖区等离子体云块伴随的离子上行概念图(修改自Zhang et al., 2016b; Zong et al., 2020

    Figure  10.  (a) In-situ ion parameters by DMSP F17 superimposed on 2-D maps of median-filtered TEC on a MLat/MLT grid, and (b) schematic of the ionospheric upflow/outflow associated with polar cap patches above the Northern Hemisphere during a southward IMF with a positive IMF By component (modified from Zhang et al., 2016b; Zong et al., 2020)

    图  11  离子上行发生率、上行速度及上行O+密度/通量分别与对流速度、太阳天顶角、太阳射电流量F10.7的依赖关系(修改自Ma et al., 2018b

    Figure  11.  Dependence investigations of ion upflow occurrence and ion upflow speed and upflow O+ density/flux on parameters of convection and solar zenith angle (SZA) and F10.7 (modified from Ma et al., 2018b)

    图  12  (a)全空天成像仪观测叠加地面接收机-NIMS卫星链路的穿越路径;(b)地面接收机观测的闪烁指数(修改自Coker et al., 2004

    Figure  12.  (a) An all-sky image of F region patch with a NIMS satellite pass superimposed on it; (b) The related scintillation indices provided by the ground-based receiver (modified from Coker et al., 2004)

    图  13  (a-d) 极盖区等离子体云块D南向运动进入极光椭圆(红色区域),叠加接收机观测的GPS卫星穿刺点位置;(e-h)各极盖区等离子体云块引起的电离层相位闪烁及TEC扰动的时间序列值(修改自Jin et al., 2014

    Figure  13.  (a-d) The polar cap patch D moved southward and then entered into the auroral oval (red regions), superimposed with the IPPs of GPS satellites; (e-h) The corresponding time series of phase scintillations and TECs produced by 3 patches observed by the ground-based receiver from GPS satellites (modified from Jin et al., 2014)

    图  14  GPS TEC叠加CHAIN广域电离层闪烁(灰色方块),两条黑色实线表征极光椭圆边界,(a-d)叠加幅度闪烁指数;(e-h)叠加相位闪烁指数,SED:暴时密度增强结构;TOI:舌状电离区(修改自Wang et al., 2016

    Figure  14.  The GPS TEC maps combined with the ionospheric scintillations (represented by the grey squares), the two solid black curves highlight the auroral oval. (a-d) Projected the amplitude scintillation indices; (e-h) Superimposed the phase scintillations indices (modified from Wang et al., 2016)

  • [1] Anderson D, Buchau J, Heelis R. 1988. Origin of density enhancements in the winter polar cap ionosphere[J]. Radio Science, 23(4): 513-519.
    [2] André M, Yau A. 1997. Theories and observations of ion energization and outflow in the high latitude magnetosphere[J]. Space Science Reviews, 80: 27-48. doi: 10.1023/A:1004921619885
    [3] Carlson H C, Oksavik K, Moen J, et al. 2004. Ionospheric patch formation: Direct measurements of the origin of a polar cap patch[J]. Geophysical Research Letters, 31: L08806.
    [4] Carlson H C, Moen J, Oksavik K, et al. 2006. Direct observations of injection events of subauroral plasma into the polar cap[J]. Geophysical Research Letters, 33: L05103.
    [5] Carlson H C, Pedersen T, Basu S, et al. 2007. Case for a new process, not mechanism, for cusp irregularity production[J]. Journal of Geophysical Research: Space Physics, 112: A11304.
    [6] Carlson H C, Oksavik K, Moen J. 2008. On a new process for cusp irregularity production[J]. Annales Geophysicae, 26: 2871-2885. doi: 10.5194/angeo-26-2871-2008
    [7] Carlson H C. 2012. Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques[J]. Radio Science, 47: RS0L21.
    [8] Chappell C R, Giles B L, Moore T E, et al. 2000. The adequacy of the ionospheric source in supplying magnetospheric plasma[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 62: 421-436. doi: 10.1016/S1364-6826(00)00021-3
    [9] Chartier A T, Mitchell C N, Miller E S. 2018. Annual occurrence rates of ionospheric polar cap patches observed by Swarm[J]. Journal of Geophysical Research: Space Physics, 123: 2327-2335.
    [10] Coker C, Bust G S, Doe R A, et al. 2004. High-latitude plasma structure and scintillation[J]. Radio Science, 39: RS1S15.
    [11] Coley W R, Heelis R A. 1998. Structure and occurrence of polar ionization patches[J]. Journal of Geophysical Research: Space Physics, 103(A2): 2201-2208. doi: 10.1029/97JA03345
    [12] Coster A J, Gaposchkin E M, Thornton L E. 1992. Real time ionospheric monitoring system using GPS[J]. Navigation, 39(2): 191-204. doi: 10.1002/j.2161-4296.1992.tb01874.x
    [13] Crowley G. 1996. Critical Review of Ionospheric Patches and Blobs[M]. Review of Radio Science 1992-1996, 619-648.
    [14] David M, Sojka J J, Schunk R W, et al. 2016. Polar cap patches and the tongue of ionization: A survey of GPS TEC maps from 2009 to 2015[J]. Geophysical Research Letters, 43: 2422-2428. doi: 10.1002/2016GL068136
    [15] De Franceschi G, Alfonsi L, Romano V, et al. 2008. Dynamics of high-latitude patches and associated small-scale irregularities during the October and November 2003 storms[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 70: 879-888. doi: 10.1016/j.jastp.2007.05.018
    [16] Demars H G, Schunk R W. 2006. Seasonal and solar cycle variations of propagating polar wind jets[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 68: 1791-1806. doi: 10.1016/j.jastp.2006.07.006
    [17] Dungey J W. 1961. Interplanetary magnetic field and auroral zones[J]. Physics Review Letters, 6(2): 47-48. doi: 10.1103/PhysRevLett.6.47
    [18] Foster J C. 1993. Storm time plasma transport at middle and high latitudes[J]. Journal of Geophysical Research: Space Physics, 98(A2): 1675-1689. doi: 10.1029/92JA02032
    [19] Foster J C, Coster A J, Erickson P J, et al. 2005. Multiradar observations of the polar tongue of ionization[J]. Journal of Geophysical Research, 110: A09S31.
    [20] Foster J C, Rideout W. 2005. Midlatitude TEC enhancements during the October 2003 superstorm[J]. Geophysical Research Letters, 32: L12S04.
    [21] Gardner L C, Schunk R W. 2007. Propagating plasma patch and associated neutral stream flows[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 69: 1884-1892. doi: 10.1016/j.jastp.2007.07.007
    [22] Gondarenko N A, Guzdar P N. 2004. Plasma patch structuring by the nonlinear evolution of the gradient drift instability in the high-latitude ionosphere[J]. Journal of Geophysical Research: Space Physics, 109: A09301.
    [23] Goodwin L V, Iserhienrhien B, Miles D M, et al. 2015. Swarm in situ observations of F region polar cap patches created by cusp precipitation[J]. Geophysical Research Letters, 42: 996-1003. doi: 10.1002/2014GL062610
    [24] Hosokawa K, Kashimoto T, Suzuki S, et al. 2009. Motion of polar cap patches: A statistical study with all-sky airglow imager at Resolute Bay, Canada[J]. Journal of Geophysical Research: Space Physics, 114: A04318.
    [25] Hosokawa K, Moen J I, Shiokawa K, et al. 2011. Decay of polar cap patch[J]. Journal of Geophysical Research: Space Physics, 116(A5): A05306.
    [26] Hosokawa K, Taguchi S, Ogawa Y, et al. 2013. Two-dimensional direct imaging of structuring of polar cap patches[J]. Journal of Geophysical Research: Space Physics, 118(10): 6536-6543. doi: 10.1002/jgra.50577
    [27] Hosokawa K, Taguchi S, Shiokawa K, et al. 2014. Global imaging of polar cap patches with dual airglow imagers[J]. Geophysical Research Letters, 41: 1-6. doi: 10.1002/2013GL058748
    [28] Hosokawa K, Taguchi S, Ogawa Y. 2016a. Periodic creation of polar cap patches from auroral transients in the cusp[J]. Journal of Geophysical Research: Space Physics, 121(6): 5639-5652. doi: 10.1002/2015JA022221
    [29] Hosokawa K, Taguchi S, Ogawa Y. 2016b. Edge of polar cap patches[J]. Journal of Geophysical Research: Space Physics, 121(4): 3410-3420. doi: 10.1002/2015JA021960
    [30] Huang C S, Lu G. 2021. Space Physics and Aeronomy Collection Volume 3: Ionosphere Dynamics and Applications, Geophysical Monograph 260[M]//Zou S S, Perry G W, Foster J C. Recent advances in polar cap density structure research. U. S. A. : John Wiley and Sons, Incorporation, 67-82.
    [31] Jin Y Q, Moen J I, Miloch W J. 2014. GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct comparison[J]. Journal of Space Weather and Space Climate, 4: A23. doi: 10.1051/swsc/2014019
    [32] Jin Y Q, Moen J I, Miloch W J, et al. 2016. Statistical study of the GNSS phase scintillation associated with two types of auroral blobs[J]. Journal of Geophysical Research, 121: 4679-4697. doi: 10.1002/2016JA022613
    [33] Jin Y Q, Moen J I, Oksavik K, et al. 2017. GPS scintillations associated with cusp dynamics and polar cap patches[J]. Journal of Space Weather and Space Climate, 7: A23. doi: 10.1051/swsc/2017022
    [34] Jin Y Q, Xiong C. 2020. Interhemispheric asymmetry of large-scale electron density gradients in the polar cap ionosphere: UT and seasonal variations[J]. Journal of Geophysical Research: Space Physics, 125: e2019JA027601.
    [35] Jin Y Q, Clausen L, Spicher A, et al. 2021. Statistical distribution of Decameter scale (50 m) ionospheric irregularities at high latitudes[J]. Geophysical Research Letters, 48: e2021GL094794.
    [36] Jin Y Y, Xing Z Y, Zhang Q H, et al. 2019. Polar cap patches observed by the EISCAT Svalbard radar: A statistical study of its dependence on the solar wind and IMF conditions[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 192: 104768. doi: 10.1016/j.jastp.2018.01.011
    [37] Lamarche L J, Makarevich R A. 2017. Radar observations of density gradients, electric fields, and plasma irregularities near polar cap patches in the context of the gradient-drift instability[J]. Journal of Geophysical Research: Space Physics, 122: 3721-3736. doi: 10.1002/2016JA023702
    [38] Liu J, Wang W B, Burns A, et al. 2016. Relative importance of horizontal and vertical transports to the formation of ionospheric storm-enhanced density and polar tongue of ionization[J]. Journal of Geophysical Research: Space Physics, 121(8): 8121-8133. doi: 10.1002/2016JA022882
    [39] Lockwood M, Carlson H C. 1992. Production of polar cap electron density patches by transient magnetopause reconnection[J]. Geophysical Research Letters, 19(17): 1731-1734. doi: 10.1029/92GL01993
    [40] Lockwood M, Davies J A, Moen J, et al. 2005a. Motion of the dayside polar cap boundary during substorm cycles: II. Generation of poleward-moving events and polar cap patches by pulses in the magnetopause reconnection rate[J]. Annales Geophysicae, 23: 3513-3532. doi: 10.5194/angeo-23-3513-2005
    [41] Lockwood M, Moen J, van Eyken A P, et al. 2005b. Motion of the dayside polar cap boundary during substorm cycles: I. Observations of pulses in the magnetopause reconnection rate[J]. Annales Geophysicae, 23: 3495-3511. doi: 10.5194/angeo-23-3495-2005
    [42] Lorentzen D A, Moen J, Oksavik K, et al. 2010. In situ measurement of a newly created polar cap patch[J]. Journal of Geophysical Research, 115(A12): A12323.
    [43] Ma Y Z, Zhang Q H, Xing Z Y, et al. 2018a. Combined contribution of solar illumination, solar activity, and convection to ion upflow above the polar cap[J]. Journal of Geophysical Research: Space Physics, 123: 4317-4328. doi: 10.1029/2017JA024974
    [44] Ma Y Z, Zhang Q H, Xing Z Y, et al. 2018b. The ion/electron temperature characteristics of polar cap classical and hot patches and their influence on ion upflow[J]. Geophysical Research Letters, 45: 8072-8080. doi: 10.1029/2018GL079099
    [45] Ma Y Z, Zhang Q H, Lyons L R, et al. 2021. Is westward travelling surge driven by the polar cap flow channels?[J]. Journal of Geophysical Research: Space Physics, 126: e2020JA028498.
    [46] Milan S E, Lester M, Yeoman T K. 2002. HF radar polar patch formation revisited: Summer and winter variations in dayside plasma structuring[J]. Annales Geophysicae, 20(4): 487-499. doi: 10.5194/angeo-20-487-2002
    [47] Mitchell C N, Alfonsi L, De Franceschi G, et al. 2005. GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm[J]. Geophysical Research Letters, 32: L12S03.
    [48] Moen J, Gulbrandsen N, Lorentzen D A, et al. 2007. On the MLT distribution of F-region polar cap patches at night[J]. Geophysical Research Letters, 34: L14113. doi: 10.1029/2007GL029632
    [49] Moen J, Oksavik K, Alfonsi L, et al. 2013. Space weather challenges of the polar cap ionosphere[J]. Journal of Space Weather and Space Climate, 3: A02.
    [50] Moen J, Hosokawa K, Gulbrandsen N, et al. 2015. On the symmetry of ionospheric polar cap patch exits around magnetic midnight[J]. Journal of Geophysical Research: Space Physics, 120: 7785-7797. doi: 10.1002/2014JA020914
    [51] Moore T E, Chappell C R, Chandler M O, et al. 1997. High-altitude observations of the polar wind[J]. Science, 277: 349-351. doi: 10.1126/science.277.5324.349
    [52] Nie W F, Wang Y, Rovira-Garcia A, et al. 2022. Effect of the polar cap ionospheric sporadic-E layer on GNSS-based positioning: a case study at Resolute Bay, Canada, September 5, 2012[J]. GPS Solution, 26: 60. doi: 10.1007/s10291-022-01246-y
    [53] Nishimura Y, Lyons L R, Shiokawa K, et al. 2013. Substorm onset and expansion phase intensification precursors seen in polar cap patches and arcs[J]. Journal of Geophysical Research: Space Physics, 118(5): 2034-2042. doi: 10.1002/jgra.50279
    [54] Noja M, Stolle C, Park J, et al. 2013. Long-term analysis of ionospheric polar patches based on CHAMP TEC data[J]. Radio Science, 48: 289-301. doi: 10.1002/rds.20033
    [55] Oksavik K, Ruohoniemi J M, Greenwald R A, et al. 2006. Observations of isolated polar cap patches by the European Incoherent Scatter (EISCAT) Svalbard and Super Dual Auroral Radar Network (SuperDARN) Finland radars[J]. Journal of Geophysical Research, 111: A05310.
    [56] Oksavik K, Barth V L, Leste M. 2010. On the entry and transit of high-density plasma across the polar cap[J]. Journal of Geophysical Research: Space Physics, 115: A12308. doi: 10.1029/2010JB007586
    [57] Pitout F, Blelly P. 2003. Electron density in the cusp ionosphere: Increase or depletion?[J]. Geophysical Research Letters, 30: 1726.
    [58] Pitout F, Escoubet C P, Lucek E A. 2004. Ionospheric plasma density structures associated with magnetopause motion: A case study using the Cluster spacecraft and the EISCAT Svalbard radar[J]. Annales Geophysicae, 22: 2369-2379. doi: 10.5194/angeo-22-2369-2004
    [59] Redmon R J, Peterson W K, Andersson L, et al. 2010. Vertical thermal O+ flows at 850 km in dynamics auroral boundary coordinates[J]. Journal of Geophysical Research, 115: A00J08.
    [60] Rideout W, Coster A. 2006. Automated GPS processing for global total electron content data[J]. GPS Solutions, 10(3): 219-228. doi: 10.1007/s10291-006-0029-5
    [61] Rodger A, Pinnock M, Dundeney J, et al. 1994. A new mechanism for polar patch formation[J]. Journal of Geophysical Research, 99(A4): 6425-6436. doi: 10.1029/93JA01501
    [62] Schunk R W. 2007. Time-dependent simulations of the global polar wind[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 69: 2028-2047. doi: 10.1016/j.jastp.2007.08.009
    [63] Sojka J J, Bowline M D, Schunk R W. 1994. Patches in the polar ionosphere: UT and seasonal dependence[J]. Journal of Geophysical Research: Space Physics, 99(A8): 14959-14970. doi: 10.1029/93JA03327
    [64] Spicher A, Clausen L B, Miloch W J, et al. 2017. Interhemispheric study of polar cap patch occurrence based on Swarm in situ data[J]. Journal of Geophysical Research: Space Physics, 122: 3837-3851. doi: 10.1002/2016JA023750
    [65] Stevenson B A, Germany G, Moore T E, et al. 2001. Polar observations of topside field-aligned O+ flows and auroral forms[J]. Journal of Geophysical Research: Space Physics, 106(A9): 18969-18979. doi: 10.1029/2000JA003042
    [66] Strangeway R J, Ergun R E, Su Y J, et al. 2005. Factors controlling ionospheric outflows as observed at intermediate altitude[J]. Journal of Geophysical Research: Space Physics, 110: A03221.
    [67] Thayyil J P, McCaffrey A M, Wang Y, et al. 2021. Global positioning system (GPS) scintillation associated with a polar cap patch[J]. Remote Sensing, 13: 1915. doi: 10.3390/rs13101915
    [68] Valladares C, Basu C, Buchau J, et al. 1994. Experiment evidence for the formation and entry of patches into the polar cap[J]. Radio Science, 29(1): 167-194.
    [69] van der Meeren C, Oksavik K, Lorentzen D, et al. 2014. GPS scintillation and irregularities at the front of an ionization tongue in the nightside polar ionosphere[J]. Journal of Geophysical Research: Space Physics, 119: 8624-8636. doi: 10.1002/2014JA020114
    [70] Wang Y, Zhang Q H, Jayachandran P T, et al. 2016. A comparison between large-scale irregularities and scintillations in the polar ionosphere[J]. Geophysical Research Letters, 43: 4790-4798. doi: 10.1002/2016GL069230
    [71] Wang Y, Zhang Q H, Ma Y Z, et al. 2020. Polar ionospheric large-scale structures and dynamics revealed by TEC keogram extracted from TEC maps[J]. Journal of Geophysical Research: Space Physics, 125: e2019JA027020.
    [72] Wang Y, Cao Z, Xing Z Y, et al. 2021. GPS scintillations and TEC variations in association with a polar cap arc[J]. Journal of Geophysical Research: Space Physics, 126: e2020JA028968.
    [73] Wang Z H, Zou S S, Coppeans T, et al. 2019. Segmentation of SED by boundary flows associated with westward drifting partial ring current[J]. Geophysical Research Letters, 46: 7920-7928. doi: 10.1029/2019GL084041
    [74] Weber E J, Bauchau J, Moore J G, et al. 1984. F layer ionization patches in the polar cap[J]. Journal of Geophysical Research, 89(A3): 1683-1780. doi: 10.1029/JA089iA03p01683
    [75] Xiong C, Stolle C, Lühr H, et al. 2016. The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities[J]. Space Weather, 14: 563-577. doi: 10.1002/2016SW001439
    [76] Xiong C, Xu J S, Stolle C, et al. 2020. On the occurrence of GPS signal amplitude degradation for receivers on board LEO satellites[J]. Space Weather, 18: e2019SW002398.
    [77] Yang S G, Zhang B C, Fang H X, et al. 2016. New evidence of dayside plasma transportation over the polar cap to the prevailing dawn sector in the polar upper atmosphere for solar-maximum winter[J]. Journal of Geophysical Research: Space Physics, 121: 5626-5638. doi: 10.1002/2015JA022171
    [78] Yau A W, André M. 1997. Sources of ion outflow in the high latitude ionosphere[J]. Space Science Reviews, 80: 1-25. doi: 10.1023/A:1004947203046
    [79] Zhang D, Zhang Q H, Ma Y Z, et al. 2021. Solar and geomagnetic activity impact on occurrence and spatial size of cold and hot polar cap patches[J]. Geophysical Research Letters, 48: e2021GL094526.
    [80] Zhang D, Zhang Q H, Ma Y Z, et al. 2022. The dependence of cold and hot patches on local plasma transport and particle precipitation in Northern Hemisphere winter[J]. Geophysical Research Letters, 49: e2022GL098671.
    [81] Zhang Q H, Zhang B C, Liu R Y, et al. 2011. On the importance of interplanetary magnetic field |By| on polar cap patch formation[J]. Journal of Geophysical Research: Space Physics, 116: A05308.
    [82] Zhang Q H, Zhang B C, Lockwood M, et al. 2013a. Direct observations of the evolution of polar cap ionization patches[J]. Science, 339: 1597-1600. doi: 10.1126/science.1231487
    [83] Zhang Q H, Zhang B C, Moen J, et al. 2013b. Polar cap patch segmentation of the tongue of ionization in the morning convection cell[J]. Geophysical Research Letters, 40: 2918-2922. doi: 10.1002/grl.50616
    [84] Zhang Q H, Lockwood M, Foster J C, et al. 2015. Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions[J]. Journal of Geophysical Research: Space Physics, 120: 4519-4530. doi: 10.1002/2015JA021172
    [85] Zhang Q H, Moen J I, Lockwood M, et al. 2016a. Polar cap patch transportation beyond the classic scenario[J]. Journal of Geophysical Research: Space Physics, 121: 9063-9074. doi: 10.1002/2016JA022443
    [86] Zhang Q H, Zong Q G, Lockwood M, et al. 2016b. Earth's ion upflow associated with polar cap patches: Global and in situ observations[J]. Geophysical Research Letters, 43: 1845-1853. doi: 10.1002/2016GL067897
    [87] Zhang Q H, Ma Y Z, Jayachandran P T, et al. 2017. Polar cap hot patches: Enhanced density structures different from the classical patches in the ionosphere[J]. Geophysical Research Letters, 44: 8159-8167. doi: 10.1002/2017GL073439
    [88] Zong Q G, Escoubet P, Sibeck D, et al. 2020. Dayside Magnetosphere Interactions[M]//Zhang Q H, Xing Z Y, Wang Y, et al. Formation and evolution of polar cap ionospheric patches and their associated upflows and scintillations: A review. U. S. A. : John Wiley and Sons, Incorporation, 285-302.
    [89] Zou S S, Ridley A J, Moldwin M B, et al. 2013. Muti-instrument observations of SED during 24-25 October 2011 storm: Implications for SED formation processes[J]. Journal of Geophysical Research: Space Physics, 118: 7798-7809. doi: 10.1002/2013JA018860
    [90] Zou S S, Moldwin M B, Ridley A J, et al. 2014. On the generation/decay of the storm-enhanced density plumes: Role of the convection flow and field-aligned ion flow[J]. Journal of Geophysical Research: Space Physics, 119: 8543-8559. doi: 10.1002/2014JA020408
    [91] Zou S S, Ridley A J, Jia X, et al. 2017. PFISR observation of intense ion upflow fluxes associated with an SED during the 1 June 2013 geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 122: 2589-2604. doi: 10.1002/2016JA023697
    [92] Zou Y, Nishimura Y, Lyons L R, et al. 2015. Localized polar cap flow enhancement tracing using airglow patches: Statistical properties, IMF dependence, and contribution to polar cap convection[J]. Journal of Geophysical Research: Space Physics, 120(5): 4064-4078. doi: 10.1002/2014JA020946
    [93] Zou Y, Nishimura Y, Burchill J K, et al. 2016. Localized field-aligned currents in the polar cap associated with airglow patches[J]. Journal of Geophysical Research: Space Physics, 121(10): 10172-10189.
    [94] Zou Y, Nishimura Y, Burchill J K, et al. 2017. Localized polar cap precipitation in association with nonstorm time airglow patches[J]. Geophysical Research Letters, 44: 609-617. doi: 10.1002/2016GL071168
  • 加载中
图(14)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  88
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 录用日期:  2022-06-30
  • 修回日期:  2022-06-29
  • 网络出版日期:  2022-07-07

目录

    /

    返回文章
    返回