• ISSN 2097-1893
  • CN 10-1855/P


张丽娜 谢军 迟本鑫 刘红平 包丰

引用本文: 张丽娜,谢军,迟本鑫,刘红平,包丰. 2022. 分布式光纤地震传感技术在成像研究中的应用进展. 地球与行星物理论评(中英文),53(0):1-10
Zhang L N, Xie J, Chi B X, Liu H P, Bao F. 2022. Recent advances in distributed acoustic sensing applications for seismic imaging. Reviews of Geophysics and Planetary Physics, 53(0): 1-10 (in Chinese)


doi: 10.19975/j.dqyxx.2022-049
基金项目: 国家自然科学基金资助项目(41904064, 41974067)

    张丽娜,女,博士,主要从事地震学研究. E-mail:zhangln57@outlook.com


    包丰,男,博士,主要从事地球精细结构成像研究. E-mail:baofeng@apm.ac.cn

  • 中图分类号: P315.6

Recent advances in distributed acoustic sensing applications for seismic imaging

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 41904064 and 41974067)
  • 摘要: 分布式光纤地震传感技术是新一代密集台阵观测技术,其利用光纤在地震波场作用下产生的光时程变化,探测地下介质的动态应变信号. 其具有空间采样率高、恶劣条件耐受性强、运维成本低等优势,适用于城市、海洋、深井、冰川等传统地震学观测手段较难开展工作的环境. 本文围绕该技术在地球内部结构成像研究中的应用,调研了从浅表数米到莫霍面深度等不同尺度成像的研究进展,其利用信号为从地脉动到高频交通噪声等多频段被动源和不同级别的主动源. 文章同时分析了该技术面临的一些挑战,包括信号质量和信号保真度、海量数据处理和波场信息挖掘、海量数据存储和共享分析等,由此建议,须开展主被动源高分辨率动态成像、仪器传递函数计算及其校正方法、大数据有效信息挖掘等研究,从而更好地服务于高密度、高精度的光纤传感地震成像研究.


  • 图  1  DFSS主要应用场景示意图(修改自Lindsey and Martin, 2021

    Figure  1.  Typical environments where DFSS is applied (modified from Lindsey and Martin, 2021)

    图  2  城市通信光缆沿线速度结构图(修改自Song et al., 2021c

    Figure  2.  Diagram of 2D velocity structure created using data acquired along a telecom fiber-optic cable (modified from Song et al., 2021c)

    图  3  井中DFSS噪声数据提取的P波信号(修改自Lellouch et al., 2019),灰色虚线表示3200 m/s的P波理论到时

    Figure  3.  P-wave signals emerging on a section of the recorded noise cross-correlation function in SAFOD (modified from Lellouch et al., 2019); the gray line depicts the average 3200 m/s P wave velocity

    图  4  断层散射波(FZSW)产生机理及观测实例(修改自包丰等,2022).(a)FZSW产生机理;(b)实际观测的FZSW震相(黑色虚线),并推测断层位置

    Figure  4.  Sketch showing fault-zone scattering wave and FZSWs emerging on a seismic wavefield recorded in Menyuan, China (modified from Bao et al., 2022)

    图  5  大容量气枪震源观测实例(修改自Song et al., 2021b),虚线分别表示P波和S波理论到时

    Figure  5.  Record-section of a large-volume airgun signal, recorded by a telecom fiber-optic cable (modified from Song et al., 2021b)

    图  6  河流水位与速度变化对比图(修改自Rodríguez Tribaldos et al., 2021

    Figure  6.  River stage vs. seismic velocity changes (modified from Rodríguez Tribaldos et al., 2021)

    图  7  不同布设方式光缆记录的交通噪声信号波形差异(修改自林融冰等,2022),图 (a-c)分别为水泥固结、路面摆放和悬空

    Figure  7.  Traffic signals recorded by cables installed using three different methods (modified from Lin et al., 2022)

  • [1] Ajo-Franklin B, Dou S, Lindsey N J, et al. 2019. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection[J]. Scientific reports, 9(1): 1-14. doi: 10.1038/s41598-018-37186-2
    [2] Bao F, Li Z, Tian B, et al. 2019. Sediment thickness variations of the Tangshan fault zone in North China from a dense seismic array and microtremor survey[J]. Journal of Asian Earth Sciences, 185: 104045. doi: 10.1016/j.jseaes.2019.104045
    [3] 包丰, 曾祥方, 林融冰, 等. 2022. 高密度地震观测揭示门源MS6.9地震余震活动与隐伏断层[J]. 科学通报, 待刊.

    Bao F, Zeng X, Lin R, et al. 2022. Aftershock detection and faults identification by a dense seismic array with an existing fiber-optic cable in Menyuan, Qinghai[J]. Chinese Science Bulletin, in press (in Chinese).
    [4] 曹卫平, 黄旭日, 姚海, 等.2021.分布式光纤声波传感系统记录的交通噪声的干涉处理分析[J].地球物理学报, 64(7): 2530-2539

    Cao W P,Huang X R,Yao H,et al.2021.Seismic interferometry for traffic noise recorded by a distributed acoustic sensing system[J].Chinese Journal of Geophysics,64(7):2530-2539 (in Chinese).
    [5] Chang H, Nakata N. 2022. Investigation of time-Lapse changes with DAS borehole data at the Brady geothermal field using deconvolution interferometry[J]. Remote Sensing, 14(1): 185. doi: 10.3390/rs14010185
    [6] Chen J, Ning J, Chen W, et al. 2019. Distributed acoustic sensing coupling noise removal based on sparse optimization[J]. Interpretation, 7(2): T373-T382. doi: 10.1190/INT-2018-0080.1
    [7] 陈瑛, 宋俊磊.2013.地震仪的发展历史及现状综述[J].地球物理学进展, 28(3): 1311-1319

    Chen Y,Song J L.2013.Review of the development history and present situation on seismographs[J].Progress in Geophysics,28(3):1311-1319 (in Chinese).
    [8] Cheng F, Chi B, Lindsey N J, et al. 2021a. Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization[J]. Scientific reports, 11(1): 1-14. doi: 10.1038/s41598-021-84845-y
    [9] Cheng F, Correa J, Dou S, et al. 2021b. Testing of a permanent orbital surface source and distributed acoustic sensing for monitoring of unconventional reservoirs: Preliminary results from the Eagle Ford Shale[J]. Geophysics, 86(2): P1-P12. doi: 10.1190/geo2020-0403.1
    [10] Daley T M, Freifeld B M, Ajo-Franklin J, et al. 2013. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring[J]. The Leading Edge, 32(6): 699-706. doi: 10.1190/tle32060699.1
    [11] Dewey J, Byerly P. 1969. The early history of seismometry (to 1900)[J]. Bulletin of the Seismological Society of America, 59(1): 183-227.
    [12] Dong B, Tribaldos V R, Xing X, et al. 2020. DASSA: Parallel DAS data storage and analysis for subsurface event detection[J]//IPDPS, 254-263.
    [13] Dou S, Lindsey N, Wagner A M, et al. 2017. Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study[J]. Scientific Reports, 7(1): 1-12. doi: 10.1038/s41598-016-0028-x
    [14] Fang G, Li Y E, Zhao Y, et al. 2020. Urban near-surface seismic monitoring using distributed acoustic sensing[J]. Geophysical Research Letters, 47(6): e2019GL086115.
    [15] Foti S, Parolai S, Albarello D, et al. 2011. Application of surface-wave methods for seismic site characterization[J]. Surveys in Geophysics, 32(6): 777-825. doi: 10.1007/s10712-011-9134-2
    [16] 苟量, 张少华, 余刚, 等.2022.光纤地球物理技术的发展现状与展望[J].石油物探, 61(1): 15-31

    Gou L,Zhang S H,Yu G,et al.2022.Optical fiber geophysics:development status and future prospects[J].Geophysical Prospecting for Petroleum,61(1):15-31 (in Chinese).
    [17] Guo A, Ni S, Xie J, et al. 2019. Millimeter-level ultra-long period multiple Earth-circling surface waves retrieved from dense high-rate GPS network[J]. Earth and Planetary Science Letters, 525: 115705. doi: 10.1016/j.jpgl.2019.07.007
    [18] Harris K, White D, Samson C. 2017. Imaging the Aquistore reservoir after 36 kilotonnes of CO2 injection using distributed acoustic sensing[J]. Geophysics, 82(6): M81-M96. doi: 10.1190/geo2017-0174.1
    [19] Hartog A. 2017. An Introduction to Distributee Optical Fibre Sensors[M]. Boca Raton: CRC Press.
    [20] Henninges J, Martuganova E, Stiller M, et al. 2020. Vertical seismic profiling with distributed acoustic sensing images the Rotliegend geothermal reservoir in the North German Basin down to 4.2 km depth[J]. Solid Earth, https://doi.org/10.5194/se-2020-169.
    [21] Hornman K, Kuvshinov B, Zwartjes P, et al. 2013. Field trial of a broadside-sensitive distributed acoustic sensing cable for surface seismic[C]//75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013 (pp. cp-348). European Association of Geoscientists & Engineers.
    [22] Hornman J C. 2017. Field trial of seismic recording using distributed acoustic sensing with broadside sensitive fibre-optic cables[J]. Geophysical Prospecting, 65(1): 35-46. doi: 10.1111/1365-2478.12358
    [23] Jousset P, Reinsch T, Ryberg T, et al. 2018. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features[J]. Nature Communications, 9(1): 1-11. doi: 10.1038/s41467-017-02088-w
    [24] Kiyashchenko D, Mateeva A, Duan Y, et al. 2020. Frequent 4D monitoring with DAS 3D VSP in deep water to reveal injected water-sweep dynamics[J]. The Leading Edge, 39(7): 471-479. doi: 10.1190/tle39070471.1
    [25] Kong Q, Trugman D T, Ross Z E, et al. 2019. Machine learning in seismology: Turning data into insights[J]. Seismological Research Letters, 90(1): 3-14. doi: 10.1785/0220180259
    [26] Kuvshinov B N. 2016. Interaction of helically wound fibre-optic cables with plane seismic waves[J]. Geophysical Prospecting, 64(3): 671-688. doi: 10.1111/1365-2478.12303
    [27] Lancelle C E, Baldwin J A, Lord N, et al. 2022. Using Distributed Acoustic Sensing (DAS) for Multichannel Analysis of Surface Waves (MASW)[M]. Distributed Acoustic Sensing in Geophysics: Methods and Applications, 213-228.
    [28] 雷宇航, 尹扶, 洪鹤庭, 等.2021.基于 MF-J 变换的 DAS 观测高阶面波提取和浅地表结构成像[J].地球物理学报, 64(12): 4280-4291

    Lei Y H,Fu Y,Hong H T,et al.2021.Shallow structure imaging using higher-mode Rayleigh waves based on F-J transform in DAS observation[J].Chinese Journal of Geophysics,64(12):4280-4291 (in Chinese).
    [29] Lellouch A, Yuan S, Spica Z, et al. 2019. Seismic velocity estimation using passive downhole distributed acoustic sensing records: Examples from the San Andreas fault observatory at depth[J]. Journal of Geophysical Research: Solid Earth, 124(7): 6931-6948. doi: 10.1029/2019JB017533
    [30] Lellouch A, Biondi B L. 2021. Seismic applications of downhole DAS[J]. Sensors, 21(9): 2897. doi: 10.3390/s21092897
    [31] 李孝宾, 宋政宏, 杨军, 等.2020.利用分布式光纤声波传感器监测大容量气枪震源信号[J].地震地质, 42(5): 1255-1265

    Li X B,Song Z H,Yang J,et al.2020.Monitoring signal of airgun source with distributed acoustic sensing[J].Seismology and Geology,42(5):1255-1265 (in Chinese).
    [32] Li Z, Zhan Z. 2018. Pushing the limit of earthquake detection with distributed acoustic sensing and template matching: A case study at the Brady geothermal field[J]. Geophysical Journal International, 215(3): 1583-1593. doi: 10.1093/gji/ggy359
    [33] Li Z. 2021. Recent advances in earthquake monitoring I: Ongoing revolution of seismic instrumentation[J] Earthquake Science, 34(2), 177-188. doi: 10.29382/eqs-2021-0011.
    [34] Li Z, Shen Z, Yang Y, et al. 2021. Rapid response to the 2019 Ridgecrest earthquake with distributed acoustic sensing[J]. AGU Advances, 2: e2021AV000395.
    [35] Lim Chen Ning I, Sava P. 2018. Multicomponent distributed acoustic sensing: Concept and theory[J]. Geophysics, 83(2): P1-P8. doi: 10.1190/geo2017-0327.1
    [36] 林融冰, 曾祥方, 宋政宏, 等.2020.分布式光纤声波传感系统在近地表成像中的应用 Ⅱ: 背景噪声成像[J].地球物理学报, 63(4): 1622-1629

    Lin R B,Zeng X F,Song Z H,et al.2020.Distributed acoustic sensing for imaging shallow structure Ⅱ:Ambient noise tomography[J].Chinese Journal of Geophysics,63(4):1622-1629 (in Chinese).
    [37] 林融冰, 包丰, 谢军, 等. 2022. 光缆布设方式对DAS主、被动源记录的影响[J]. 地球物理学报, 待刊.

    Lin R B, Bao F, Xie J, et al. 2022. The influence of cable installment on DAS active and passive source records[J]. Chinese Journal of Geophysics, in press (in Chinese).
    [38] Lindsey N J, Martin E R, Dreger D S, et al. 2017. Fiber-optic network observations of earthquake wavefields[J]. Geophysical Research Letters, 44(23): 11-792.
    [39] Lindsey N J, Dawe T C, Ajo-Franklin J B. 2019. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing[J]. Science, 366(6469): 1103-1107. doi: 10.1126/science.aay5881
    [40] Lindsey N J, Rademacher H, Ajo-Franklin J B. 2020. On the broadband instrument response of fiber-optic DAS arrays[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018145.
    [41] Lindsey N J, Martin E R. 2021. Fiber-optic seismology[J]. Annual Review of Earth and Planetary Sciences, 49, 309-336. doi: 10.1146/annurev-earth-072420-065213
    [42] Lior I, Mercerat E D, Rivet D, et al. 2022. Imaging an underwater basin and its resonance modes using optical fiber distributed acoustic sensing[J]. Seismological Research Letters, 93(3): 1573-1584. doi: 10.1785/0220210349
    [43] 刘辉, 李静, 迟本鑫. 2022. 基于应变率分布式光纤声波传感全波形反演研究[J]. 地球物理学报, 待刊.

    Liu H, Li J, Chi B X. 2022. Study of distributed acoustic sensing data waveform inversion based on strain rate[J]. Chinese Journal of Geophysics, in press (in Chinese).
    [44] Luo B, Trainor-Guitton W, Bozdağ E, et al. 2020. Horizontally orthogonal distributed acoustic sensing array for earthquake and ambient-noise-based multichannel analysis of surface waves[J]. Geophysical Journal International, 222(3): 2147-2161. doi: 10.1093/gji/ggaa293
    [45] Lv H, Zeng X, Bao F, et al. 2022. ADE-net: A deep neural network for DAS earthquake detection trained with a limited number of positive samples[J]. IEEE Transactions on Geoscience and Remote Sensing, 60:1-11. doi: 10.1109/TGRS.2022.3143120
    [46] Marra G, Clivati C, Luckett R, et al. 2018. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables[J]. Science, 361(6401): 486-490. doi: 10.1126/science.aat4458
    [47] Martuganova E, Stiller M, Bauer K, et al. 2021. Cable reverberations during wireline distributed acoustic sensing measurements: Their nature and methods for elimination[J]. Geophysical Prospecting, 69(5): 1034-1054. doi: 10.1111/1365-2478.13090
    [48] Mateeva A, Lopez J, Potters H, et al. 2014. Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling[J]. Geophysical Prospecting, 62(4), 679-692. doi: 10.1111/1365-2478.12116
    [49] Matsumoto H, Araki E, Kimura T, et al. 2021. Detection of hydroacoustic signals on a fiber-optic submarine cable[J]. Scientific Reports, 11(1): 1-12. doi: 10.1038/s41598-021-82093-8
    [50] Nayak A, Ajo-Franklin J, Imperial Valley Dark Fiber Team. 2021. Measurement of surface-wave phase-velocity dispersion on mixed inertial seismometer–distributed acoustic sensing seismic noise cross-correlations[J]. Bulletin of the Seismological Society of America, 111(6): 3432-3450. doi: 10.1785/0120210028
    [51] Paitz P, Edme P, Gräff D, et al. 2021. Empirical investigations of the instrument response for distributed acoustic sensing (DAS) across 17 octaves[J]. Bulletin of the Seismological Society of America, 111(1): 1-10. doi: 10.1785/0120200185
    [52] Parker L M, Thurber C H, Zeng X, et al. 2018. Active-source seismic tomography at the Brady geothermal Field, Nevada, with dense nodal and fiber-optic seismic arrays[J]. Seismological Research Letters, 89(5): 1629-1640. doi: 10.1785/0220180085
    [53] Parker T, Shatalin S, Farhadiroushan M. 2014. Distributed acoustic sensing–A new tool for seismic applications[J]. First Break, 32(2): 61-69.
    [54] Péquegnat C, Schaeffer J, Satriano C, et al. 2021. Résif-SI: A distributed information system for French seismological data[J]. Seismological Society of America, 92(3): 1832-1853.
    [55] Quinteros J, Carter J A, Schaeffer J, et al. 2021. Exploring approaches for large data in seismology: User and data repository perspectives[J]. Seismological Research Letters, 92(3): 1531-1540. doi: 10.1785/0220200390
    [56] Rodríguez Tribaldos V, Ajo-Franklin J B. 2021. Aquifer monitoring using ambient seismic noise recorded with distributed acoustic sensing (DAS) deployed on dark fiber[J]. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB021004.
    [57] Shao J, Wang Y, Chen L. 2022. Near-surface characterization using high-speed train seismic data recorded by a distributed acoustic sensing array[J]. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-11. doi: 10.1109/TGRS.2022.3153831
    [58] Shragge J, Yang J, Issa N, et al. 2021. Low-frequency ambient distributed acoustic sensing (DAS): Case study from Perth, Australia[J]. Geophysical Journal International, 226(1): 564-581. doi: 10.1093/gji/ggab111
    [59] Song Z, Zeng X, Thurber C H, et al. 2018. Imaging shallow structure with active-source surface wave signal recorded by distributed acoustic sensing arrays[J]. Earthquake Science, 31: 208-214. doi: 10.29382/eqs-2018-0208-4
    [60] 宋政宏, 曾祥方, 徐善辉, 等.2020.分布式光纤声波传感系统在近地表成像中的应用 Ⅰ: 主动源高频面波[J].地球物理学报, 63(2): 532-540

    Song Z H,Zeng X F,Xu S H,et al.2020.Distributed acoustic sensing for imaging shallow structure Ⅰ:Active source survey[J].Chinese Journal of Geophysics,63(2):532-540 (in Chinese).
    [61] Song Z, Zeng X, Thurber C H. 2021a. Surface-wave dispersion spectrum inversion method applied to Love and Rayleigh waves recorded by distributed acoustic sensing[J]. Geophysics, 86(1): EN1-EN12. doi: 10.1190/geo2019-0691.1
    [62] Song Z, Zeng X, Wang B, et al. 2021b. Distributed acoustic sensing using a large-volume airgun source and internet fiber in an urban area[J]. Seismological Research Letters, 92(3): 1950-1960. doi: 10.1785/0220200274
    [63] Song Z, Zeng X, Xie J, et al. 2021c. Sensing shallow structure and traffic noise with fiber-optic internet cables in an urban area[J]. Surveys in Geophysics,42: 1401-1423. doi: 10.1007/s10712-021-09678-w
    [64] Spica Z J, Nishida K, Akuhara T, et al. 2020a. Marine sediment characterized by ocean-bottom fiber-optic seismology[J]. Geophysical Research Letters, 47(16): e2020GL088360.
    [65] Spica Z J, Perton M, Martin E R, et al. 2020b. Urban seismic site characterization by fiber-optic seismology[J]. Journal of Geophysical Research: Solid Earth, 125(3): e2019JB018656.
    [66] Spica Z J, Castellanos J, Viens L, et al. 2022. Subsurface imaging with ocean-bottom distributed acoustic sensing and water phase reverberations[J]. Geophysical Research Letters, 49(2): e2021GL095287 .
    [67] Spikes K T, Tisato N, Hess T E, et al. 2019. Comparison of geophone and surface-deployed distributed acoustic sensing seismic data[J]. Geophysics, 84(2): A25-A29. doi: 10.1190/geo2018-0528.1
    [68] Takekawa J, Mikada H, Xu S, et al. 2022. A new DAS sensor prototype for multicomponent seismic data[J]. The Leading Edge, 41(5): 338-346. doi: 10.1190/tle41050338.1
    [69] Tonegawa T, Araki E, Matsumoto H, et al. 2022. Extraction of P wave from ambient seafloor noise observed by distributed acoustic sensing[J]. Geophysical Research Letters, 49(4): e2022GL098162.
    [70] Tsuji T, Ikeda T, Matsuura R, et al. 2021. Continuous monitoring system for safe managements of CO2 storage and geothermal reservoirs[J]. Scientific reports, 11(1): 1-15. doi: 10.1038/s41598-020-79139-8
    [71] Walter F, Gräff D, Lindner F, et al. 2020. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain[J]. Nature Communications, 11(1): 1-10. doi: 10.1038/s41467-019-13993-7
    [72] Wang H F, Zeng X, Miller D E, et al. 2018. Ground motion response to an ML4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays[J]. Geophysical Journal International, 213(3): 2020-2036. doi: 10.1093/gji/ggy102
    [73] 汪利民, 夏江海, 罗银河, 等. 2022. 浅地表面波成像技术研究进展与展望[J]. 地球与行星物理论评, 53(6): 613-655

    Wang L M, Xia J H, Luo Y H, et al. 2022. Progress and prospect of surface-wave imaging techniques in near-surface applications[J]. Reviews of Geophysics and Planetary Physics, 53(6): 613-655 (in Chinese).
    [74] 王伟君, 陈凌, 王一博, 等.2022.光纤振动传感之二: 基于散射或透射光的本征传感及其地震学应用[J].地球与行星物理论评, 53(2): 119-137

    Wang W J,Chen L,Wang Y B,et al.2022.Fiber-optic vibration sensing - Ⅱ:Intrinsic sensing with scattered or transmitted light and their seismological applications[J].Reviews of Geophysics and Planetary Physics,53(2):119-137 (in Chinese).
    [75] Wang X, Williams E F, Karrenbach M, et al. 2020. Rose parade seismology: Signatures of floats and bands on optical fiber[J]. Seismological Research Letters, 91(4): 2395-2398. doi: 10.1785/0220200091
    [76] Williams E F, Fernández-Ruiz M R, Magalhaes R, et al. 2019. Distributed sensing of microseisms and teleseisms with submarine dark fibers[J]. Nature Communications, 10(1): 1-11. doi: 10.1038/s41467-018-07882-8
    [77] Williams E F, Fernández-Ruiz M R, Magalhaes R, et al. 2021. Scholte wave inversion and passive source imaging with ocean-bottom DAS[J]. The Leading Edge, 40(8): 576-583. doi: 10.1190/tle40080576.1
    [78] 杨微, 王宝善, 张云鹏, 等. 2021. 陆地水体气枪震源探测技术回顾与进展[J]. 地球物理学报, 64(12): 4252-4268

    Yang W, Wang B S, Zhang Y P, et al. 2021. Review on advances in the detection technology using airgun source fired in continental water[J]. Chinese Journal of Geophysics, 64(12): 4252-4268 (in Chinese).
    [79] Yang Y, Atterholt J W, Shen Z, et al. 2022. Sub-kilometer correlation between near-surface structure and ground motion measured with distributed acoustic sensing[J]. Geophysical Research Letters, 49: e2021GL096503.
    [80] Yu C, Zhan Z, Lindsey N J, et al. 2019. The potential of DAS in teleseismic studies: Insights from the Goldstone experiment[J]. Geophysical Research Letters, 46(3): 1320-1328. doi: 10.1029/2018GL081195
    [81] Yu E, Bhaskaran A, Chen S L, et al. 2021. Southern California earthquake data now available in the AWS Cloud[J]. Seismological Research Letters, 92(5): 3238-3247. doi: 10.1785/0220210039
    [82] Yu G, Cai Z, Chen Y, et al. 2016. Walkaway VSP using multimode optical fibers in a hybrid wireline[J]. The Leading Edge, 35(7): 615-619. doi: 10.1190/tle35070615.1
    [83] Yu G, Cai Z, Chen Y, et al. 2018. Borehole seismic survey using multimode optical fibers in a hybrid wireline[J]. Measurement, 125: 694-703. doi: 10.1016/j.measurement.2018.04.058
    [84] Zeng X, Lancelle C, Thurber C, et al. 2017. Properties of noise cross-correlation functions obtained from a distributed acoustic sensing array at Garner Valley, California[J]. Bulletin of the Seismological Society of America, 107(2): 603-610. doi: 10.1785/0120160168
    [85] Zeng X, Thurber C H, Wang H F, et al. 2021. High-resolution shallow structure at Brady Hot Springs using ambient noise tomography (ANT) on a trenched distributed acoustic sensing (DAS) array[C]//AGU monograph: Distributed Acoustic Sensing in Geophysics: Methods and Applications, 101-110.
    [86] Zeng X, Bao F, Thurber C H, et al. 2022a. Turning a telecom fiber-optic cable into an ultradense seismic array for rapid postearthquake response in an urban area[J]. Seismological Society of America, 93(2A): 853-865.
    [87] Zeng X, Wang H F, Lord N, et al. 2022b. Field trial of distributed acoustic sensing in an active room-and-pillar mine[C]// AGU monograph: Distributed Acoustic Sensing in Geophysics: Methods and Applications, 65-79.
    [88] Zhan Z. 2020. Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas[J]. Seismological Research Letters, 91(1): 1-15. doi: 10.1785/0220190112
    [89] Zhan Z, Cantono M, Kamalov V, et al. 2021. Optical polarization–based seismic and water wave sensing on transoceanic cables[J]. Science, 371(6532): 931-936. doi: 10.1126/science.abe6648
    [90] 张丽娜, 任亚玲, 林融冰, 等.2020.分布式光纤声波传感器及其在天然地震学研究中的应用[J].地球物理学进展, 35(1): 65-71

    Zhang L N,Ren Y L,Lin R B,et al.2020.Distributed acoustic sensing system and its application for seismological studies[J].Progress in Geophysics,35(1):65-71 (in Chinese).
    [91] 张明辉, 刘有山, 侯爵, 等.2019.近地表地震层析成像方法综述[J]. 地球物理学进展, 34(1): 48-63

    Zhang M H,Liu Y S,Hou J,et al.2019.Review of seismic tomography methods in near-surface structures reconstruction[J].Progress in Geophysics,34(1):48-63 (in Chinese).
    [92] Zhao Y, Li Y, Wu N. 2020. Distributed acoustic sensing vertical seismic profile data denoiser based on convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-11.
    [93] Zhu T, Stensrud D J. 2019. Characterizing thunder-induced ground motions using fiber-optic distributed acoustic sensing array[J]. Journal of Geophysical Research: Atmospheres, 124(23): 12810-12823. doi: 10.1029/2019JD031453
  • 加载中
  • 文章访问数:  47
  • HTML全文浏览量:  13
  • PDF下载量:  23
  • 被引次数: 0
  • 收稿日期:  2022-05-25
  • 录用日期:  2022-07-20
  • 修回日期:  2022-07-19
  • 网络出版日期:  2022-08-01