• ISSN 2097-1893
  • CN 10-1855/P

天山造山带壳幔结构与陆内变形机制研究进展

张秉峰 鲍学伟

引用本文: 张秉峰,鲍学伟. 2023. 天山造山带壳幔结构与陆内变形机制研究进展. 地球与行星物理论评(中英文),54(1):27-43
Zhang B F, Bao X W. 2023. Research progress on seismic structures of crust and mantle beneath Tien Shan and their geodynamic implications. Reviews of Geophysics and Planetary Physics, 54(1): 27-43 (in Chinese)

天山造山带壳幔结构与陆内变形机制研究进展

doi: 10.19975/j.dqyxx.2022-048
基金项目: 国家重点研发计划资助项目(2019YFA0708604);国家自然科学基金资助项目(41774045)
详细信息
    作者简介:

    张秉峰(1996-),男,博士研究生,主要从事天然地震学研究. E-mail:bingfeng.zhang@zju.edu.cn

    通讯作者:

    鲍学伟(1985-),男,研究员,主要从事地震学研究. E-mail:xwbao@zju.edu.cn

  • 中图分类号: P315

Research progress on seismic structures of crust and mantle beneath Tien Shan and their geodynamic implications

Funds: Supported by the National Key Technologies R&D Program (Grant No. 2019YFA0708604) and the National Natural Science Foundation of China (Grant No. 41774045)
  • 摘要: 天山作为当今世界上最为典型的陆内造山带,对于其深部结构和新生代构造变形过程的研究一直是地球科学领域的前沿和热点,并已经取得大量成果. 本文系统总结了近年来利用地震学方法对天山造山带及其邻区壳幔结构研究的最新进展以及存在的争议. 这些研究发现包括地壳厚度、莫霍面形态、地幔转换带厚度、地震波速、Q值结构在内的多结构参数的变化与区内各个大地构造单元的对应性较好,彰显出盆-山深部结构的显著差异. 研究区各向异性结构复杂,地壳内部的偏振方向存在明显的横向变化,并在上地幔深度转换为和造山带走向基本一致. 另外,在中下地壳和上地幔顶部,天山大部表现为明显的低速异常. 以上结果揭示了陆内俯冲和地幔上涌对于塑造现今天山复杂构造格局与地质地貌特征的重要意义. 然而,现有研究对于我国新疆境内天山壳幔各向异性、岩石圈底界面以及地幔转换带的分辨率还远远不够,并且对于一些重要的结构参数及其解释尚未达成一致的认识. 密集流动地震台阵观测和多种地球物理资料的联合分析是解决这一问题并增进对陆内造山带深部动力学过程认识的有效途径.

     

  • 图  1  天山造山带及其邻区的地质构造背景. 灰色实线为研究区主要断层(数据来自Styron and Pagani, 2020),红色虚线为塔拉斯—费尔干纳断裂和80°E经线,灰色圆圈表示1964年以来发生的5级以上强震分布,橙色箭头表示以欧亚大陆为参考系的地表运动速度场(数据来自Gan et al., 2007; Zubovich et al., 2010

    Figure  1.  Tectonic map of Tien Shan and surrounding areas. Gray solid lines show major fault traces from Styron and Pagani (2020). Red dashed lines mark locations of Talas-Fergana fault and 80° E, which are boundaries between different segments of Tien Shan. Gray circles show distribution of large earthquakes (Mb>5) that have occurred since 1964. Orange arrows denote GPS velocities relative to Eurasia (data from Gan et al., 2007; Zubovich et al., 2010)

    图  2  天山及邻区的地壳厚度和均衡重力异常. (a)接收函数方法约束的地壳厚度结果(整合自Bump and Sheehan, 1998; Vinnik et al., 2006; 李昱等, 2007; Chen et al., 2010; 刘文学等, 2011; Schneider et al., 2013; He C et al., 2014; He R et al., 2014; 唐明帅等, 2014; Li Y et al., 2016; 郑雪刚等, 2016; Wu et al., 2018; Schneider et al., 2019; Zhang et al., 2020; Cai et al., 2021; Xu et al., 2021; Cheng et al., 2022; Cui et al., 2022),经克里金插值得到. (b)Airy均衡重力异常(修改自张星宇等,2020). (c)Vening-Meinesz均衡重力异常(修改自张星宇等,2020

    Figure  2.  Crustal thickness and isostatic gravity anomaly of Tien Shan and its surroundings. (a) Crustal thickness measurements from receiver-function studies interpolated using Kriging method (compiled from Bump and Sheehan, 1998; Vinnik et al., 2006; Li et al., 2007; Chen et al., 2010; Liu et al., 2011; Schneider et al., 2013; He C et al., 2014; He R et al., 2014; Tang et al., 2014; Li Y et al., 2016; Zheng et al., 2016; Wu et al., 2018; Schneider et al., 2019; Zhang et al., 2020; Cai et al., 2021; Xu et al., 2021; Cheng et al., 2022; Cui et al., 2022). (b) Airy isostatic gravity anomaly (modified from Zhang et al., 2020). (c) Vening-Meinesz isostatic gravity anomaly (modified from Zhang et al., 2020)

    图  3  天山造山带中段的莫霍面形态(修改自Zhang et al., 2020). 黑色倒三角为地震台站,黄色圆圈表示由接收函数叠加网格搜索(H-κ-c)获得的各台站下方莫霍面深度,黑色虚线表示由接收函数共转换点叠加(CCP)揭示的莫霍面几何形态

    Figure  3.  Moho morphology of central Tien Shan (modified from Zhang et al., 2020). Seismic stations are marked as black inverted triangles. Yellow circles denote Moho depth measurements from a stacking and grid search scheme on receiver functions (H-κ-c); black dashed lines show preferred Moho geometry from CCP image

    图  4  天山造山带中段的岩石圈-软流圈间断面形态和地幔转换带厚度. (a)S波接收函数约束的岩石圈-软流圈间断面形态(修改自Kumar et al., 2005). 蓝色圆圈表示测线附近的地震分布,背景S波速度异常由地震面波层析成像获得(Friederich, 2003). (b)P波接收函数约束的地幔转换带厚度变化(修改自Yu et al., 2017). 黑线表示断层分布,圆圈为反投影处理中使用的1°×1°网格

    Figure  4.  LAB morphology and MTZ thickness beneath central Tien Shan. (a) LAB morphology constrained by S-wave receiver-function imaging (modified from Kumar et al., 2005). Blue circles are earthquake hypocenters within a 100 km wide zone along the seismic profile. Background S-wave velocities are based on surface-wave tomography images reported by Friederich (2003). (b) Smoothed spatial distribution of MTZ thickness constrained by P-wave receiver-function imaging (modified from Yu et al., 2017). Black lines are major active faults. Open circles show locations of bins used during backprojection of receiver functions

    图  5  天山及邻区的地幔各向异性. (a)SKS/SKKS分裂获得的壳幔综合各向异性分布(整合自Silver and Chan, 1991; Makeyeva et al., 1992; Vinnik et al., 1992; Helffrich et al., 1994; Wolfe and Vernon III, 1998; Barruol and Hoffmann, 1999; Iidaka and Niu, 2001; Chen et al., 2005; Li and Chen, 2006; 江丽君等, 2010; Huang et al., 2011; 冯强强等, 2012; Cherie et al., 2016; Kufner et al., 2018; Gao and Sun, 2021; Zhang et al., 2022). 绿色短棒的方向和长度分别表示快剪切波偏振方向和快慢波分裂时间. (b)Pn波层析成像获得的上地幔顶部各向异性分布(修改自Zhou and Lei, 2015). 蓝色短棒的方向和长度分别表示快剪切波传播方向和各向异性强度,虚线为研究区主要沉积盆地轮廓,实线为研究区主要断层. TB:塔里木盆地,JB:准噶尔盆地,KS:哈萨克地盾,FB:费尔干纳盆地,WTS:西天山,CTS:中天山,ETS:东天山,THB:吐哈盆地

    Figure  5.  Upper-mantle seismic anisotropy of Tien Shan and its surroundings. (a) SKS/SKKS anisotropy targeting both crust and upper mantle (compiled from Silver and Chan, 1991; Makeyeva et al., 1992; Vinnik et al., 1992; Helffrich et al., 1994; Wolfe and Vernon III, 1998; Barruol and Hoffmann, 1999; Iidaka and Niu, 2001; Chen et al., 2005; Li and Chen, 2006; Jiang et al., 2010; Huang et al., 2011; Feng et al., 2012; Cherie et al., 2016; Kufner et al., 2018; Gao and Sun, 2021; Zhang et al., 2022). Fast polarization axis and amount of splitting are indicated by orientation and length of bar line, respectively. (b) Pn anisotropy targeting uppermost mantle (modified from Zhou and Lei, 2015). Fast-propagation direction and strength of anisotropy are indicated by orientation and length of bar line, respectively. Black dashed lines are outlines of major sedimentary basins; black solid lines indicate major active faults. TB, Tarim basin; JB, Junggar basin; KS, Kazakh shield; FB, Fergana basin; WTS, western Tien Shan; CTS, central Tien Shan; ETS, eastern Tien Shan; THB, Turpan-Hami basin

    图  6  天山及邻区的地壳各向异性. (a)接收函数Pms分裂获得的地壳各向异性分布(修改自Zhang et al., 2022). 短棒的方向和圆圈的大小分别表示快剪切波偏振方向和快慢波分裂时间,橙色箭头表示原地最大水平压应力方向(Heidbach et al., 2018),玫瑰图中虚线表示天山山脉走向. (b)近震S波分裂获得的上地壳各向异性分布(整合自鲍子文和高原, 2017; Li et al., 2021). 短棒的方向表示快剪切波偏振方向

    Figure  6.  Crustal seismic anisotropy of Tien Shan and its surroundings. (a) Pms anisotropy targeting the crust (modified from Zhang et al., 2022). Fast-polarization axis and amount of splitting are indicated by bar line orientation and circle size, respectively. Orange arrows indicate maximum horizontal compressional stress direction (Heidbach et al., 2018). Dashed lines in rose diagrams denote strike of Tien Shan. (b) Local S-wave anisotropy targeting upper crust (compiled from Bao and Gao, 2017; Li et al., 2021). Fast-polarization axis is demonstrated by bar line orientation

    图  7  天山及邻区的壳幔地震波速度结构. (a-c)背景噪声全波形反演获得的11-km、42-km和60-km深度S波速度水平切片(修改自Lü et al., 2019). 紫色实线为塔拉斯—费尔干纳断裂和80°E经线,黑色虚线为研究区主要沉积盆地轮廓. 图中主要速度异常:WLVZ:西天山低速区,CLVZ:中天山低速区,THVZ:塔里木高速区,JHVZ:准噶尔高速区. (d, e)体波走时层析成像获得的天山造山带中段P波相对速度剖面结果(修改自Li et al., 2009; Zabelina et al., 2013). 图案1表示向北俯冲的印度板片,图案2表示塔里木和哈萨克微陆块

    Figure  7.  Seismic velocity structures of Tien Shan and its surroundings. (a-c) Horizontal slices of S-wave velocities at 11, 42, and 60 km depths revealed by full-wave ambient-noise tomography (modified from Lü et al., 2019). Purple solid lines mark locations of Talas-Fergana fault and 80° E. Black dashed lines are outlines of major sedimentary basins. Major velocity anomalies: WLVZ, Western Tien Shan Low-Velocity Zone; CLVZ, Central Tien Shan Low-Velocity Zone; THVZ, Tarim basin High-Velocity Zone; JHVZ, Junggar basin High-Velocity Zone. (d,e) Vertical slices of P-wave velocity perturbations across central Tien Shan constrained by body-wave travel-time tomography (modified from Zabelina et al., 2013; Li et al., 2009). Pattern 1 denotes the subducting Indian slab; pattern 2 shows positions of Tarim and Kazakh lithospheres beneath Tien Shan

    图  9  中天山北部15-km深度的P波衰减结构(修改自Sychev et al., 2018). ChB:邱亚盆地,KzP:哈萨克地盾,ChR:邱亚山脉,KgR:吉尔吉斯山脉,TFF:塔拉斯—费尔干纳断裂,NrB:纳伦盆地,Issyk-Kul:伊塞克湖

    Figure  9.  P-wave velocity attenuation at 15 km depth beneath north-central Tien Shan (modified from Sychev et al., 2018). ChB, Chuya basin; KzP, Kazakh shield; ChR, Chuya ridge; KgR, Kyrgyz range; TFF, Talas-Fergana fault; NrB, Naryn basin

    图  10  天山造山带新生代隆升变形的两种模式. (a)双向俯冲模式(修改自Lei and Zhao, 2007). 天山两侧的俯冲岩石圈在山脉下方碰撞拆沉,进而引起较大规模地幔上涌. (b)单向俯冲模式(修改自Zhang et al., 2022). 由于天山南北侧块体流变学性质的差异性,仅在山脉北部发生哈萨克地盾和准噶尔盆地的单向俯冲,山脉南部以岩石圈缩短增厚变形模式为主并伴随有岩石圈拆沉和地幔上涌

    Figure  10.  Schematic illustration of two possible geodynamic scenarios beneath Tien Shan. (a) Two-sided underthrusting (modified from Lei and Zhao, 2007): underthrusted lithospheres collide beneath Tien Shan, which results in breaking-up and dropping-off of the collided lithospheres and, consequently, upwelling of hot deep-mantle materials. (b) One-sided underthrusting (modified from Zhang et al., 2022): Only Kazakh and Junggar lithospheres to the north underthrust beneath Tien Shan. The Tarim lithosphere to the south, conversely, indents rather than subducts under the mountains, resulting in vertically coherent thickening and subsequent foundering of southern Tien Shan lithosphere. Such distinct deformation responses under coherent north-south compression may be controlled by different rheologic properties of bounding terranes

  • [1] Aminov J, Koulakov I, Jakovlev A, et al. 2020. Directions of lithosphere interactions in the Pamir-Hindu Kush junction inferred from anisotropic tomography[J]. Canadian Journal of Earth Sciences, 57(5): 601-616. doi: 10.1139/cjes-2019-0081
    [2] Avouac J P, Tapponnier P, Bai M, et al. 1993. Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan[J]. Journal of Geophysical Research, 98(B4): 6755-6804. doi: 10.1029/92JB01963
    [3] Bagdassarov N, Batalev V, Egorova V. 2011. State of lithosphere beneath Tien Shan from petrology and electrical conductivity of xenoliths[J]. Journal of Geophysical Research, 116(B1): B01202.
    [4] Balmino G, Vales N, Bonvalot S, et al. 2012. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies[J]. Journal of Geodesy, 86: 499-520. doi: 10.1007/s00190-011-0533-4
    [5] Bao X, Song X, Li J. 2015. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth and Planetary Science Letters, 417: 132-141. doi: 10.1016/j.jpgl.2015.02.024
    [6] Bao X, Eaton D W, Gu Y J. 2016. Rayleigh wave azimuthally anisotropic phase velocity maps beneath western Canada[J]. Journal of Geophysical Research: Solid Earth, 121(3): 1821-1834. doi: 10.1002/2015JB012453
    [7] Bao X, Song X, Eaton D W, et al. 2020. Episodic lithospheric deformation in eastern Tibet inferred from seismic anisotropy[J]. Geophysical Research Letters, 47(3): e2019GL085721.
    [8] 鲍子文, 高原. 2017. 天山构造带及邻区地壳各向异性[J]. 地球物理学报, 60(4): 1359-1375 doi: 10.6038/cjg20170411

    Bao Z W, Gao Y. 2017. Crustal seismic anisotropy in the Tien Shan and adjacent areas[J]. Chinese Journal of Geophysics, 60(4): 1359-1375 (in Chinese). doi: 10.6038/cjg20170411
    [9] 鲍子文, 高原. 2019. 天山构造带地震各向异性及动力学机制研究进展[J]. 中国地震, 35(4): 589-601 doi: 10.3969/j.issn.1001-4683.2019.04.001

    Bao Z W, Gao Y. 2019. Research progress of seismic anisotropy and dynamic mechanism in the Tienshan region[J]. Earthquake Research in China, 35(4): 589-601 (in Chinese). doi: 10.3969/j.issn.1001-4683.2019.04.001
    [10] Barruol G, Hoffmann R. 1999. Upper mantle anisotropy beneath the Geoscope stations[J]. Journal of Geophysical Research, 104(B5): 10757-10773. doi: 10.1029/1999JB900033
    [11] Bump H A, Sheehan A F. 1998. Crustal thickness variations across the northern Tien Shan from teleseismic receiver functions[J]. Geophysical Research Letters, 25(7): 1055-1058. doi: 10.1029/98GL00516
    [12] Burtman V S. 1975. Structural geology of Variscan Tien Shan, USSR[J]. American Journal of Science, 275-A: 157-186.
    [13] 蔡妍, 吴建平, 明跃红, 等. 2019. 新疆天山地区壳幔S波速度结构特征及变形分析[J]. 地球物理学报, 62(11): 4214-4226 doi: 10.6038/cjg2019M0589

    Cai Y, Wu J P, Ming Y H, et al. 2019. Crust-mantle S wave velocity structures beneath Tianshan area and its deformation analysis[J]. Chinese Journal of Geophysics, 62(11): 4214-4226 (in Chinese). doi: 10.6038/cjg2019M0589
    [14] Cai Y, Wu J, Wang W. 2021. Crustal thickness and Poisson's ratio in Tianshan region from receiver functions[J]. Pure and Applied Geophysics, 178: 3529-3542. doi: 10.1007/s00024-021-02817-9
    [15] Charreau J, Gilder S, Chen Y, et al. 2006. Magnetostratigraphy of the Yaha section, Tarim Basin (China): 11 Ma acceleration in erosion and uplift of the Tian Shan mountains[J]. Geology, 34(3): 181-184. doi: 10.1130/G22106.1
    [16] Chen Y, Wang L, Mi N, et al. 2005. Shear wave splitting observations in the Chinese Tianshan orogenic belt[J]. Geophysical Research Letters, 32(7): L07306.
    [17] Chen Y, Niu F, Liu R, et al. 2010. Crustal structure beneath China from receiver function analysis[J]. Journal of Geophysical Research, 115(B3): B03307.
    [18] Chen Y H, Roecker S W, Kosarev G L. 1997. Elevation of the 410 km discontinuity beneath the central Tien Shan: Evidence for a detached lithospheric root[J]. Geophysical Research Letters, 24(12): 1531-1534. doi: 10.1029/97GL01434
    [19] Cheng S, Xiao X, Wu J, et al. 2022. Crustal thickness and VP / VS variation beneath continental China revealed by receiver function analysis[J]. Geophysical Journal International, 228(3): 1731-1749.
    [20] Cherie S G, Gao S S, Liu K H, et al. 2016. Shear wave splitting analyses in Tian Shan: Geodynamic implications of complex seismic anisotropy[J]. Geochemistry, Geophysics, Geosystems, 17(6): 1975-1989.
    [21] Christensen N I. 1996. Poisson's ratio and crustal seismology[J]. Journal of Geophysical Research, 101(B2): 3139-3156. doi: 10.1029/95JB03446
    [22] Crampin S. 1994. The fracture criticality of crustal rocks[J]. Geophysical Journal International, 118(2): 428-438. doi: 10.1111/j.1365-246X.1994.tb03974.x
    [23] Cui Q, Zhou Y, Li J, et al. 2022. Crustal thickness (H) and VP / VS ratio (κ) images beneath the central Tien Shan revealed by the H-κ-c method[J]. Tectonophysics, 822: 229157. doi: 10.1016/j.tecto.2021.229157
    [24] Dong M T, Menke W H. 2017. Seismic high attenuation region observed beneath southern New England from teleseismic body wave spectra: Evidence for high asthenospheric temperature without melt[J]. Geophysical Research Letters, 44(21): 10958-10969.
    [25] Farra V, Vinnik L P, Romanowicz B, et al. 1991. Inversion of teleseismic S particle motion for azimuthal anisotropy in the upper mantle: A feasibility study[J]. Geophysical Journal International, 106(2): 421-431. doi: 10.1111/j.1365-246X.1991.tb03905.x
    [26] 冯强强, 吴庆举, 李永华, 等. 2012. 新疆地区S波分裂研究[J]. 地震学报, 34(3): 296-307 doi: 10.3969/j.issn.0253-3782.2012.03.002

    Feng Q Q, Wu Q J, Li Y H, et al. 2012. Shear wave splitting in Xinjiang region[J]. Acta Seismologica Sinica, 34(3): 296-307 (in Chinese). doi: 10.3969/j.issn.0253-3782.2012.03.002
    [27] Flesch L M, Haines A J, Holt W E. 2001. Dynamics of the India-Eurasia collision zone[J]. Journal of Geophysical Research, 106(B8): 16435-16460. doi: 10.1029/2001JB000208
    [28] Friederich W. 2003. The S-velocity structure of the East Asian mantle from inversion of shear and surface waveforms[J]. Geophysical Journal International, 153(1): 88-102. doi: 10.1046/j.1365-246X.2003.01869.x
    [29] Gan W, Zhang P, Shen Z, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research, 112(B8): B08416.
    [30] 高歌, 王海涛. 2006. 乌什6.3级地震前、后S波分裂特征初步研究[J]. 内陆地震, 20(2): 139-142 doi: 10.3969/j.issn.1001-8956.2006.02.007

    Gao G, Wang H T. 2006. Primary study on S-wave splitting character before and after Wushi earthquake of MS 6.3[J]. Inland Earthquake, 20(2): 139-142 (in Chinese). doi: 10.3969/j.issn.1001-8956.2006.02.007
    [31] 高国英, 聂晓红, 龙海英. 2010.2003—2008年新疆区域构造应力场特征探讨[J]. 地震地质, 32(1): 70-79 doi: 10.3969/j.issn.0253-4967.2010.01.007

    Gao G Y, Nie X H, Long H Y. 2010. Discussion on the characteristics of regional tectonic stress field of Xinjiang from 2003 to 2008[J]. Seismology and Geology, 32(1): 70-79 (in Chinese). doi: 10.3969/j.issn.0253-4967.2010.01.007
    [32] Gao L, Sun D. 2021. Seismic anisotropy beneath the Chinese Mainland: Constraints from shear wave splitting analyses[J]. Earthquake Research Advances, 1(4): 100034. doi: 10.1016/j.eqrea.2021.100034
    [33] Gao R, Hou H, Cai X, et al. 2013. Fine crustal structure beneath the junction of the southwest Tian Shan and Tarim Basin, NW China[J]. Lithosphere, 5(4): 382-392. doi: 10.1130/L248.1
    [34] Gao X, Guo Z, Wang W, et al. 2014. Crustal structure beneath the central Tien Shan from ambient noise tomography[J]. Terra Nova, 26(6): 469-476. doi: 10.1111/ter.12122
    [35] 高雅健, 崔辉辉, 周元泽. 2017. 中天山和塔里木盆地下方地幔转换带顶部P波速度结构探测[J]. 地球物理学报, 60(1): 98-111

    Gao Y J, Cui H H, Zhou Y Z. 2017. Seismic detection of P-wave velocity structure atop MTZ beneath the Central Tian Shan and Tarim Basin[J]. Chinese Journal of Geophysics, 60: 98-111 (in Chinese).
    [36] Gilligan A, Roecker S W, Priestley K F, et al. 2014. Shear velocity model for the Kyrgyz Tien Shan from joint inversion of receiver function and surface wave data[J]. Geophysical Journal International, 199(1): 480-498. doi: 10.1093/gji/ggu225
    [37] 郭飚, 刘启元, 陈九辉, 等. 2006. 中国境内天山地壳上地幔结构的地震层析成像[J]. 地球物理学报, 49(6): 1693-1700 doi: 10.3321/j.issn:0001-5733.2006.06.016

    Guo B, Liu Q Y, Chen J H, et al. 2006. Seismic tomography of the crust and upper mantle structure underneath the Chinese Tianshan[J]. Chinese Journal of Geophysics, 49(6): 1693-1700 (in Chinese). doi: 10.3321/j.issn:0001-5733.2006.06.016
    [38] Guo Z, Gao X, Wang W, et al. 2010. S-wave velocity of the crust around Tianshan Mountains inverted from seismic ambient noise tomography[J]. Chinese Science Bulletin, 55(31): 3590-3598. doi: 10.1007/s11434-010-4017-3
    [39] Guo Z, Gao X, Yao H, et al. 2017. Depth variations of azimuthal anisotropy beneath the Tian Shan Mt range (NW China) from ambient noise tomography[J]. Journal of Asian Earth Sciences, 138: 161-172. doi: 10.1016/j.jseaes.2016.12.040
    [40] Guy A, Holzrichter N, Ebbing J. 2017. Moho depth model for the Central Asian Orogenic Belt from satellite gravity gradients[J]. Journal of Geophysical Research: Solid Earth, 122(9): 7388-7407. doi: 10.1002/2017JB014120
    [41] He C, Santosh M, Chen X, et al. 2014. Crustal growth and tectonic evolution of the Tianshan orogenic belt, NW China: A receiver function analysis[J]. Journal of Geodynamics, 75: 41-52. doi: 10.1016/j.jog.2014.02.004
    [42] He C, Santosh M. 2018. Role of mantle dynamics in rebuilding the Tianshan Orogenic Belt in NW China: A seismic tomographic investigation[J]. Journal of Geodynamics, 116: 37-46. doi: 10.1016/j.jog.2018.02.006
    [43] 何静, 吴庆举, 李永华, 等. 2017. 天然地震Lg波衰减研究进展及其在中国大陆地区的应用[J]. 地球物理学进展, 32(2): 466-475 doi: 10.6038/pg20170204

    He J, Wu Q J, Li Y H, et al. 2017. Developments of earthquake Lg-wave attenuation study and its application in the continental China[J]. Progress in Geophysics, 32(2): 466-475 (in Chinese). doi: 10.6038/pg20170204
    [44] He J, Li Y, Sandvol E, et al. 2019. Tomographic Pn velocity and anisotropy structure in Mongolia and the adjacent regions[J]. Journal of Geophysical Research: Solid Earth, 124(4): 3662-3679. doi: 10.1029/2018JB016440
    [45] He R, Shang X, Yu C, et al. 2014. A unified map of Moho depth and VP/VS ratio of continental China by receiver function analysis[J]. Geophysical Journal International, 199(3): 1910-1918. doi: 10.1093/gji/ggu365
    [46] Hearn T M. 1996. Anisotropic Pn tomography in the western United States[J]. Journal of Geophysical Research, 101(B4): 8403-8414. doi: 10.1029/96JB00114
    [47] Heidbach O, Rajabi M, Cui X, et al. 2018. The World Stress Map database release 2016: Crustal stress pattern across scales[J]. Tectonophysics, 744: 484-498. doi: 10.1016/j.tecto.2018.07.007
    [48] Helffrich G, Silver P, Given H. 1994. Shear-wave splitting variation over short spatial scales on continents[J]. Geophysical Journal International, 119(2): 561-573. doi: 10.1111/j.1365-246X.1994.tb00142.x
    [49] Helffrich G. 2000. Topography of the transition zone seismic discontinuities[J]. Reviews of Geophysics, 38(1): 141-158. doi: 10.1029/1999RG000060
    [50] Hendrix M S, Dumitru T A, Graham S A. 1994. Late Oligocene-early Miocene unroofing in the Chinese Tian Shan: An early effect of the India-Asia collision[J]. Geology, 22(6): 487-490. doi: 10.1130/0091-7613(1994)022<0487:LOEMUI>2.3.CO;2
    [51] 侯贺晟, 高锐, 贺日政, 等. 2012. 西南天山—塔里木盆地结合带浅深构造关系——深地震反射剖面的初步揭露[J]. 地球物理学报, 55(12): 4116-4125 doi: 10.6038/j.issn.0001-5733.2012.12.024

    Hou H S, Gao R, He R Z, et al. 2012. Shallow-deep tectonic relationship for the junction belt of western part of South Tianshan and Tarim basin - Revealed from preliminary processed deep seismic reflection profile[J]. Chinese Journal of Geophysics, 55(12): 4116-4125 (in Chinese). doi: 10.6038/j.issn.0001-5733.2012.12.024
    [52] Hua Y, Xu Y, Zhao D, et al. 2020. Upper mantle tomography of the Western Junggar: Implications for its geodynamic evolution[J]. Physics of the Earth and Planetary Interiors, 299: 106405. doi: 10.1016/j.pepi.2019.106405
    [53] Huang Z, Wang L, Zhao D, et al. 2011. Seismic anisotropy and mantle dynamics beneath China[J]. Earth and Planetary Science Letters, 306(1-2): 105-117. doi: 10.1016/j.jpgl.2011.03.038
    [54] Huangfu P, Li Z, Zhang K, et al. 2021. India-Tarim lithospheric mantle collision beneath western Tibet controls the Cenozoic building of Tian Shan[J]. Geophysical Research Letters, 48(14): e2021GL094561.
    [55] Iidaka T, Niu F. 2001. Mantle and crust anisotropy in the eastern China region inferred from waveform splitting of SKS and PpSms[J]. Earth, Planets and Space, 53: 159-168.
    [56] 贾承造, 杨树锋, 魏国齐, 等. 2008. 中国环青藏高原新生代巨型盆山体系构造特征与含油气前景[J]. 天然气工业, 28(8): 1-11 doi: 10.3787/j.issn.1000-0976.2008.08.001

    Jia C Z, Yang S F, Wei G Q, et al. 2008. Structure characteristics and petroleum bearing prospects of Cenozoic Circum Tibet Plateau Basin and Range System in China[J]. Natural Gas Industry, 28(8): 1-11 (in Chinese). doi: 10.3787/j.issn.1000-0976.2008.08.001
    [57] 江丽君, 李永华, 吴庆举. 2010. 中天山及邻区S波分裂研究及其动力学意义[J]. 地球物理学报, 53(6): 1399-1408

    Jiang L J, Li Y H, Wu Q J. 2010. The shear wave splitting of Central Tien Shan and its implications[J]. Chinese Journal of Geophysics, 53(6): 1399-1408 (in Chinese).
    [58] Kaban M K, Yuanda T R. 2014. Density structure, isostatic balance and tectonic models of the Central Tien Shan[J]. Surveys in Geophysics, 35: 1375-1391. doi: 10.1007/s10712-014-9298-7
    [59] Khan N G, Bai L, Zhao J, et al. 2017. Crustal structure beneath Tien Shan orogenic belt and its adjacent regions from multi-scale seismic data[J]. Science China Earth Sciences, 60(10): 1769-1782. doi: 10.1007/s11430-017-9068-0
    [60] Ko B, Jung H. 2015. Crystal preferred orientation of an amphibole experimentally deformed by simple shear[J]. Nature Communications, 6: 6586. doi: 10.1038/ncomms7586
    [61] 孔祥艳, 吴建平, 刘靖. 2021. 利用背景噪声层析成像方法反演新疆天山及邻区S波速度结构[J]. 中国地震, 37(1): 43-58 doi: 10.3969/j.issn.1001-4683.2021.01.005

    Kong X Y, Wu J P, Liu J. 2021. S-wave velocity structure inversed by ambient noise tomography in Xinjiang Tien Shan and its surrounding areas[J]. Earthquake Research in China, 37(1): 43-58 (in Chinese). doi: 10.3969/j.issn.1001-4683.2021.01.005
    [62] Kopnichev Y F, Sokolova I N. 2007. Heterogeneities in the field of short period seismic wave attenuation in the lithosphere of central Tien Shan[J]. Journal of Volcanology and Seismology, 1(5): 333-348. doi: 10.1134/S0742046307050065
    [63] Kosarev G, Oreshin S, Vinnik L, et al. 2018. Mantle transition zone beneath the central Tien Shan: Lithospheric delamination and mantle plumes[J]. Tectonophysics, 723: 172-177. doi: 10.1016/j.tecto.2017.12.010
    [64] Kosarev G L, Petersen N V, Vinnik L P, et al. 1993. Receiver functions for the Tien Shan Analog Broadband Network: Contrasts in the evolution of structures across the Talasso-Fergana Fault[J]. Journal of Geophysical Research, 98(B3): 4437-4448. doi: 10.1029/92JB02651
    [65] Koulakov I. 2011. High-frequency P and S velocity anomalies in the upper mantle beneath Asia from inversion of worldwide traveltime data[J]. Journal of Geophysical Research, 116(B4): B04301.
    [66] Kufner S-K, Schurr B, Sippl C, et al. 2016. Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia)[J]. Earth and Planetary Science Letters, 435: 171-184. doi: 10.1016/j.jpgl.2015.11.046
    [67] Kufner S-K, Eken T, Tilmann F, et al. 2018. Seismic anisotropy beneath the Pamir and the Hindu Kush: Evidence for contributions from crust, mantle lithosphere, and asthenosphere[J]. Journal of Geophysical Research: Solid Earth, 123(12): 10727-10748.
    [68] Kumar P, Yuan X, Kind R, et al. 2005. The lithosphere-asthenosphere boundary in the Tien Shan-Karakoram region from S receiver functions: Evidence for continental subduction[J]. Geophysical Research Letters, 32(7): L07305.
    [69] 赖院根, 刘启元, 陈九辉, 等. 2002. 新疆伽师强震群区的横波分裂与应力场特征[J]. 地球物理学报, 45(1): 83-92 doi: 10.3321/j.issn:0001-5733.2002.01.011

    Lai Y G, Liu Q Y, Chen J H, et al. 2002. Features of the S-wave splitting and stress field in the Xinjiang Jiashi strong earthquake region[J]. Chinese Journal of Geophysics, 45(1): 83-92 (in Chinese). doi: 10.3321/j.issn:0001-5733.2002.01.011
    [70] Lei J, Zhao D. 2007. Teleseismic P-wave tomography and the upper mantle structure of the central Tien Shan orogenic belt[J]. Physics of the Earth and Planetary Interiors, 162(3-4): 165-185. doi: 10.1016/j.pepi.2007.04.010
    [71] Lei J. 2011. Seismic tomographic imaging of the crust and upper mantle under the central and western Tien Shan orogenic belt[J]. Journal of Geophysical Research, 116: B09305.
    [72] 雷显权, 陈运平, 赵俊猛, 等. 2012. 天山造山带深部探测及地球动力学研究进展[J]. 地球物理学进展, 27(2): 417-428 doi: 10.6038/j.issn.1004-2903.2012.02.005

    Lei X Q, Chen Y P, Zhao J M, et al. 2012. Deep probe in the Tianshan orogenic belt and its geodynamics[J]. Progress in Geophysics, 27(2): 417-428 (in Chinese). doi: 10.6038/j.issn.1004-2903.2012.02.005
    [73] Lessing S, Thomas C, Rost S, et al. 2014. Mantle transition zone structure beneath India and Western China from migration of PP and SS precursors[J]. Geophysical Journal International, 197(1): 396-413. doi: 10.1093/gji/ggt511
    [74] Li A, Chen C. 2006. Shear wave splitting beneath the central Tien Shan and tectonic implications[J]. Geophysical Research Letters, 33(22): L22303. doi: 10.1029/2006GL027717
    [75] Li J, Zhang J, Zhao X, et al. 2016. Mantle subduction and uplift of intracontinental mountains: A case study from the Chinese Tianshan Mountains within Eurasia[J]. Scientific Reports, 6: 28831. doi: 10.1038/srep28831
    [76] 李金, 周龙泉, 王慧琳, 等. 2017. 利用S波高频衰减对天山中东段地区地壳Q值成像[J]. 中国地震, 33(2): 229-238 doi: 10.3969/j.issn.1001-4683.2017.02.004

    Li J, Zhou L Q, Wang H L, et al. 2017. Tomography for Q of eastern section of the Tianshan area from high-frequency attenuation of S waves[J]. Earthquake Research in China, 33(2): 229-238 (in Chinese). doi: 10.3969/j.issn.1001-4683.2017.02.004
    [77] Li J, Gao Y, Wang Q. 2021. Anisotropic zoning in the upper crust of the Tianshan Tectonic Belt[J]. Science China Earth Sciences, 64(4): 651-666. doi: 10.1007/s11430-020-9709-0
    [78] Li M, Lin X, Wu T, et al. 2019. Lithospheric structure of the Tien Shan region constrained by joint inversion of receiver function and Rayleigh wave dispersion[J]. Terra Nova, 31(4): 348-357.
    [79] 李顺成, 刘启元, 陈九辉, 等. 2005. 横跨天山的宽频带流动地震台阵观测[J]. 地球物理学进展, 20(4): 955-960 doi: 10.3969/j.issn.1004-2903.2005.04.012

    Li S C, Liu Q Y, Chen J H, et al. 2005. Passive broadband seismic array observation across Tianshan[J]. Progress in Geophysics, 20(4): 955-960 (in Chinese). doi: 10.3969/j.issn.1004-2903.2005.04.012
    [80] Li W, Chen Y, Yuan X, et al. 2018. Continental lithospheric subduction and intermediate-depth seismicity: Constraints from S-wave velocity structures in the Pamir and Hindu Kush[J]. Earth and Planetary Science Letters, 482: 478-489. doi: 10.1016/j.jpgl.2017.11.031
    [81] 李昱, 刘启元, 陈九辉, 等. 2007. 天山地壳上地幔的S波速度结构[J]. 中国科学D辑: 地球科学, 37(3): 344-352

    Li Y, Liu Q Y, Chen J H, et al. 2007. Shear wave velocity structure of the crust and upper mantle underneath the Tianshan orogenic belt[J]. Science in China Series D: Earth Sciences, 37(3): 344-352 (in Chinese).
    [82] Li Y, Wu Q, Jiang L, et al. 2010. Complex seismic anisotropic structure beneath the central Tien Shan revealed by shear wave splitting analyses[J]. Geophysical Journal International, 181(3): 1678-1686.
    [83] Li Y, Shi L, Gao J. 2016. Lithospheric structure across the central Tien Shan constrained by gravity anomalies and joint inversions of receiver function and Rayleigh wave dispersion[J]. Journal of Asian Earth Sciences, 124: 191-203. doi: 10.1016/j.jseaes.2016.05.003
    [84] Li Z, Roecker S, Li Z, et al. 2009. Tomographic image of the crust and upper mantle beneath the western Tien Shan from the MANAS broadband deployment: Possible evidence for lithospheric delamination[J]. Tectonophysics, 477(1-2): 49-57. doi: 10.1016/j.tecto.2009.05.007
    [85] 李志伟, 胥颐, ROECKER S W, 等. 2007. 中天山地区的Pn波速度结构与各向异性[J]. 地球物理学报, 50(4): 1066-1072 doi: 10.3321/j.issn:0001-5733.2007.04.013

    Li Z W, Xu Y, Roecker S W, et al. 2007. Pn wave velocity structure and anisotropy in the central Tien Shan region[J]. Chinese Journal of Geophysics, 50(4): 1066-1072 (in Chinese). doi: 10.3321/j.issn:0001-5733.2007.04.013
    [86] Liang C, Song X, Huang J. 2004. Tomographic inversion of Pn travel times in China[J]. Journal of Geophysical Research, 109(B11): B11304.
    [87] Liang Y, Li L, Liao J, et al. 2020. Interaction of the Indian and Asian plates under the Pamir and Hindu-Kush regions: Insights from 3-D shear wave velocity and anisotropic structures[J]. Geochemistry, Geophysics, Geosystems, 21(8): e2020GC009041.
    [88] 刘洁, 刘启元, 郭飚, 等. 2007. 中国境内天山上地幔小尺度对流与造山作用[J]. 中国科学D辑: 地球科学, 37(6): 728-735

    Liu J, Liu Q Y, Guo B, et al. 2007. Small-scale upper mantle convection and orogeny of Tianshan Mountains in China[J]. Science in China Series D: Earth Sciences, 37(6): 728-735 (in Chinese).
    [89] 刘文学, 刘贵忠, 周刚, 等. 2011. 新疆和周边地区地壳厚度和Vp/Vs比值变化的接收函数约束[J]. 地球物理学报, 54(8): 2034-2041 doi: 10.3969/j.issn.0001-5733.2011.08.010

    Liu W X, Liu G Z, Zhou G, et al. 2011. Crustal thickness and Vp/Vs ratio variations of Xinjiang and surrounding regions constrained by receiver function stacking[J]. Chinese Journal of Geophysics, 54(8): 2034-2041 (in Chinese). doi: 10.3969/j.issn.0001-5733.2011.08.010
    [90] 刘文学, 刘贵忠, 周刚, 等. 2014. 天山及其邻区地壳上地幔S波速度结构的接收函数与面波频散联合反演[J]. 地震学报, 36(1): 20-31 doi: 10.3969/j.issn.0253-3782.2014.01.002

    Liu W X, Liu G Z, Zhou G, et al. 2014. Joint inversion of receiver function and surface wave dispersion for crust and upper mantle S-wave velocity structure beneath Tianshan and its adjacent regions[J]. Acta Seismologica Sinica, 36(1): 20-31 (in Chinese). doi: 10.3969/j.issn.0253-3782.2014.01.002
    [91] Lü Z, Gao H, Lei J, et al. 2019. Crustal and upper mantle structure of the Tien Shan orogenic belt from full-wave ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 124(4): 3987-4000. doi: 10.1029/2019JB017387
    [92] Lü Z, Gao H, Lei J. 2020. New insight into crustal and lithospheric variability beneath the central Tien Shan (NW China) revealed by P-wave receiver functions[J]. Journal of Asian Earth Sciences, 189: 104187. doi: 10.1016/j.jseaes.2019.104187
    [93] Lü Z, Lei J, Zhao L, et al. 2021. Crustal deformation of intermontane basins beneath Central Tien Shan revealed by full-wave ambient noise tomography[J]. Tectonophysics, 821: 229143. doi: 10.1016/j.tecto.2021.229143
    [94] Ma X, Huang Z. 2020. Attenuation of high-frequency P and S waves in the crust of central and western Tien Shan[J]. Pure and Applied Geophysics, 177: 4127-4142. doi: 10.1007/s00024-020-02504-1
    [95] Makarov V I. 1995. Neotectonics and geodynamics of mountain systems of Central Asia[J]. Quaternary International, 25: 19-23. doi: 10.1016/1040-6182(94)00031-Y
    [96] Makarov V I, Alekseev D V, Batalev V Y, et al. 2010. Underthrusting of Tarim beneath the Tien Shan and deep structure of their junction zone: Main results of seismic experiment along MANAS Profile Kashgar-Song-Köl[J]. Geotectonics, 44(2): 102-126. doi: 10.1134/S0016852110020020
    [97] Makeyeva L I, Vinnik L P, Roecker S W. 1992. Shear-wave splitting and small-scale convection in the continental upper mantle[J]. Nature, 358: 144-147. doi: 10.1038/358144a0
    [98] Malory A O, Bao X, Chen Z. 2022. Crustal shear wave velocity and radial anisotropy beneath Southern Africa from ambient noise tomography[J]. Tectonophysics, 822: 229191. doi: 10.1016/j.tecto.2021.229191
    [99] 米宁, 王良书, 李华, 等. 2005. 天山和塔里木盆山接合部地壳上地幔速度结构研究[J]. 科学通报, 50(4): 363-368 doi: 10.3321/j.issn:0023-074X.2005.04.011

    Mi N, Wang L S, Li H, et al. 2005. Velocity structure of the crust and uppermost mantle in the boundary area of the Tianshan Mountains and the Tarim Basin[J]. Chinese Science Bulletin, 50(4): 363-368 (in Chinese). doi: 10.3321/j.issn:0023-074X.2005.04.011
    [100] Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 189(4201): 419-426. doi: 10.1126/science.189.4201.419
    [101] Omuralieva A, Nakajima J, Hasegawa A. 2009. Three-dimensional seismic velocity structure of the crust beneath the central Tien Shan, Kyrgyzstan: Implications for large- and small-scale mountain building[J]. Tectonophysics, 465(1-4): 30-44. doi: 10.1016/j.tecto.2008.10.010
    [102] Oreshin S, Vinnik L, Peregoudov D, et al. 2002. Lithosphere and asthenosphere of the Tien Shan imaged by S receiver functions[J]. Geophysical Research Letters, 29(8): 1191. doi: 10.1029/2001GL014443
    [103] Pasyanos M E, Masters T G, Laske G, et al. 2014. LITHO1.0: An updated crust and lithospheric model of the Earth[J]. Journal of Geophysical Research: Solid Earth, 119(3): 2153-2173. doi: 10.1002/2013JB010626
    [104] Raimondo T, Hand M, Collins W J. 2014. Compressional intracontinental orogens: Ancient and modern perspectives[J]. Earth-Science Reviews, 130: 128-153. doi: 10.1016/j.earscirev.2013.11.009
    [105] Reigber C, Michel G W, Galas R, et al. 2001. New space geodetic constraints on the distribution of deformation in Central Asia[J]. Earth and Planetary Science Letters, 191(1-2): 157-165. doi: 10.1016/S0012-821X(01)00414-9
    [106] Sarker G, Abers G A. 1999. Lithospheric temperature estimates from seismic attenuation across range fronts in southern and central Eurasia[J]. Geology, 27(5): 427-430. doi: 10.1130/0091-7613(1999)027<0427:LTEFSA>2.3.CO;2
    [107] Sato H, Sacks I S, Murase T, et al. 1989. Qp-melting temperature relation in peridotite at high pressure and temperature: Attenuation mechanism and implications for the mechanical properties of the upper mantle[J]. Journal of Geophysical Research, 94(B8): 10647-10661. doi: 10.1029/JB094iB08p10647
    [108] Schneider F M, Yuan X, Schurr B, et al. 2013. Seismic imaging of subducting continental lower crust beneath the Pamir[J]. Earth and Planetary Science Letters, 375: 101-112. doi: 10.1016/j.jpgl.2013.05.015
    [109] Schneider F M, Yuan X, Schurr B, et al. 2019. The crust in the Pamir: Insights from receiver functions[J]. Journal of Geophysical Research: Solid Earth, 124(8): 9313-9331. doi: 10.1029/2019JB017765
    [110] Shin Y H, Xu H, BraitenberG C, et al. 2007. Moho undulations beneath Tibet from GRACE-integrated gravity data[J]. Geophysical Journal International, 170(3): 971-985. doi: 10.1111/j.1365-246X.2007.03457.x
    [111] Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation[J]. Journal of Geophysical Research, 96(B10): 16429-16454. doi: 10.1029/91JB00899
    [112] Sippl C, Schurr B, Tympel J, et al. 2013. Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography[J]. Earth and Planetary Science Letters, 384: 165-177. doi: 10.1016/j.jpgl.2013.10.013
    [113] Sobel E R, Dumitru T A. 1997. Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision[J]. Journal of Geophysical Research, 102(B3): 5043-5063. doi: 10.1029/96JB03267
    [114] Steffen R, Steffen H, Jentzsch G. 2011. A three-dimensional Moho depth model for the Tien Shan from EGM2008 gravity data[J]. Tectonics, 30(5): TC5019.
    [115] Styron R, Pagani M. 2020. The GEM Global Active Faults Database[J]. Earthquake Spectra, 36(1_suppl): 160-180. doi: 10.1177/8755293020944182
    [116] 孙吉泽, 向阳, 邢喜民. 2016. 北天山上地幔各向异性研究[J]. 内陆地震, 30(3): 243-249

    Sun J Z, Xiang Y, Xing X M. 2016. Seismic anisotropy on the upper mantle in northern Tianshan[J]. Inland Earthquake, 30(3): 243-249 (in Chinese).
    [117] Sychev I V, Koulakov I, Sycheva N A, et al. 2018. Collisional processes in the crust of the northern Tien Shan inferred from velocity and attenuation tomography studies[J]. Journal of Geophysical Research: Solid Earth, 123(2): 1752-1769. doi: 10.1002/2017JB014826
    [118] 唐明帅, 郑勇, 葛粲, 等. 2014. 帕米尔东北缘地壳结构的P波接收函数研究[J]. 地球物理学报, 57(10): 3176-3188 doi: 10.6038/cjg20141007

    Tang M S, Zheng Y, Ge C, et al. 2014. Study on crustal structure in the northeastern Pamir region by P receiver functions[J]. Chinese Journal of Geophysics, 57(10): 3176-3188 (in Chinese). doi: 10.6038/cjg20141007
    [119] Tian X, Zhao D, Zhang H, et al. 2010. Mantle transition zone topography and structure beneath the central Tien Shan orogenic belt[J]. Journal of Geophysical Research, 115(B10): B10308. doi: 10.1029/2008JB006229
    [120] Vinnik L, Peregoudov D, Makeyeva L, et al. 2002. Towards 3-D fabric in the continental lithosphere and asthenosphere: The Tien Shan[J]. Geophysical Research Letters, 29(16): 1795.
    [121] Vinnik L, Deng Y, Kosarev G, et al. 2018. Permian plume beneath Tarim from receiver functions[J]. Solid Earth, 9(5): 1179-1185. doi: 10.5194/se-9-1179-2018
    [122] Vinnik L P, Makeyeva L I, Milev A, et al. 1992. Global patterns of azimuthal anisotropy and deformations in the continental mantle[J]. Geophysical Journal International, 111(3): 433-447. doi: 10.1111/j.1365-246X.1992.tb02102.x
    [123] Vinnik L P, Reigber C, Aleshin I M, et al. 2004. Receiver function tomography of the central Tien Shan[J]. Earth and Planetary Science Letters, 225(1-2): 131-146. doi: 10.1016/j.jpgl.2004.05.039
    [124] Vinnik L P, Aleshin I M, Kaban M K, et al. 2006. Crust and mantle of the Tien Shan from data of the receiver function tomography[J]. Izvestiya, Physics of the Solid Earth, 42(8): 639-651.
    [125] Vinnik L P, Aleshin I M, Kiselev S G, et al. 2007. Depth localized azimuthal anisotropy from SKS and P receiver functions: The Tien Shan[J]. Geophysical Journal International, 169(3): 1289-1299. doi: 10.1111/j.1365-246X.2007.03394.x
    [126] Wang J, Zhao D. 2008. P-wave anisotropic tomography beneath Northeast Japan[J]. Physics of the Earth and Planetary Interiors, 170(1-2): 115-133. doi: 10.1016/j.pepi.2008.07.042
    [127] Watanabe T. 1993. Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors[J]. Geophysical Research Letters, 20(24): 2933-2936. doi: 10.1029/93GL03170
    [128] Wolfe C J, Vernon III F L. 1998. Shear-wave splitting at central Tien Shan: Evidence for rapid variation of anisotropic patterns[J]. Geophysical Research Letters, 25(8): 1217-1220. doi: 10.1029/98GL00838
    [129] Wu S, Huang R, Xu Y, et al. 2018. Seismological evidence for a remnant oceanic slab in the western Junggar, Northwest China[J]. Journal of Geophysical Research: Solid Earth, 123(5): 4157-4170. doi: 10.1029/2017JB015332
    [130] Wu Y, Bao X, Zhang B, et al. 2022. Seismic evidence for stepwise lithospheric delamination beneath the Tibetan Plateau[J]. Geophysical Research Letters, 49(10): e2022GL098528.
    [131] Xiao W, Song D, Windley B F, et al. 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives[J]. Science China Earth Sciences, 63(3): 329-361. doi: 10.1007/s11430-019-9524-6
    [132] 熊小松, 高锐, 李秋生, 等. 2011. 天山造山带的深部结构[J]. 地球物理学进展, 26(6): 1906-1914 doi: 10.3969/j.issn.1004-2903.2011.06.003

    Xiong X S, Gao R, Li Q S, et al. 2011. The deep structure of Tienshan orogenic belt[J]. Progress in Geophysics, 26(6): 1906-1914 (in Chinese). doi: 10.3969/j.issn.1004-2903.2011.06.003
    [133] Xu Q, Zhao J, Yuan X, et al. 2021. Deep crustal contact between the Pamir and Tarim Basin deduced from receiver functions[J]. Geophysical Research Letters, 48(9): e2021GL093271.
    [134] Xu Y, Liu F, Liu J, et al. 2002. Crust and upper mantle structure beneath western China from P wave travel time tomography[J]. Journal of Geophysical Research: Solid Earth, 107(B10): 2220.
    [135] 徐彦, 毛燕, 胡家富, 等. 2005. 新疆及周边地区Lg尾波的Q值分布[J]. 地震学报, 27(2): 155-162 doi: 10.3321/j.issn:0253-3782.2005.02.005

    Xu Y, Mao Y, Hu J F, et al. 2005. Distribution of Lg coda Q value in Xinjiang and its adjacent regions[J]. Acta Seismologica Sinica, 27(2): 155-162 (in Chinese). doi: 10.3321/j.issn:0253-3782.2005.02.005
    [136] Xu Y, Li Z, Roecker S W. 2007. Uppermost mantle structure and its relation with seismic activity in the central Tien Shan[J]. Geophysical Research Letters, 34(10): L10304. doi: 10.1029/2007GL029708
    [137] 杨彧, 陈建业, 杨晓松, 等. 2010. 部分熔融强化了青藏高原地壳的各向异性?[J]. 地震地质, 32(1): 59-69 doi: 10.3969/j.issn.0253-4967.2010.01.006

    Yang Y, Chen J Y, Yang X S, et al. 2010. Does alignment of melt enhance seismic anisotropy beneath Tibet?[J]. Seismology and Geology, 32(1): 59-69 (in Chinese). doi: 10.3969/j.issn.0253-4967.2010.01.006
    [138] Yin A, Nie S, Craig P, et al. 1998. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan[J]. Tectonics, 17(1): 1-27. doi: 10.1029/97TC03140
    [139] Yu Y, Zhao D, Lei J. 2017. Mantle transition zone discontinuities beneath the Tien Shan[J]. Geophysical Journal International, 211(1): 80-92. doi: 10.1093/gji/ggx287
    [140] Zabelina I V, Koulakov I Y, Buslov M M. 2013. Deep mechanisms in the Kyrgyz Tien Shan orogen (from results of seismic tomography)[J]. Russian Geology and Geophysics, 54(7): 695-706. doi: 10.1016/j.rgg.2013.06.005
    [141] Zandt G, Ammon C J. 1995. Continental crust composition constrained by measurements of crustal Poisson's ratio[J]. Nature, 374: 152-154. doi: 10.1038/374152a0
    [142] Zhang B, Bao X, Xu Y. 2020. Distinct orogenic processes in the South- and North-Central Tien Shan from receiver functions[J]. Geophysical Research Letters, 47(6): e2019GL086941.
    [143] Zhang B, Bao X, Xu Y. 2022. Seismic anisotropy in Central Tien Shan unveils rheology-controlled deformation during intracontinental orogenesis[J]. Geology, 50(7): 812–816. doi: 10.1130/G49633.1
    [144] Zhang P, Shen Z, Wang M, et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812. doi: 10.1130/G20554.1
    [145] Zhang S, Karato S-I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear[J]. Nature, 375: 774-777. doi: 10.1038/375774a0
    [146] 张星宇, 陈超, 杜劲松, 等. 2020. 天山及邻区Vening Meinesz均衡重力异常特征及其动力学意义[J]. 地球物理学报, 63(10): 3791-3803 doi: 10.6038/cjg2020N0448

    Zhang X, Chen C, Du J S, et al. 2020. Characteristics of Vening Meinesz isostatic gravity anomalies in Tien Shan and surroundings and its dynamic significances[J]. Chinese Journal of Geophysics, 63(10): 3791-3803 (in Chinese). doi: 10.6038/cjg2020N0448
    [147] Zhao J, Liu G, Lu Z, et al. 2003. Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar basin[J]. Tectonophysics, 376(3-4): 199-239. doi: 10.1016/j.tecto.2003.07.001
    [148] 赵俊猛, 樊吉昌, 李植纯. 2003a. 库尔勒—吉木萨尔剖面Q值结构及其动力学意义[J]. 中国科学D辑: 地球科学, 33(3): 202-209

    Zhao J M, Fan J C, Li Z C. 2003a. Q-value structure and geodynamic implication of Korla-Jimsar profile[J]. Science in China Series D: Earth Sciences, 33(3): 202-209 (in Chinese).
    [149] 赵俊猛, 张先康, 邓宏钊, 等. 2003b. 拜城—大柴旦剖面的上地壳Q值结构[J]. 地球物理学报, 46(4): 503-509

    Zhao J M, Zhang X K, Deng H Z, et al. 2003b. Q value structure of the upper crust along the profile from Baicheng to Da Qaidam[J]. Chinese Journal of Geophysics, 46(4): 503-509 (in Chinese).
    [150] 赵俊猛, 李植纯, 程宏岗, 等. 2004. 天山造山带岩石圈密度与磁性结构研究及其动力学分析[J]. 地球物理学报, 47(6): 1061-1067 doi: 10.3321/j.issn:0001-5733.2004.06.019

    Zhao J M, Li Z C, Cheng H G, et al. 2004. Structure of lithospheric density and geomagnetism beneath the Tianshan orogenic belt and their geodynamic implications[J]. Chinese Journal of Geophysics, 47(6): 1061-1067 (in Chinese). doi: 10.3321/j.issn:0001-5733.2004.06.019
    [151] 赵静旸, 杜凯夫, 杨国华. 2019. 连续GPS测定的天山及其邻近地区垂向运动特征[J]. 地球物理学进展, 34(5): 1835-1841 doi: 10.6038/pg2019DD0347

    Zhao J Y, Du K F, Yang G H. 2019. Vertical motion characteristics of Tianshan and its adjacent areas measured by continuous GPS[J]. Progress in Geophysics, 34(5): 1835-1841 (in Chinese). doi: 10.6038/pg2019DD0347
    [152] Zheng X, Jiao W, Zhang C, et al. 2010. Short-period Rayleigh-wave group velocity tomography through ambient noise cross-correlation in Xinjiang, Northwest China[J]. Bulletin of the Seismological Society of America, 100(3): 1350-1355. doi: 10.1785/0120090225
    [153] 郑雪刚, 马学军, 孙吉泽, 等. 2016. 利用P波接收函数研究新疆不同地块台站下方地壳结构[J]. 内陆地震, 30(4): 314-322

    Zheng X G, Ma X J, Sun J Z, et al. 2016. Research on crustal structure of seismic stations in Xinjiang different blocks by P receiver functions[J]. Inland Earthquake, 30(4): 314-322 (in Chinese).
    [154] 周铭, 李红谊, 李信富, 等. 2014. 新疆地区地壳S波速度结构及径向各向异性研究[J]. 地震工程学报, 36(4): 1047-1058 doi: 10.3969/j.issn.1000-0844.2014.04.1047

    Zhou M, Li H Y, Li X F, et al. 2014. Crustal S-wave velocity structure and radial anisotropy in Xinjiang region[J]. China Earthquake Engineering Journal, 36(4): 1047-1058 (in Chinese). doi: 10.3969/j.issn.1000-0844.2014.04.1047
    [155] Zhou Z, Lei J. 2015. Pn anisotropic tomography under the entire Tienshan orogenic belt[J]. Journal of Asian Earth Sciences, 111: 568-579. doi: 10.1016/j.jseaes.2015.06.009
    [156] Zubovich A V, Wang X, Scherba Y G, et al. 2010. GPS velocity field for the Tien Shan and surrounding regions[J]. Tectonics, 29(6): TC6014.
  • 加载中
图(10)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  58
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 录用日期:  2022-06-28
  • 修回日期:  2022-06-23
  • 网络出版日期:  2022-07-09
  • 刊出日期:  2023-01-01

目录

    /

    返回文章
    返回