• ISSN 2097-1893
  • CN 10-1855/P

被动源反射地震勘探研究进展

阮小敏 陈明春 刘振东 王志辉 陈淼 张新港

引用本文: 阮小敏,陈明春,刘振东,王志辉,陈淼,张新港. 2022. 被动源反射地震勘探研究进展. 地球与行星物理论评(中英文),53(0):1-24
Ruan X M, Chen M C, Liu Z D, Wang Z H, Chen M, Zhang X G. 2022. Review of progress in passive seismic reflection exploration. Reviews of Geophysics and Planetary Physics, 53(0): 1-24 (in Chinese)

被动源反射地震勘探研究进展

doi: 10.19975/j.dqyxx.2022-046
基金项目: 中国地质科学院基本科研业务费专项经费资助项目(JKY202213,JKY202204);中国地质调查局地质调查项目(DD20211314)
详细信息
    作者简介:

    阮小敏(1984- ),男,博士,高级工程师,主要从事主、被动源地震勘探相关研究. Email:ruanxiaomin@cags.ac.cn

  • 中图分类号: P315

Review of progress in passive seismic reflection exploration

Funds: Supported by the Fundamental Research Funds for the Chinese Academy of Geological Sciences (Grant Nos. JKY202213, JKY202204);the China Geological Survey Project (Grant No. DD20211314)
  • 摘要: 被动源反射地震勘探作为一种低成本且环保的方法,能够获得比被动源面波勘探方法更高分辨率的反射地震剖面,近年来越来越受到人们的关注. 被动源反射成像技术面临着诸多挑战,例如背景噪声场主要受控于面波能量,反射体波信号弱且不易提取;地下实际震源数量有限且分布不均匀,地震干涉重构的虚拟炮集信噪比低;大量检波器长时间观测的海量数据计算和存储瓶颈等. 随着便携式节点地震仪和高性能计算的快速发展,被动源反射地震勘探不仅在方法研究方面取得不少进展,而且在地下矿产勘查、碳封存动态监测等方面都有实际应用. 本文首先简要回顾地震干涉法的发展历程和不同地震干涉方法构建虚拟炮集,然后较为详细地介绍如何从面波主导的背景噪声记录中甄别和提取有效反射信号,以及被动源原始数据预处理、虚拟炮集多次波压制和直接偏移成像等方面的进展,最后通过几个实例了解被动源反射地震勘探的应用现状,并对将来的研究前景进行简单展望.

     

  • 图  1  地震干涉示意图(修改自Schuster, 2009

    Figure  1.  Seismic interferometry schematic diagram (modified from Schuster, 2009)

    图  2  封闭区域模型的地震干涉(Wapenaar and Fokkema, 2006). $\mathrm{格}\mathrm{林}\mathrm{函}\mathrm{数}\widehat{G}\left({x}_{{\rm{A}}},{x}_{{\rm{B}}},\omega \right)$可由观测点${x}_{{\rm{A}}}\mathrm{、}{x}_{{\rm{B}}}$和沿着边界$\partial D$的震源$ x $积分的互相关获得

    Figure  2.  Seismic interferometry model enclosed by boundary (Wapenaar and Fokkema, 2006) Green's function $ \widehat{G}\left({x}_{A},{x}_{B},\omega \right) $ can be obtained by cross-correlating the observations at $ {x}_{A} \; \mathrm{a}\mathrm{n}\mathrm{d }\; {x}_{B} $ and integrating along source coordinate $ x $ at $\partial D$

    图  3  虚源法试验(曹辉等,2012). (a)地表激发、井中接收;(b)虚源构建后的观测系统,消除了近地表复杂条件对波场的透射影响

    Figure  3.  Virtual source method experiments (Cao et al., 2012) . (a) The sources are fired on the surface, and the receivers are located in the borehole; (b) Acquisition geometry after virtual source construction, removing the effects of the complicated near surface

    图  4  不同地震干涉方法计算的模拟数据虚拟炮集(修改自Liu et al., 2020). (a)互相关;(b)反褶积;(c)互相干

    Figure  4.  Virtual shot gathers using noise-free data as input; generated by (a) cross-correlation, (b) deconvolution, and (c) cross-coherence (modified from Liu et al., 2020)

    图  5  不同地震干涉方法计算的实际数据虚拟炮集(方捷等,2022). (a)互相关;(b)反褶积;(c)互相干

    Figure  5.  Virtual shot gathers using low S/N data as input; generated by (a) cross-correlation, (b) deconvolution, and (c) cross-coherence (Fang et al., 2022)

    图  6  不规则分布震源的地震干涉数值计算示例(修改自Wapenaar et al., 2008). (a)横向均匀的水平层状模型,不规则分布震源依次发出瞬态信号;(b)单个地下震源的地震记录响应;(c)互相关重构炮集(黑色点折线)与源在x=0处的直接模拟炮集(红线)对比;(d)多维反褶积炮集(黑色点折线)

    Figure  6.  Numerical simulation of seismic interferometry with irregular sources (modified from Wapenaar et al., 2008). (a) Configuration with a horizontally layered target below a homogeneous overburden and a free surface. The irregularly distributed sources below the target emit transient signals sequentially. (b) Response of one of the sources. (c) Interferometry from cross-correlation (red traces) compared with the directly modeled response of a source at x=0 (black dashed traces). (d) Interferometry from multidimensional deconvolution

    图  7  不同震源参数模拟的地震干涉结果(修改自Thorbecke and Draganov, 2011). (a)地下震源随机分布的10×4 km数值模型;(b)地表中点激发的主动源单炮;(c-e)分别用8000、1000、50个随机位置地下噪声震源激发构建的被动源虚拟炮集;(f)1000个随机位置里克子波震源激发的重构虚拟炮集;(g) 1000个固定2700 m位置深度的里克子波震源同时激发的重构虚拟炮集

    Figure  7.  SI results from modeling by different sources (modified from Thorbecke and Draganov, 2011). (a) The 10×4 km model with sources positioned at random locations, visible as black dots. (b) A directly modeled reference result for an actual source at x=0 m. SI results for noise signature sources for varying numbers of (c) 8000, (d) 1000, and (e) 50. (f) SI results from 1000 sources using the Ricker wavelet in random locations. (g) SI results by 1000 sources using the Ricker wavelet at z=2700 m; the sources are started simultaneously

    图  8  体波提取前后的地震干涉模拟结果(修改自Vidal, 2014). (a)利用所有记录重构的虚拟炮集;(b)提取体波后的重构虚拟炮集;(c)主动源激发单炮

    Figure  8.  SI result for selection of body wave retrieval (modified from Vidal, 2014). (a) Retrieved virtual common-source panel with all recorded data. (b) Retrieved virtual common-source panel after the selection of body wave retrieval. (c) Directly modeled reflection response

    图  9  被动源信号不同频率成分的功率密度谱特征(刘国峰等,2021). (a)面波能量占优;(b)体波能量占优

    Figure  9.  Power density spectrum characteristics for different frequency components of the passive seismic signal (modified from Liu et al., 2021). (a) Energy dominated by surface wave; (b) Energy dominated by body wave

    图  10  频率域计算信噪比参考图(张军华等,2009

    Figure  10.  Spectrum for the signal-to-noise ratio calculation in the frequency domain (Zhang et al., 2009)

    图  11  频率域分离计算后的虚拟炮集记录(刘国峰等,2021). (a)以面波为主的虚拟炮集记录;(b)分离面波后突出体波的虚拟炮集记录,红色箭头为反射波信号

    Figure  11.  Virtual shot gathers after frequency domain separation calculation (Liu et al., 2021). (a) Shot gather with surface wave as the main energy; (b) Shot gather with body wave as the main energy after surface wave separation. Red arrows indicate the reflection wave

    图  12  倾斜叠加照明分析示意图(修改自Vidal, 2014). (a)弹性地下模型,黄色倒三角地表检波器,黑点代表地下震源;(b)浅源数据(灰色星)重构的虚拟炮集;(c)虚拟炮集图(b)对应的慢度;(d-e)深源数据(青色星)的虚拟炮集和慢度,绿线表示面波和体波慢度的区分界限;(f)所有地下震源倾斜叠加慢度分布图

    Figure  12.  Slant-stack illumination diagnosis (modified from Vidal, 2014) . (a) Elastic subsurface model with yellow triangles as receivers and black dots as sources. (b) The virtual source retrieved from the shallow source is marked by the grey star. Red lines indicate slownesses. Green lines are pre-defined limits between body and surface wave slownesses in the virtual source function. (c) Slowness representation CS of the virtual source function from (b). (d) As in (b), but for the source represented by the cyan star in (a). (e) As in (c), but from (d). (f) Illumination diagnosis, consisting of the results for the correlated common source panels from sources in (a) (black dots), with the panel from (b) (grey star) discarded, and the panel from (d) (cyan star) included

    图  13  三维观测系统更好区分地表和地下震源示意图(修改自Chamarczuk et al., 2019). (a)五个检波器 X1 至 X5 记录的来自地表震源S1和地下震源 S2 的直达走时. 两源同时激发,且假定介质传播速度恒定5 km/s. (b)由五个检波器形成的十字排列观测系统. (c)由三条检波线组成的三维观测系统

    Figure  13.  Event discrimination from surface- or body-waves (modified from Chamarczuk et al., 2019). (a) Direct arrivals from sources S1 and S2 recorded at five receivers X1 to X5 forming a cross-shaped array. We assume a constant propagation velocity of 5 km/s. (b) Configuration of the cross-shaped array formed by the five receivers. (c) Three-dimensional (3D) survey formed by the three receiver lines

    图  14  波束成形的方向性分析(修改自Cheraghi, 2017). 正北方向为0°,角度沿逆时针方向增加

    Figure  14.  Directional Beam-forming analysis (modified from Cheraghi, 2017). The north had an azimuth of 0°, which increased to the west (i.e., counterclockwise)

    图  15  不同小时段的最大波束功率及其视速度和方位角(修改自Cheraghi, 2015

    Figure  15.  Calculated beamformers for the maximum beam power of each hourly panel and its apparent velocity and azimuth (modified from Cheraghi, 2015)

    图  16  加拿大Lalor矿区R141线的倾角时差校正叠加剖面(修改自Cheraghi, 2015). (a)主动源剖面;(b)被动源剖面

    Figure  16.  DMO stacked section along line R141 in Lalor deposit, Canada (modified from Cheraghi, 2015). (a) Active-source 3D survey and (b) passive interferometry survey

    图  17  时间域强振幅控制示意图(方捷等,2022

    Figure  17.  Strong amplitude control in the time domain (Fang et al., 2022)

    图  18  频率域强振幅控制示意图(修改自Girard and Shragge, 2019). (a)频率域强振幅控制前(蓝色)和后(红色)的时域信号;(b)频率域强振幅控制前(蓝色)和后(红色)的部分频谱

    Figure  18.  Strong amplitude control in the frequency domain (modified from Girard and Shragge, 2019). (a) Time-domain trace before (blue) and after (red) debursting. (b) Partial spectrum before (blue) and after (red) debursting

    图  19  互相关+叠加得到的以共偏移距(1.0 km)排列的虚拟道集(修改自Girard and Shragge, 2019). (a)原始数据;(b)窗口选择数据;(c)强振幅压制数据

    Figure  19.  Single extracted cross-correlation + stack trace at a virtual source-receiver offset of 1.0 km (modified from Girard and Shragge, 2019). (a) Raw data. (b) After data selection. (c) After time and frequency debursting

    图  20  基于聚焦变换和SRME三维稀疏反演的被动源数据去噪试验(修改自Wang et al, 2021). (a)数值试验速度模型;(b)随机震源采用的子波;(c)震源分布位置;(d)互相关生成的被动源虚拟炮集;(e)应用该方法处理的虚拟炮集;(f)SRME处理后的主动源炮集

    Figure  20.  Numerical tests of noise removal via focal-denoising closed-loop SRME based on the 3D sparse inversion of passive data (modified from Wang et al, 2021). (a) Model for simulating noise-source data and (b) wavelets of the random sources. (c) Source location. Virtual shot gathers from the noise-source data using (d) cross-correlation and (e) the proposed method. (f) Active-source data using SRME

    图  21  被动源反射信号速度分析和局部叠加(刘国峰等,2021

    Figure  21.  Reflection velocity analysis and stacked local passive data (Liu et al., 2021)

    图  22  被动源地震数据直接偏移的数值试验(修改自Cai et al., 2019). (a)Marmousi模型,震源分布在左下方的黑框红框;(b)随机截取的一段4 s的被动源记录;(c)基于全波场分离归一化的被动源数据直接逆时偏移成像

    Figure  22.  Numerical tests for the direct migration of passive data (modified from Cai et al., 2019). (a) Marmousi model with the passive data generated from source locations marked by black and red boxes. (b) Example of a passive seismic record with a length of 4 s. (c) The directmigration image by full wavefields decomposition normalized reverse time migration

    图  23  加拿大Lalor湖附近矿区主、被动源水平切片和垂直剖面(修改自Girard and Shragge, 2020). (a)被动源数据的直接偏移成像;(b)主动源数据的偏移结果

    Figure  23.  Comparison of the horizontal slice and vertical section of 3D active and passive surveys in Lalor deposit, Canada (modified from Girard and Shragge, 2020). (a) Passive direct migration stack and (b) the active-source migration volume

    图  24  加拿大Saskatchewan的CO2封存场所的被动源研究(修改自Cheraghi et al., 2017). (a)被动源剖面(红色为注入井的合成记录);(b)井的合成记录(子波从被动源数据提取);(c)主动源数据剖面;(d)深时转换的P波速度测井记录. LC:下科罗拉多页岩;VF:Vanguard组砂岩;BK:Bakken页岩;PC:前寒武纪岩石

    Figure  24.  Passive surveys of aquistore CO2 storage site Saskatchewan, Canada. (modified from Cheraghi et al., 2017). (a) Passive section (red curve is the log-based synthetic seismogram). (b) Synthetic seismogram generated from a wavelet extracted using the passive data convolved with borehole log-based reflectivity. (c) Active-source cube. (d) Depth-to-time converted P-wave velocity log. LC, VF, BK, and PC represent the Lower Colorado shale, Vanguard Formation, Bakken shale, and Precambrian, respectively

    图  25  CO2封存场所的L1和L2线不同时段的被动源地震成像(修改自Cheraghi et al., 2017

    Figure  25.  Passive seismic imaging for different time periods at the CO2 storage site along lines L1 and L2 (modified from Cheraghi et al., 2017)

    图  26  主、被动源三维共炮集数据对比(修改自Chamarczuk et al., 2022). (a)主动源炮集;(b)30天记录重构的被动源虚拟炮集;(c)10天记录重构的被动源虚拟炮集

    Figure  26.  Comparison of 3D common-source gathers using active and passive data (modified from Chamarczuk et al., 2022). (a) Active-shot gather, (b) VSGs obtained using 30 d of noise, and (c) VSGs obtained using 10 d of noise. VSG:Virture Shot Gathers

    图  27  芬兰Kylylahti结晶岩矿集区主、被动源叠后偏移剖面(修改自Chamarczuk et al., 2022). (a) 主动源剖面;(b)主动源剖面叠合地质解释;(c)被动源剖面叠合地质解释KAL沉积(蓝色);OUM岩体(绿色);S/MS矿化半矿化岩体(红色)

    Figure  27.  Comparison of post-stack migrated sections obtained from active and passive surveys in Kylylahti polymetallic mine, Finland (modified from Chamarczuk et al., 2022). (a) Active survey; (b) Active survey with the geological model background; (c) Passive survey with the geological model background. Geology in the background is color-coded as follows: Kaleva Sedimentary Belt (KAL): blue; semi-massive to massive sulfide (S/MS) mineralization: red; Outokumpu ultra-mafics (OUM): green

    图  28  不同检波线的偏移剖面(修改自Ning et al., 2021). 黑色虚线表明煤层位置

    Figure  28.  Migration sections of receiver lines (modified from Ning et al., 2021). The black dashed lines show the coal seams imaged using ambient-noise data

  • [1] Aki K, Richards P G.1980. Quantitative Seismology: Theory and Methods [M]. San Francisco: Freenman and Coopration, 146-177.
    [2] Artman B. 2006. Imaging passive seismic data[J]. Geophysics, 71(4): SI177–SI187. doi: 10.1190/1.2209748
    [3] Bakulin A, Calvert R. 2006. The virtual source method: Theory and case study[J]. Geophysics, 71(4): SI139-SI150. doi: 10.1190/1.2216190
    [4] Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 169(3): 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x
    [5] Berkhout A J. 1982. Seismic Migration: Imaging of Acoustic Energy by Wave Field Extrapolation[M]. Elsevier Science Publ. Co., Inc.
    [6] Boullenger B, Verdel A, Paap B, et al. 2015. Studying CO2 storage with ambient-noise seismic interferometry: A combined numerical feasibility study and field-data example for Ketzin, Germany[J]. Geophysics, 80: Q1-Q13. doi: 10.1190/2015-0811-TIOGEO.1
    [7] Brenguier F, Shapiro N M, Campillo M, et al. 2008.Towards forecasting volcanic eruptions using seismic noise[J]. Nature Geoscience, 1(2) : 126-130. doi: 10.1038/ngeo104
    [8] Cai Z Z, Han L G, Xu Z. 2019. Passive multiple reverse time migration imaging based on wave decomposition and normalized imaging conditions[J]. Applied Geophysics, 16(3): 338-348. doi: 10.1007/s11770-019-0775-0
    [9] 蔡中正. 2021.被动源地震全波形反演与直接成像方法研究[D]. 长春: 吉林大学.

    Cai Z Z. 2021. The study on passive seismic full waveform inversion and direct imaging method [D]. Changchun: Jilin University (in Chinese).
    [10] Calvert R W, Bakulin A, Jones T C. 2004. Virtual sources: A new way to remove overburden problems[C]//66th Annual International Conference and Exhibition, EAGE, Extended Abstracts, 234.
    [11] Campillo M, Paul A. 2003. Long-range correlations in the diffuse seismic coda[J]. Science, 299(5606): 547-549. doi: 10.1126/science.1078551
    [12] 曹辉, 陈国金, 吴永栓, 等. 2012. 虚源法地震技术综述[J]. 地球物理学进展, 27(3): 1078-1085

    Cao H, Chen G J, Wu Y S, et al. 2012. Review of the seismic virtual source method [J].Progress in Geophysics, 27(3): 1078-1085 (in Chinese).
    [13] Cao H T, Askari R. 2019. Comparison of seismic interferometry techniques for the retrieval of seismic body waves in CO2 sequestration monitoring[J]. Journal of Geophysics and Engineering, 16:1094–1115. doi: 10.1093/jge/gxz079
    [14] Carrière O, Gerstoft P. 2013. Deep-water subsurface imaging using OBS interferometry[J]. Geophysics, 78(2): Q15-Q24. doi: 10.1190/geo2012-0241.1
    [15] Chamarczuk M, Malinowski M, Nishitsuji Y, et al. 2019.Automatic 3D illumination-diagnosis method for large-N arrays: Robust data scanner and machine-learning feature provider[J]. Geophysics, 84(3):13–25.
    [16] Chamarczuk M, Malinowski M, Draganov D. 2021. 2D body-wave seismic interferometry as a tool for reconnaissance studies and optimization of passive reflection seismic surveys in hardrock environments[J]. Journal of Applied Geophysics, 187: 104288. doi: 10.1016/j.jappgeo.2021.104288
    [17] Chamarczuk M, Malinowski M, Draganov D, et al. 2022. Reflection imaging of complex geology in a crystalline environment using virtual-source seismology: Case study from the Kylylahti polymetallic mine, Finland[J]. Solid Earth, 13:705–723. doi: 10.5194/se-13-705-2022
    [18] Chen X Xia J, Pang J, et al. 2022. Deep learning inversion of Rayleigh-wave dispersion curves with geological constraints for near-surface investigations[J]. Geophysical Journal International, 231(1):1–14. doi: 10.1093/gji/ggac171
    [19] Cheng F, Xia J, Xu Y. 2015.A new passive seismic method based on seismic interferometry and multichannel analysis of surface waves[J]. Journal of Applied Geophysics, 117:126-135. doi: 10.1016/j.jappgeo.2015.04.005
    [20] Cheraghi S, Craven A J, Bellefleur G. 2015. Feasibility of virtual source reflection seismology using interferometry for mineral exploration: A test study in the Lalor Lake volcanogenic massive sulphide mining area, Manitoba, Canada[J]. Geophysical Prospecting, 63(4): 833-848. doi: 10.1111/1365-2478.12244
    [21] Cheraghi S, White D J, Draganov D, et al. 2017. Passive seismic reflection interferometry: A case study from the Aquistore CO2 storage site, Saskatchewan, Canada[J]. Geophysics, 82(3): B79-B93. doi: 10.1190/geo2016-0370.1
    [22] Claerbout J F. 1968. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics, 33(2): 264-269. doi: 10.1190/1.1439927
    [23] Claerbout J F. 2014. Geophysical Image Estimation by Example[M]. LULU Press.
    [24] Cole S P. 1995. Passive seismic and drill-bit experiments using 2-D arrays [D]. California: Stanford University.
    [25] Derode A, Larose E, Campillo M, Fink M. 2003. How to estimate the Green’s function of a heterogeneous medium between two passive sensors? Application to acoustic waves[J]. Applied Physics Letters, 83: 3054–3056. doi: 10.1063/1.1617373
    [26] Draganov D, Campman X, Thorbecke J, et al. 2009. Reflection images from ambient seismic noise[J]. Geophysics, 74(5): A63-A67. doi: 10.1190/1.3193529
    [27] Draganov D, Campman X, Thorbecke J, et al. 2013. Seismic exploration-scale velocities and structure from ambient seismic noise (>1 Hz)[J]. Journal of Geophysical Research: Solid Earth, 118(8): 4345-4360. doi: 10.1002/jgrb.50339
    [28] 方捷, 闫浩飞, 刘国峰. 2022. 被动源体波信息提取技术及其质量监控[J]. 地球物理学进展, 37(1): 178-191

    Fang J, Yan H F, Liu G F. 2022. Passive seismic body wave extraction technology and it's quality control[J]. Progress in Geophysics, 37(1): 178-191 (in Chinese).
    [29] Gaiser J E, Vasconcelos I. 2010. Elastic interferometry for ocean bottom cable data: Theory and examples[J]. Geophysical Prospecting, 58(3): 347-360. doi: 10.1111/j.1365-2478.2009.00825.x
    [30] Girard A G, Shragge J. 2019. Automated processing strategies for ambient seismic data[J]. Geophysical Prospecting, 68(1): 293-312.
    [31] Girard A G, Shragge J. 2020. Direct migration of ambient seismic data[J]. Geophysical Prospecting, 68(1): 270-292. doi: 10.1111/1365-2478.12792
    [32] Hu B, Wang D L,Wang R. 2020. An iterative focal denoising strategy for passive seismic data[J]. Pure and Applied Geophysics 177(4): 4607–4622.
    [33] Hu Y, Pan Y, Xia J. 2022.Wavefield separated full-waveform inversion of shallow-seismic Rayleigh wave[J]. Pure and Applied Geophysics, 179:1583–1596. doi: 10.1007/s00024-022-02995-0
    [34] 靳中原, 韩立国, 胡勇, 等. 2017. 基于低频信息补偿的数据驱动Marchenko成像[J]. 地球物理学报, 60(9): 3601-3615

    Jin Z Y, Han L G, Hu Y, et al. 2017. Low frequency information compensation based data-driven Marchenko imaging[J]. Chinese Journal of Geophysics, 60(9): 3601-3615 (in Chinese).
    [35] Jin Z Y. 2020. Passive Seismic marchenko imaging[C]//22nd EGU General Assembly, held online 4-8 May, id.3413.
    [36] Jonsdottir K, Vogfjord K, Bean C. 2013. Coda wave interferometry and correlation study using multiplets in the Katla volcano, 2011 and 2012[C]//Geophysical Research Abstracts, Vienna,Austria: EGU General Assembly: 12584.
    [37] Le Feuvre M, Joubert A, Leparoux D, et al. 2015. Passive multi-channel analysis of surface waves with cross-correlations and beamforming. Application to a sea dike[J]. Journal of Applied Geophysics, 114: 36-51. doi: 10.1016/j.jappgeo.2014.12.014
    [38] 李奇, 张智, 侯爵等.2021.背景噪声提取体波方法研究进展[J].地震科学进展, 51(10): 433-451

    Li Q, Zhang Z, Hou J, et al. 2021. Research progress of the extraction body waves from ambient noise [J].Progress in Earthquake Sciences, 51(10): 433-451 (in Chinese).
    [39] 刘国峰, 刘语, 孟小红, 等. 2021. 被动源面波和体波成像在内蒙古浅覆盖区勘探应用[J]. 地球物理学报, 64(3): 937-948

    Liu G F, Liu Y, Meng X H, et al. 2021. Surface wave and body wave imaging of passive seismic exploration in shallow coverage area application of Inner Mongolia[J]. Chinese Journal of Geophysics, 64(3): 937-948 (in Chinese).
    [40] Liu Y J, Ma Y, Luo Y. 2020. Source location with cross-coherence migration[J]. Geophysics, 85(4):127–138. doi: 10.1190/geo2019-0311.1
    [41] Mehta K, Sheiman J L, Snieder R, et al. 2008. Strengthening the virtual source method for time-lapse monitoring[J]. Geophysics, 73(3): S73–S80. doi: 10.1190/1.2894468
    [42] Meles G A, Löer K, Ravasi M, et al. 2015. Internal multiple prediction and removal using Marchenko autofocusing and seismic interferometry[J]. Geophysics, 80(1):A7-A11. doi: 10.1190/geo2014-0408.1
    [43] Miao S, Zhang H, Tan Y, et al. 2021. High resolution seismic waveform migration location method and its applications to induced seismicity[J]. Earth and Planetary Physics, 5(6): 520-531.
    [44] Minato S, Matsuoka T, Tsuji T, et al. 2009. Application of seismic interferometry by multidimensional deconvolution to crosswell seismic reflection using singular-value decomposition[C]//SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicsts, 1688-1692.
    [45] Nakata N, Chang J P, Lawrence J F, et al. 2015. Body wave extraction and tomography at Long Beach, California, with ambient-noise interferometry[J]. Journal of Geophysical Research: Solid Earth, 120(2): 1159-1173. doi: 10.1002/2015JB011870
    [46] Ning G, Chamarczuk M, Ji G, et al. 2021. Passive seismic structure imaging of a coal mine by ambient noise seismic interferometry on a dense array[J]. Acta Geologica Sinica (English Edition), 95(supp. 1): 37–39.
    [47] Olivier G, Brenguier F, Campillo M, et al. 2015. Body-wave reconstruction from ambient seismic noise correlations in an underground mine[J]. Geophysics, 80(3): KS11-KS25. doi: 10.1190/geo2014-0299.1
    [48] Oren C, Nowack R L. 2017. Seismic body-wave interferometry using noise autocorrelations for crustal structure[J]. Geophysical Journal International, 208(1): 321-332. doi: 10.1093/gji/ggw394
    [49] Panea I, Draganov D, Vidal C A, et al. 2014. Retrieval of reflections from ambient noise recorded in the Mizil area, Romania[J]. Geophysics, 79(3): Q31-Q42. doi: 10.1190/geo2013-0292.1
    [50] Peng Z, Ben-Zion Y. 2006. Temporal changes of shallow seismic velocity around the Karadere-Düzce branch of the north Anato-lian fault and strong ground motion[J]. Pure and Applied Geophysics,163: 567-600. doi: 10.1007/s00024-005-0034-6
    [51] Prieto G A, Lawrence J F, Beroza G C. 2009. Anelastic Earth structure from the coherency of the ambient seismic field[J]. Journal of Geophysical Research: Solid Earth, 114(B7): B07303.
    [52] Rickett J, Claerbout J. 1999. Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring[J]. The Leading Edge,18: 957–960. doi: 10.1190/1.1438420
    [53] Ritzwoller M H. 2009. Ambient Noise Seismic Imaging[M]. McGraw Hill Yearbook of Science & Technology.
    [54] Roach L A N, White D J, Roberts B, et al. 2015. Assessment of 4D seismic repeatability and CO2 detection limits using a sparse permanent land array at the Aquistore CO2 storage site[J]. Geophysics, 80(2):WA1– WA13. doi: 10.1190/geo2014-0201.1
    [55] Schuster G T. 2001. Theory of daylight/interferometric imaging-Tutorial[C]//71st Ann. Internat Mtg., Soc. Expi. Geophys. Expanded Abstracts, A32.
    [56] Schuster G T. 2009. Seismic Interferometry[M]. Cambridge University Press.
    [57] Schuster, G. T., J. Yu, J. Sheng. 2004.Interferometric/daylight seismic imaging[J].Geophysical Journal International, 157: 838–852. doi: 10.1111/j.1365-246X.2004.02251.x
    [58] 尚旭佳, 韩立国, 齐祺媛, 等. 2021. 基于随机干涉重构的被动源地震数据全波形反演[J]. 地球物理学进展, 36(6): 2557-2565

    Shang X J, Han L G, Qi Q Y, et al. 2021. Passive seismic full waveform inversion based on random interferometry reconstruction [J]. Progress in Geophysics, 36(6): 2557-2565 (in Chinese).
    [59] Shapiro N M, Campillo M, Stehly L, et al. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 307(5715): 1615-1618. doi: 10.1126/science.1108339
    [60] Shapiro N M. 2019. Applications with Surface Waves Extracted from Ambient Seismic Noise [M]//Nakata N, Gualtieri L, Fichtner A. Seismic ambient noise. New York: Cambridge University Press, 218-238.
    [61] Shiraishi K, Watanabe T. 2022. Passive seismic reflection imaging based on acoustic and elastic reverse time migration without source information: Theory and numerical simulations, exploration[J]. Geophysics. 53(2):198–210.
    [62] Snieder R. 2004. Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase[J]. Physical Review E, 69(4): 046610. doi: 10.1103/PhysRevE.69.046610
    [63] Snieder R,Vrijlandt M. 2005.Constraining the source separation with coda wave interferometry: Theory and application to earthquake doublets in the Hayward fault, California[J]. Journal of Geophysical Research: Solid Earth, 110: B04301.
    [64] Snieder R. 2006. The theory of coda wave interferometry[J]. Pure & Applied Geophysics, 163(2-3):455-473.
    [65] Snieder R, Miyazawa M, Slob E, et al. 2009.A comparison of strategies for seismic interferometry[J]. Surveys in Geophysics, 30: 503–523. doi: 10.1007/s10712-009-9069-z
    [66] 汤聪, 符力耘, 肖富森, 等. 2022. 金属矿地震勘探进展与展望[J]. 地球与行星物理论评, 53(2): 187-203

    Tang C, Fu L Y, Xiao F S, et al. 2022. Review of progress in seismic exploration in metallic deposits[J]. Reviews of Geophysics and Planetary Physics, 53(2): 187-203 (in Chinese).
    [67] Thorbecke J W, Draganov D. 2011. Finite-difference modeling experiments for seismic interferometry[J]. Geophysics, 76(6): H1-H18. doi: 10.1190/geo2010-0039.1
    [68] Vasconcelos I, Snieder R. 2008. Interferometry by deconvolution: Part 1 — Theory for acoustic waves and numerical examples[J]. Geophysics, 73(3): S115-S128. doi: 10.1190/1.2904554
    [69] Vidal C A, Draganov D, Van Der Neut J, et al. 2014. Retrieval of reflections from ambient noise using illumination diagnosis[J]. Geophysical Journal International, 198:1572–1584. doi: 10.1093/gji/ggu164
    [70] 王德利, 程浩, 朱恒, 等.2012.基于反褶积算法的地震干涉技术被动源成像[J].吉林大学学报(地球科学版), 42(6): P1920-1926

    Wang D L,Cheng H,Zhu H,et al.2012.Deconvolution-based seismic interferometry passive source imaging[J].Journal of Jilin University (Earth Science Edition),42(6):P1920-1926 (in Chinese).
    [71] 汪利民, 夏江海, 罗银河等.2022.浅地表面波成像技术研究进展与展望[J].地球与行星物理论评, 53(6): 613-655

    Wang L M,Xia J H,Luo Y H,et al.2022.Progress and prospect of surface-wave imaging techniques in near-surface applications[J].Reviews of Geophysics and Planetary Physics,53(6):613-655 (in Chinese).
    [72] Wang T X, Wang D L, Sun J, et al. 2021. Passive seismic data primary estimation and noise removal via focal-denoising closed-loop surface-related multiple elimination based on 3D L1-norm sparse inversion[J]. Geophysical Prospecting, 69(1):122-138. doi: 10.1111/1365-2478.13034
    [73] Wapenaar K, Thorbecke J, Draganov D. 2004. Relations between reflection and transmission responses of three-dimensional inhomogeneous media[J]. Geophysical Journal International, 156: 179–194. doi: 10.1111/j.1365-246X.2003.02152.x
    [74] Wapenaar K, Fokkema J. 2006. Green's function representations for seismic interferometry[J]. Geophysics, 71: 33-46.
    [75] Wapenaar K, van der Neut J, Ruigrok E. 2008. Passive seismic interferometry by multidimensional deconvolution[J]. Geophysics, 73(6): 51-56.
    [76] Wapenaar K, van der Neut J, Ruigrok E, et al. 2011. Seismic interferometry by crosscorrelation and by multidimensional deconvolution: asystematic comparison[J]. Geophysical Journal International, 185(3): 1335-1364. doi: 10.1111/j.1365-246X.2011.05007.x
    [77] Weaver R L, Lobkis O I. 2001. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies[J]. Physical Review Letters, 87(13): 134301. doi: 10.1103/PhysRevLett.87.134301
    [78] Weaver R L, Lobkis O I. 2002. On the emergence of the Green's function in the correlations of a diffuse field: Pulse-echo using thermal phonons[J]. Ultrasonics, 40: 435-439. doi: 10.1016/S0041-624X(02)00156-7
    [79] Wegler U, Sens-Schönfelder C. 2007. Fault zone monitoring with passive image interferometry[J]. Geophysical Journal International ,168( 3) : 1029--1033. doi: 10.1111/j.1365-246X.2006.03284.x
    [80] Xi C, Xia J, Mi B, et al. 2021. Modified frequency-Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophysical Journal International, 225(2): 1271-1280.
    [81] Xia J H. 2014. Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods[J]. Journal of Applied Geophysics, 103: 140-151. doi: 10.1016/j.jappgeo.2014.01.016
    [82] Zhang H J, Thurber C H. 2003. Double-difference tomography: The method and its application to the Hayward fault, California[J]. Bulletin of the Seismological Society of America, 93(5): 1875–1889. doi: 10.1785/0120020190
    [83] 张军华, 藏胜涛, 周振晓, 等.2009.地震资料信噪比定量计算及方法比较[J].石油地球物理勘探, 44(4): 481-486

    Zhang J H,Zang S T,Zhou Z X,et al.2009.Quantitative computation and comparison of S/N ratio in seismic data[J].Oil Geophysical Prospecting,44(4):481-486 (in Chinese).
    [84] 张盼, 韩立国, 刘强, 等.2015.主动源与被动源地震数据插值及联合数据成像[J].地球物理学报, 58(5): 1754-1766

    Zhang P,Han L G,Liu Q,et al.2015.Interpolation of seismic data from active and passive sources and their joint migration imaging [J].Chinese Journal of Geophysics,58(5):1754-1766 (in Chinese).
    [85] 张盼, 邢贞贞, 胡勇.2019.基于弹性波全波形反演的主被动源多分量混采地震数据速度建模[J].地球物理学报, 62(10): 3974-3987

    Zhang P,Xing Z Z,Hu Y.2019.Velocity construction using active and passive multi-component seismic data based on elastic full waveform inversion[J].Chinese Journal of Geophysics,62(10):3974-3987 (in Chinese).
    [86] 郑钧, 刘语, 刘国峰. 2022. 被动源反射地震数据起伏地表静校正问题分析[J]. 地球物理学进展. https://kns.cnki.net/kcms/detail/11.2982.P.20220321.1331.018.html.

    Zhen J, Liu Y, Liu G F. 2022. Analysis of static correction of passive source reflection on undulating surface[J]. Progress in Geophysics (in Chinese). https://kns.cnki.net/kcms/detail/11.2982.P.20220321.1331.018.html.
    [87] Zheng Y, Wang, Y, Wu S, et al. 2015. Passive seismic imaging using data to data migration and angle domain filtering[C]//85th Annual International Meeting, SEG, Expanded Abstracts, 2630–2634.
    [88] 朱恒, 王德利, 时志安.2012.地震干涉技术被动源地震成像[J].地球物理学进展, 27(2): 496-502

    Zhu H,Wang D L,Shi Z A.2012.Passive seismic imaging of seismic interferometry[J].Progress in Geophysics,27(2):496-502 (in Chinese).
  • 加载中
图(28)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  23
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-17
  • 录用日期:  2022-07-20
  • 修回日期:  2022-07-15
  • 网络出版日期:  2022-08-02

目录

    /

    返回文章
    返回