• ISSN 2097-1893
  • CN 10-1855/P

热等离子体影响嘶声波的色散特性和电子散射效应研究

马新 顾旭东 朱琪 焦鹿怀 王敬之 倪彬彬

引用本文: 马新,顾旭东,朱琪,焦鹿怀,王敬之,倪彬彬. 2022. 热等离子体影响嘶声波的色散特性和电子散射效应研究. 地球与行星物理论评(中英文),53(0):1-14
Ma X, Gu X D, Zhu Q, Jiao L H, Wang J Z, Ni B B. 2022. Hot plasma effects on the dispersion properties of plasmaspheric hiss and its electron diffusion. Reviews of Geophysics and Planetary Physics, 53(0): 1-14 (in Chinese)

热等离子体影响嘶声波的色散特性和电子散射效应研究

doi: 10.19975/j.dqyxx.2022-045
基金项目: 国家自然科学基金资助项目(42025404);民用航天技术预先研究项目(D020303,D020308,D020104);中央高校基本科研业务费专项资金资助(2042022kf1016)
详细信息
    作者简介:

    马新(1992-),女,助理研究员,主要从事地球辐射带波粒相互作用研究. E-mail:whumaxin@whu.edu.cn

    通讯作者:

    顾旭东(1979-),男,副教授,主要从事磁层物理和空间波粒相互作用研究. E-mail:guxudong@whu.edu.cn

  • 中图分类号: P353.4

Hot plasma effects on the dispersion properties of plasmaspheric hiss and its electron diffusion

Funds: Supported by the National Natural Science Foundation of China (Grant No. 42025404), the Pre-research projects on Civil Aerospace Technologies (Grant Nos. D020303, D020308 and D020104), the Fundamental Research Funds for the Central Universities (Grant No. 2042022kf1016)
  • 摘要: 由等离子体层嘶声波引起的电子散射效应是地球内磁层电子损失的重要机制,也是地球内外辐射带间槽区形成的主要原因. 在量化嘶声波对高能电子散射效应的研究过程中,冷等离子体近似下的嘶声波色散关系被广泛应用. 然而在实际磁层等离子体环境中,热等离子体成分的存在会修正嘶声波的色散特性,进而也会影响嘶声波对高能电子的散射效应. 本文主要介绍了热等离子体影响嘶声波色散特性及其对电子散射效应的相关研究. 基于卫星波动观测数据的统计分析结果证实了热等离子体效应对嘶声波色散特性的修正作用;通过典型事例分析以及基于准线性理论的数值计算,分析了嘶声波散射高能电子对地磁活动条件和热等离子体参数(电子温度各向异性、热电子温度以及热电子占比)的依赖性. 结果表明,冷等离子体假设会高估100 keV以下能量电子以及较大投掷角范围内100 keV以上能量电子的散射系数,而低估较低投掷角范围内100 keV以上能量电子的散射系数. 此外,冷等离子体假设下共振区间会扩展到更低能量的电子,而基于观测的色散曲线结果则使100 keV以上电子与嘶声波的共振范围扩展到更小的投掷角区间. 随着热等离子体参数的增大,冷等离子体近似与热等离子体环境下的散射系数差异也逐渐增大. 相关研究结果对于模拟实际等离子体环境中嘶声波对电子的散射过程以及辐射带的动态演化具有重要意义.

     

  • 图  1  Van Allen Probe A 在2014年1月4日17:30—21:30观测到的等离子体层嘶声事例. 由上到下分别为(a)背景等离子体密度;(b)AE和SYM-H指数;(c)观测电场功率谱强度;(d)观测磁场功率谱强度;(e)反演磁场功率谱强度;(f)波动传播角;(g)波动极化率;(h)波动平面度;(i)观测与反演的嘶声波幅值(修改自Ma et al., 2021

    Figure  1.  Overview of plasmaspheric hiss event observed by Van Allen Probe A on January 4, 2014. (a) Ambient electron density inferred from upper hybrid frequency, fUHR. (b) Time series of AE index and SYM_H index. Observed power spectral intensities of the (c) electric field and (d) magnetic field. (e) Converted power spectral intensity of the magnetic field based on the cold plasma dispersion relation. (f) Wave normal angle. (g) Wave ellipticity. (h) Wave planarity. (i) Observed (red) and converted (blue) hiss wave amplitudes (modified from Ma et al., 2021)

    图  2  (a-c)利用冷等离子体色散关系反演得到的嘶声波波动强度与卫星观测波动强度的对比. 横坐标表示观测波动强度,纵坐标表示反演得到的波动强度. 每个色块表示相应的观测波动强度对应的反演波动强度的归一化事件数. (d-f)观测嘶声波强度与反演波动强度之比(ratio)的对数的概率分布. 相应的方差绘制在每个面板上标注在子图左侧,上方色块表示数据出现在不同比值区间内的概率(修改自Ma et al., 2021

    Figure  2.  (a-c) Comparisons of observed and converted wave intensities using cold plasma dispersion relation for plasmaspheric hiss with different levels of substorm activity. The color indicates the number of points in each bin, which is normalized to the maximum number of points in each observed wave power column (x-axis). (d-f) Probability distributions of the logarithm of the ratio between the observed and converted wave intensities. The corresponding variance is also plotted in each panel, along with the percentages of the data that occur in the discreet ratio (modified from Ma et al., 2021)

    图  3  (a-c)不同地磁活动强度下观测嘶声波强度与反演嘶声波强度比值的方差在不同L-MLT区域内的全球分布. (d-f)不同地磁活动强度下观测嘶声波强度与反演嘶声波强度比值的方差随波动频率的变化(修改自Ma et al., 2021

    Figure  3.  (a-c) Global distribution of variance in the distributions for the ratio of observed and converted wave intensities in the L-MLT domain, under different levels of substorm activity. (d-f) Variance as a function of the hiss wave frequency (modified from Ma et al., 2021)

    图  4  不同地磁活动水平下,嘶声波观测强度与反演强度比值的均值和方差随L-MLT 的全球统计分布,(a-c)均值;(d-f)方差(修改自Zhu et al., 2022

    Figure  4.  From left to right, global distribution of mean value and variance in the ratio of the observed hiss amplitude and converted amplitude as a function of L-shell and MLT, under different geomagnetic conditions: (a-c) mean value and (d-f) variance in the ratio (modified from Zhu et al., 2022)

    图  5  (a-c)不同地磁活动条件下嘶声波事件的磁场强度与色散曲线. 色图对应每个波动事件的磁场强度,蓝色虚线表示冷等离子体近似假设下的色散曲线,红色实线为基于观测数据得到的色散曲线,黑色虚线是对观测数据频谱进行高斯拟合后的色散曲线. 不同地磁活动条件下嘶声波对高能电子的散射效应差异对比. (d-f)冷等离子体近似下嘶声波对高能电子的局地投掷角散射系数. (g-i)基于观测数据色散关系拟合的嘶声波对辐射带电子的局地投掷角散射系数. 图(j-l)为两种色散关系下指定电子能级的局地投掷角散射系数对比(修改自Ma et al., 2021

    Figure  5.  (a-c) Observed hiss magnetic field spectral intensities at L = 4 as a function of the wave frequency and data-based wavenumber, under different substorm conditions. The dashed blue line corresponds to the cold plasma dispersion curve, and the solid red line corresponds to the averaged data-based dispersion curve. The averaged data-based dispersion curve was further linearly fitted, as indicated by the dashed black line. Electron local pitch angle diffusion coefficients as a function of the electron pitch angle kinetic energy corresponding to (d-f) cold plasma and (g-i) linearly fitted data-based dispersion relations. (j-l) Line plots of electron local pitch angle diffusion coefficients corresponding to the cold plasma (dashed lines) and linear fitted data-based (solid lines) dispersion relations for four indicated electron energies (modified from Ma et al., 2021)

    图  6  不同热等离子体参数情况下,等离子体层嘶声波的色散曲线. (a-c)分别对应色散曲线随热电子温度各向异性、热电子温度和热电子占比的变化. 实线对应不同热等离子体参数下色散曲线,虚线对应冷等离子体假设下的色散曲线

    Figure  6.  Dispersion curves of plasmaspheric hiss under different thermal plasma parameters. (a-c) Variation in dispersion curve with temperature anisotropy, hot electron temperature, and hot electron abundance, respectively. The solid and dotted lines correspond to the dispersion curves under the hot plasma and cold plasma assumptions, respectively

    图  7  等离子体层嘶声波对电子的弹跳平均投掷角散射系数随电子能级和赤道投掷角的变化. (a-c)冷等离子体条件下的投掷角散射系数;(d-f)不同热电子温度各向异性下的投掷角散射系数;(g-h)不同热电子温度下的投掷角散射系数;(j-l)不同热电子占比下的投掷角散射系数

    Figure  7.  2-D plots of bounce-averaged pitch angle diffusion rates as a function of the electron energy and equatorial pitch angle. From top to bottom, we show the results corresponding to (a-c) cold plasma approximation, (d-f) hot plasma approach for different temperature anisotropic behaviors, (g-h) different hot electron temperatures, and (j-l) different hot electron abundances

    图  8  等离子体层嘶声波对四种不同能量的电子的弹跳平均投掷角散射系数. (a-c)不同热电子温度各向异性下的投掷角散射系数;(d-f)不同热电子温度下的投掷角散射系数;(g-i)不同热电子占比下的投掷角散射系数. 虚线表示冷等离子体假设下的投掷角散射系数,实线表示热等离子体条件下的投掷角散射系数

    Figure  8.  Bounce-averaged pitch angle scattering rates of electrons at four different energies induced by plasmaspheric hiss under different thermal plasma parameters: (a-c) different sets of hot electron temperature anisotropic behaviors, (d-f) different hot electron temperatures, and (g-h) different hot electron abundances. The solid and dotted lines correspond to the pitch angle scattering rates under the hot plasma and cold plasma assumptions, respectively

  • [1] Abel B, Thorne R M. 1998a. Electron scattering loss in Earth's inner magnetosphere: 1. Dominant physical processes[J]. Journal of Geophysical Research: Space Physics, 103(A2): 2385-2396. doi: 10.1029/97JA02919
    [2] Abel B, Thorne R M. 1998b. Electron scattering loss in Earth's inner magnetosphere: 2. Sensitivity to model parameters[J]. Journal of Geophysical Research: Space Physics, 103(A2): 2397-2407. doi: 10.1029/97JA02920
    [3] Agapitov O, Artemyev A, Krasnoselskikh V, et al. 2013. Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements[J]. Journal of Geophysical Research: Space Physics, 118(6): 3407-3420. doi: 10.1002/jgra.50312
    [4] Agapitov O V, Artemyev A V, Mourenas D, et al. 2014. Inner belt and slot region electron lifetimes and energization rates based on Akebono statistics of whistler waves[J]. Journal of Geophysical Research: Space Physics, 119(4): 2876-2893. doi: 10.1002/2014JA019886
    [5] Albert J M. 1994. Quasi-linear pitch angle diffusion coefficients: Retaining high harmonics[J]. Journal of Geophysical Research: Space Physics, 99(A12): 23741-23745. doi: 10.1029/94JA02345
    [6] Albert J M. 2003. Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma[J]. Journal of Geophysical Research: Space Physics, 108(A6): 1249. DOI: 10.1029/2002JA009792.
    [7] Bortnik J, Thorne R, Meredith N. 2008. The unexpected origin of plasmaspheric hiss from discrete chorus emissions[J]. Nature, 452(7183): 62-66. doi: 10.1038/nature06741
    [8] Bortnik J, Thorne R M, Meredith N P. 2009. Plasmaspheric hiss overview and relation to chorus[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 71(16): 1636. doi: 10.1016/j.jastp.2009.03.023
    [9] Cao X, Shprits Y Y, Ni B B, et al. 2017. Scattering of ultra-relativistic electrons in the van allen radiation belts accounting for hot plasma effects[J]. Scientific Reports, 7(1): 17719. doi: 10.1038/s41598-017-17739-7
    [10] Cao X, Ni B B, Summers D, et al. 2020a. Effects of superthermal plasmas on the linear growth of multiband EMIC waves[J]. The Astrophysical Journal, 899(1): 43. doi: 10.3847/1538-4357/ab9ec4
    [11] Cao X, Ni B B, Summers D, et al. 2020b. Hot plasma effects on the pitch-angle scattering rates of radiation belt electrons due to plasmaspheric hiss[J]. The Astrophysical Journal, 896(2): 118. doi: 10.3847/1538-4357/ab9107
    [12] Carpenter D L. 1978. New whistler evidence of a dynamo origin of electric fields in the quiet plasmasphere[J]. Journal of Geophysical Research: Space Physics, 83(A4): 1558-1564. doi: 10.1029/JA083iA04p01558
    [13] Chen L, Thorne R M, Shprits Y Y, et al. 2013. An improved dispersion relation for parallel propagating electromagnetic waves in warm plasmas: Application to electron scattering[J]. Journal of Geophysical Research: Space Physics, 118(5): 2185-2195. doi: 10.1002/jgra.50260
    [14] Chen L J, Zhu H, Zhang X J. 2019. Wavenumber analysis of EMIC waves[J]. Geophysical Research Letters, 46(11): 5689-5697. doi: 10.1029/2019GL082686
    [15] Fried B D, Conte S D. 1961. The Plasma Dispersion Function[M]. New York: Academic Press.
    [16] Fu H B, Yue C, Ma Q L, et al. 2021. Frequency-dependent responses of plasmaspheric hiss to the impact of an interplanetary shock[J]. Geophysical Research Letters, 48(20): e2021GL094810.
    [17] Gao Y Z, Xiao F L, Yan Q, et al. 2015. Influence of wave normal angleson hiss-electron interaction in Earth's slot region[J]. Journal of Geophysical Research: Space Physics, 120(11): 9385-9400. doi: 10.1002/2015JA021786
    [18] Hartley D P, Chen Y, Kletzing C A, et al. 2015. Applying the cold plasma dispersionrelation to whistler mode choruswaves: EMFISIS wave measurementsfrom the Van Allen Probes[J]. Journal of Geophysical Research: Space Physics, 120: 1144-1152. DOI: 10.1002/2014JA020808.
    [19] Hartley D P, Kletzing C A, Kurth W S, et al. 2016. Using the cold plasma dispersion relation and whistler mode waves to quantify the antenna sheath impedance of the Van Allen Probes EFW instrument[J]. Journal of Geophysical Research: Space Physics, 121: 4590-4606. DOI: 10.1002/2016JA022501.
    [20] Hartley D P, Kletzing C A, Santolík O, et al. 2018. Statistical properties of plasmaspheric hiss from Van Allen Probes observations[J]. Journal of Geophysical Research: Space Physics, 123(4): 2605-2619. doi: 10.1002/2017JA024593
    [21] Hayakawa M, Ohmi N, Parrot M, et al. 1986. Direction finding of ELF hiss emissions in a detached plasma region of the magnetosphere[J]. Journal of Geophysical Research: Space Physics, 91(A1): 135-141. doi: 10.1029/JA091iA01p00135
    [22] Hayakawa M, Sazhin S S. 1992. Mid-latitude and plasmaspheric hiss: A review[J]. Planetary and Space Scence, 40(10): 1325-1338. doi: 10.1016/0032-0633(92)90089-7
    [23] Kennel C F, Engelmann F. 1966. Velocity space diffusion from weak plasma turbulence in a magnetic field[J]. The Physics of Fluids, 9(12): 2377-2388. doi: 10.1063/1.1761629
    [24] Kim K C, Lee D Y, Shprits Y Y. 2015. Dependence of plasmaspheric hiss on solar wind parameters and geomagnetic activity and modeling of its global distribution[J]. Journal of Geophysical Research: Space Physics, 120(2): 1153-1167. doi: 10.1002/2014JA020687
    [25] Kurth W S, De Pascuale S, Faden J B, et al. 2015. Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes[J]. Journal of Geophysical Research: Space Physics, 120(2): 904-914. doi: 10.1002/2014JA020857
    [26] Lam M M, Horne R B, Meredith N P, et al. 2007. Modeling the effects of radial diffusion and plasmaspheric hiss on outer radiation belt electrons[J]. Geophysical Research Letters, 34(20): L20112. doi: 10.1029/2007GL031598
    [27] Li W, Thorne R M, Bortnik J, et al. 2010. Global distributions of suprathermal electrons observed on THEMIS and potential mechanisms for access into the plasmasphere[J]. Journal of Geophysical Research: Space Physics, 115(A12): A00J10.
    [28] Li W, Ni B B, Thorne R M, et al. 2014. Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis[J]. Geophysical Research Letters, 41(4): 1085-1092. doi: 10.1002/2013GL059132
    [29] Li W, Ma Q L, Thorne R M, et al. 2015. Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their effects on radiation belt electron dynamics[J]. Journal of Geophysical Research: Space Physics, 120(5): 3393-3405. doi: 10.1002/2015JA021048
    [30] Liu N G, Su Z P, Gao Z L, et al. 2020. Comprehensive observations of substorm-enhanced plasmaspheric hiss generation, propagation, and dissipation[J]. Geophysical Research Letters, 47(2): e2019GL086040.
    [31] Lyons L R, Thorne R M, Kennel C F. 1972. Pitch-angle diffusion of radiation belt electrons within the plasmasphere[J]. Journal of Geophysical Research, 77(19): 3455-3474. doi: 10.1029/JA077i019p03455
    [32] Ma Q L, Li W, Thorne R M, et al. 2017. Diffusive transport of several hundred keV electrons in the Earth's slot region[J]. Journal of Geophysical Research: Space Physics, 122(10): 10235-10246.
    [33] Ma X, Cao X, Ni B B, et al. 2021. Realistic dispersion of plasmaspheric hiss in the inner magnetosphere and its effect on wave-induced electron scattering rates[J]. Astrophysical Journal, 916(1): 14. doi: 10.3847/1538-4357/abf4d6
    [34] Malaspina D M, Jaynes A N, Hospodarsky G, et al. 2017. Statistical properties of low-frequency plasmaspheric hiss[J]. Journal of Geophysical Research: Space Physics, 122(8): 8340-8352. doi: 10.1002/2017JA024328
    [35] Malaspina D M, Zhu H, Drozdov A Y. 2020. A wave model and diffusion coefficients for plasmaspheric hiss parameterized by plasmapause location[J]. Journal of Geophysical Research: Space Physics, 125(2): e2019JA027415.
    [36] Meredith N P, Horne R B, Thorne R M, et al. 2004. Substorm dependence of plasmaspheric Hiss[J]. Journal of Geophysical Research: Space Physics, 109(A6): A06209.
    [37] Meredith N P, Horne R B, Glauert S A, et al. 2006. Energetic outer zone electron loss timescales during low geomagnetic activity[J]. Journal of Geophysical Research: Space Physics, 111(A5): A05212.
    [38] Meredith N P, Horne R B, Glauert S A, et al. 2007. Slot region electron loss timescales due to plasmaspheric hiss and lightning generated whistlers[J]. Journal of Geophysical Research: Space Physics, 112(A8): A08214.
    [39] Meredith N P, Horne R B, Sicard-Piet A, et al. 2012. Global model of lower band and upper band chorus from multiple satellite observations[J]. Journal of Geophysical Research: Space Physics, 117(A10): A10225.
    [40] Meredith N P, Horne R B, Kersten T, et al. 2018. Global model of plasmaspheric hiss from multiple satellite observations[J]. Journal of Geophysical Research: Space Physics, 123(6): 4526-4541. doi: 10.1029/2018JA025226
    [41] Meredith N P, Bortnik J, Horne R B, et al. 2021. Statistical investigation of the frequency dependence of the chorus source mechanism of plasmaspheric hiss[J]. Geophysical Research Letters, 48: e2021GL092725. DOI: 10.1029/2021gl092725.
    [42] Nakamura S, Omura Y, Summers D. 2018. Fine structure of whistler mode hiss in plasmaspheric plumes observed by the Van Allen Probes[J]. Journal of Geophysical Research: Space Physics, 123(11): 9055-9064. doi: 10.1029/2018JA025803
    [43] Ni B B, Cao X, Shprits Y Y, et al. 2018. Hot plasma effects on the cyclotron-resonant pitch-angle scattering rates of radiation belt electrons due to EMIC waves[J]. Geophysical Research Letters, 45(1): 21-30. doi: 10.1002/2017GL076028
    [44] Ni B B, Huang H, Zhang W X, et al. 2019. Parametric sensitivity of the formation of reversed electron energy spectrum caused by plasmaspheric hiss[J]. Geophysical Research Letters, 46(8): 4134–4143.
    [45] Santolík O, Parrot M, Storey L R O, et al. 2001. Propagation analysis of plasmaspheric hiss using Polar PWI measurements[J]. Geophysical Research Letters, 28(6): 1127-1130. doi: 10.1029/2000GL012239
    [46] Shi R, Li W, Ma Q L, et al. 2019. Properties of whistler mode waves in Earth's plasmasphere and plumes[J]. Journal of Geophysical Research: Space Physics, 124(2): 1035-1051. doi: 10.1029/2018JA026041
    [47] Smith E J, Frandsen A M A, Tsurutani B T, et al. 1974. Plasmasheric hiss intensity variations during magnetic storms[J]. Journal of Geophysical Research: Space Physics, 79(16): 2507-2510. doi: 10.1029/JA079i016p02507
    [48] Stix T H. 2003. Waves in Plasmas[M]. New York: American Institute of Physics.
    [49] Su Z P, Liu N G, Zheng H, et al. 2018. Large-amplitude extremely low frequency hiss waves in plasmaspheric plumes[J]. Geophysical Research Letters, 45(2): 565-577. doi: 10.1002/2017GL076754
    [50] Summers D, Ni B B, Meredith N P. 2007. Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves[J]. Journal of Geophysical Research: Space Physics, 112(A4): A04207.
    [51] Summers D, Ni B B, Meredith N P, et al. 2008. Electron scattering by whistler-mode ELF hiss in plasmaspheric plumes[J]. Journal of Geophysical Research: Space Physics, 113(A4): A04219.
    [52] Swanson D G. 2003. Plasma Waves[M]. London: Institute of Physics Publishing.
    [53] Thorne R M, Smith E J, Burton R K, et al. 1973. Plasmaspheric hiss[J]. Journal of Geophysical Research, 78(10): 1581-1596. doi: 10.1029/JA078i010p01581
    [54] Thorne R M, Smith E J, Fiske K J, et al. 1974. Intensity variation of ELF hiss and chorus during isolated substorms[J]. Geophysical Research Letters, 1(5): 193-196. doi: 10.1029/GL001i005p00193
    [55] Thorne R M, Church S R, Malloy W J, et al. 1977. The local time variation of ELF emissions during periods of substorm activity[J]. Journal of Geophysical Research, 82(10): 1585-1590. doi: 10.1029/JA082i010p01585
    [56] Tsurutani B T, Smith E J, Thorne R M. 1975. Electromagnetic hiss and relativistic electron losses in the inner zone[J]. Journal of Geophysical Research, 80(4): 600-607. doi: 10.1029/JA080i004p00600
    [57] Tsurutani B T, Falkowski B J, Verkhoglyadova O P, et al. 2012. Dayside ELF electromagnetic wave survey: A Polar statistical study of chorus and hiss[J]. Journal of Geophysical Research: Space Physics, 117(A9): A00L12.
    [58] Tsurutani B T, Falkowski B J, Pickett J S, et al. 2015. Plasmaspheric hiss properties: Observations from Polar[J]. Journal of Geophysical Research: Space Physics, 120(1): 414-431. doi: 10.1002/2014JA020518
    [59] Turner D L, Claudepierre S G, Fennell J F, et al. 2015. Energetic electron injections deep into the inner magnetosphere associated with substorm activity[J]. Geophysical Research Letters, 42(7): 2079-2087. doi: 10.1002/2015GL063225
    [60] Wang J Z, Zhu Q, Gu X D, et al. 2020. An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements[J]. Earth and Planetary Physics, 4(3): 246-265.
    [61] Yu J, Li L Y, Cao J B, et al. 2017. Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models[J]. Journal of Geophysical Research: Space Physics, 122(4): 4156-4167. doi: 10.1002/2016JA023372
    [62] Yu J, Li L Y, Cui J, et al. 2019. Effect of hot He+ ions on the electron pitch angle scattering driven by H+, He+, and O+ band EMIC waves[J]. Geophysical Research Letters, 46(12): 6306-6314. doi: 10.1029/2019GL083456
    [63] Yu J, Li L Y, Cui J, et al. 2020. Nonlinear interactions between relativistic electrons and EMIC waves in magnetospheric warm plasma environments[J]. Journal of Geophysical Research: Space Physics, 125(12): e2020JA028089.
    [64] Yue C, Zong Q, Wang Y, et al. 2011. Inner magnetosphere plasma characteristics in response to interplanetary shock impacts[J]. Journal of Geophysical Research: Space Physic, 116: A11206. DOI: 10.1029/2011JA016736.
    [65] Zhang W X, Fu S, Gu X D, et al 2018. Electron scattering by plasmaspheric hiss in a nightside plume[J]. Geophysical Research Letters, 45(10): 4618–4627.
    [66] Zhang W X, Ni B B, Huang H, et al. 2019. Statistical properties of hiss in plasmaspheric plumes and associated scattering losses of radiation belt electrons[J]. Geophysical Research Letters, 46(11): 5670-5680. doi: 10.1029/2018GL081863
    [67] Zhao H, Ni B B, Li X L, et al. 2019. Plasmaspheric hiss waves generate a reversed energy spectrum of radiation belt electrons[J]. Nature Physics, 15(4): 367-372. doi: 10.1038/s41567-018-0391-6
    [68] Zhou Q H, Xiao F L, Yang C, et al. 2016. Evolution ofchorus emissions into plasmaspherichiss observed by Van Allen Probes[J]. Journal of Geophysical Research: Space Physics, 121(5): 4518-4529. doi: 10.1002/2016JA022366
    [69] Zhu Q, Ma X, Cao X, er al. 2022. Assessment of the applicability of the cold plasma dispersion relation of slot region hiss based on Van Allen Probes observations[J]. Acta Physica Sinica, 71(5): 051101. doi: 10.7498/aps.71.20211671
    [70] Zong Q G, Zhou X Z, Wang Y F, et al. 2009. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt[J]. Journal of Geophysical Research: Space Physics, 114(A10): A10204.
  • 加载中
图(8)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  78
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-14
  • 录用日期:  2022-06-22
  • 修回日期:  2022-06-22
  • 网络出版日期:  2022-07-05

目录

    /

    返回文章
    返回