• ISSN 2097-1893
  • CN 10-1855/P
引用本文: 泽仁志玛,刘大鹏,孙晓英,杨艳艳,赵庶凡,颜蕊,张振霞,黄河,杨德贺,王婕,楚伟,王桥,许嵩,胡云鹏,林剑,谭巧,黄建平,鲁恒新,郭峰,周娜,李文静,申旭辉. 2022. 张衡一号电磁卫星在轨情况及主要的科学成果. 地球与行星物理论评(中英文),53(0):1-11
Zeren Z M, Liu D P, Sun X Y, Yang Y Y, Zhao S F, Yan R, Zhang Z X, Huang H, Yang D H, Wang J, Chu W, Wang Q, Xu S, Hu Y P, Lin J, Tan Q, Huang J P, Lu H X, Guo F, Zhou N, Li W J, Shen X H. 2022. Current status and scientific progress of the Zhangheng-1 satellite mission. Reviews of Geophysics and Planetary Physics, 53(0): 1-11 (in Chinese)

张衡一号电磁卫星在轨情况及主要的科学成果

doi: 10.19975/j.dqyxx.2022-043
基金项目: 国家自然科学基金面上资助项目(41874174);国家自然科学基金青年资助项目(42104159);亚太空间合作组织地震研究资助项目;中欧龙计划第五期资助项目;国际空间科学研究所项目
详细信息
    作者简介:

    泽仁志玛(1976-),女,研究员. 主要从事电磁卫星数据处理及科学应用. E-mail:zerenzhima@ninhm.ac.cn

    通讯作者:

    申旭辉(1965-),男,二级研究员. 主要从事空间地球物理、灾害遥感及通导遥一体化技术集成研究. E-mail:xuhuishen@ninhm.ac.cn

  • 中图分类号: P352.7

Current status and scientific progress of the Zhangheng-1 satellite mission

Funds: Supported by the National Natural Science Foundation of China (Grant No. 41874174), the National Natural Science Foundation for Young Scientists of China (Grant No. 42104159), APSCO Research Project Phase II, Dragon project phase fifth, and ISSI-BJ project
  • 摘要: 张衡一号电磁卫星是中国地震立体观测体系的天基观测平台,其科学目标是获取全球电磁场、电离层等离子体、高能粒子数据,对中国及其周边开展电离层动态实时监测和地震前兆跟踪,弥补地面观测的不足,探索地震监测预测新途径. 张衡一号电磁卫星系列的第一颗试验卫星于2018年2月成功发射,现已在轨稳定运行4年多;第二颗同类电磁卫星将于2023年6月左右发射. 在轨测试、交叉定标工作表明张衡一号电磁卫星具备良好数据质量. 在科学产出方面,张衡一号卫星全球地磁场参考模型是全球地磁场参考模型(IGRF)构建一个多世纪以来,唯一由中国科学家牵头且唯一采用中国数据制作的全球地磁场参考模型;基于张衡一号的电离层电子密度3D模型很好地重现了电离层结构特征;张衡一号电磁卫星在地震等自然灾害、空间天气事件监测方面显示出了良好的响应能力;在圈层耦合机理方面,关于地震电磁波跨圈层传播全波计算方法能够计算出岩石圈-电离层波导及电离层中的电磁场变化,证实了张衡一号卫星电磁场载荷探测地震低频电磁异常的能力. 张衡一号卫星能够反映岩石圈的地震、甚低频发射站、岩石圈磁异常、大气层的闪电等活动. 科学研究结果表明张衡一号电磁卫星与其它观测结果一致,具备良好的数据质量,将为地球物理、空间物理等相关领域持续提供数据支撑.

     

  • 图  1  张衡一号卫星全球地磁场模型CGGM 2020.0(修改自Yang et al., 2021a

    Figure  1.  The global geomagnetic field model built by the Zhangheng-1 satellite (modified from Yang et al., 2021a)

    图  2  张衡一号卫星电子密度三维模型在春分时节电子密度随高度的演变情况(修改自Huang et al., 2022

    Figure  2.  Evolution of electron density with height at the spring-equinox revealed by Zhangheng-1 satellite electron density 3D model (modified from Huang et al., 2022)

    图  3  张衡一号卫星记录的地震电离层扰动事件(a)及初步统计结果(b, c)(修改自Li et al., 2020

    Figure  3.  The seismic-ionospheric disturbance events recorded by CSES (a) and the preliminary statistical results (b,c) (modified from Li et al., 2020)

    图  4  张衡一号卫星对2018年8月26日强磁暴期的响应情况(修改自Yang et al., 2020; Zeren et al., 2020; Zhang et al., 2021

    Figure  4.  The response capability of Zhangheng-1 satellite to the Aug. 26, 2018 geomagnetic storm (modified from Yang et al., 2020; Zeren et al., 2020; Zhang et al., 2021)

    图  5  基于全波方法的低频电磁波传播模型与张衡一号卫星观测比较(修改自Zhao et al., 2019, 2021

    Figure  5.  The full-wave propagation model of the low-frequency electromagnetic waves model and comparison with CSES's observations (modified from Zhao et al., 2019, 2021)

  • [1] Alken P, Thébault E, Beggan C D, et al. 2020. International Geomagnetic Reference Field: the thirteenth generation[J]. Earth, Planets and Space, 73(1): 1-25.
    [2] Alken P, Thébault E, Beggan C D, et al. 2021. Evaluation of candidate models for the 13th generation International Geomagnetic Reference Field[J]. Earth, Planets and Space, 73(1): 1-21.
    [3] Cao J, Zeng L, Zhan F, et al. 2018. The electromagnetic wave experiment for CSES mission: Search coil magnetometer[J]. Science China Technological Sciences, 61(5): 653-658. doi: 10.1007/s11431-018-9241-7
    [4] Chu W, Huang J, Shen X, et al. 2018. Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite[J]. Earth and Planetary Physics, 2(6): 489-498.
    [5] 胡云鹏, 泽仁志玛, 黄建平, 等. 2020. 张衡一号卫星记录的空间电磁波传播特征分析方法及算法实现[J]. 地球物理学报, 63(5): 1751-1765 doi: 10.6038/cjg2020N0405

    Hu Y P, Zeren Z M, Huang J P, et al. 2020. Algorithms and implementation of wave vector analysis tool for the electromagnetic waves recorded by the CSES satellite[J]. Chinese Journal of Geophysics, 63(5): 1751-1765 (in Chinese). doi: 10.6038/cjg2020N0405
    [6] Huang H, Lin J, Xu S, et al. 2022. A 3D empirical model of electron density based on CSES radio occultation measurements[J]. Space Weather, 20(5): e2021SW003018.
    [7] Huang J, Lei J, Li S, et al. 2018. The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results[J]. Earth and Planetary Physics, 2(6): 469-478. doi: 10.26464/epp2018045
    [8] Larkina V I, Migulin V V, Molchanov O A, et al. 1989. Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones[J]. Physics of the Earth and Planetary Interiors, 57(1): 100-109.
    [9] Li M, Shen X, Parrot M, et al. 2020. Primary joint statistical seismic influence on ionospheric parameters recorded by the CSES and DEMETER satellites[J]. Journal of Geophysical Research: Space Physics, 125(12): e2020JA028116.
    [10] Li X, Xu Y, An Z, et al. 2019. The high-energy particle package onboard CSES[J]. Radiation Detection Technology and Methods, 3(3): 11.
    [11] Lin J, Shen X, Hu L, et al. 2018. CSES GNSS ionospheric inversion technique, validation and error analysis[J]. Science China Technological Sciences, 61(5): 41-49.
    [12] Liu C, Guan Y, Zheng X, et al. 2019. The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite[J]. Science China Technological Sciences, 62(5): 829-838. doi: 10.1007/s11431-018-9345-8
    [13] 刘大鹏, 申旭辉, 杨德贺, 等. 2021. 张衡一号卫星观测的地基VLF波电离层加热扰动特征[J]. 电波科学学报, 36(6): 768-774

    Liu D P, Shen X H, Yang D H, et al. 2021. Characteristics of ionospheric heating disturbances caused by ground-based VLF waves observed by ZHANGHENG-1 satellite[J]. Chinese Journal of Radio Science, 36(6): 768-774 (in Chinese).
    [14] Liu D, Zeren Z, Shen X, et al. 2021. Typical ionospheric disturbances revealed by the plasma analyzer package onboard the China Seismo-Electromagnetic Satellite[J]. Advances in Space Research, 68(9): 3796-3805. doi: 10.1016/j.asr.2021.08.009
    [15] Marchetti, D, et al. , 2020. Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 MW=7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data[J]. Journal of Asian Earth Sciences, 188: 104097. doi: 10.1016/j.jseaes.2019.104097
    [16] Parrot M, Benoist D, Berthelier J, et al. 2006. The magnetic field experiment IMSC and its data processing onboard DEMETER: Scientific objectives, description and first results[J]. Planetary and Space Science, 54(5), 441-455. doi: 10.1016/j.pss.2005.10.015
    [17] Picozza P, Battiston R, Ambrosi G, et al. 2019. Scientific goals and in-orbit performance of the High-Energy Particle Detector on board the CSES[J]. The Astrophysical Journal Supplement Series, 243(1): 16. doi: 10.3847/1538-4365/ab276c
    [18] Piersanti M, Materassi M, Battiston R, et al. 2020. Magnetospheric–Ionospheric–Lithospheric Coupling Model. 1: Observations during the 5 August 2018 Bayan Earthquake[J]. Remote Sensing, 12(20): 3299. doi: 10.3390/rs12203299
    [19] Piersanti M, Pezzopane M, Zeren Z M, et al. 2021. Can an impulsive variation of the solar wind plasma pressure trigger a plasma bubble? A case study based on CSES, Swarm and THEMIS data[J]. Advances in Space Research, 67(1), 35-45.
    [20] Pulinets S A, Ouzounov D, Davidenko D. 2018. The Possibility of Earthquake Forecasting: Learning from Nature[M]. IOP Publishing Ltd.
    [21] Shen X, Zhang X, Yuan S, et al. 2018a. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission[J]. Science China Technological Sciences, 61(5): 634-642. doi: 10.1007/s11431-018-9242-0
    [22] Shen X, Zong Q, Zhang X. 2018b. Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results[J]. Earth and Planetary Physics, 2(6): 439-443. doi: 10.26464/epp2018041
    [23] Wang J, Shen X, Zeren Z, et al. 2021. Initial scalar lithospheric magnetic anomaly map of China and surrounding regions derived from CSES satellite data[J]. Science China Technological Sciences, 64(5): 1118-1126. doi: 10.1007/s11431-020-1727-0
    [24] Wang L, Zhang Z X, Li X Q, et al. 2022. Low energetic solar proton events following X-ray flare occurrence based on ZH-1 satellite observation[J]. Fronties in Earth Science (in press).
    [25] Wang Q, Huang J, Zhao S, et al. 2022. The electromagnetic anomalies recorded by CSES during Yangbi and Madoi earthquakes occurred in late May 2021 in west China[J]. Natural Hazards Research, 2(1): 1-10. doi: 10.1016/j.nhres.2022.01.003
    [26] Wang X, Cheng W, Zhou Z, et al. 2019. Comparison of CSES ionospheric RO data with COSMIC measurements[J]. Annales Geophysicae Discussions, 37(6): 1025-1038. doi: 10.5194/angeo-37-1025-2019
    [27] Wang X, Yang D, Zhou Z, et al. 2020. Validation of CSES RO measurements using ionosonde and ISR observations[J]. Advances in Space Research, 66(10): 2275-2288. doi: 10.1016/j.asr.2020.08.028
    [28] Yan R, Zeren Z, Xiong C, et al. 2020. Comparison of electron density and temperature from the CSES satellite with other space-borne and ground-based observations[J]. Journal of Geophysical Research: Space Physics, 125(10): e2019JA027747.
    [29] Yan R, Guan Y, Miao Y, et al. 2022. The regular features recorded by the Langmuir probe onboard the low earth polar orbit satellite CSES[J]. Journal of Geophysical Research: Space Physics, 127: e2021JA029289.
    [30] Yang D, Zeren Z, Wang Q. 2022. Stability validation on the VLF waveform data of the China-Seismo-Electromagnetic Satellite[J]. Science China Technological Sciences (in press).
    [31] Yang Y, Zeren Z, Shen X, et al. 2020. The first intense geomagnetic storm event recorded by the China Seismo-Electromagnetic Satellite[J]. Space Weather, 18(1): e2019SW002243.
    [32] Yang Y, Hulot G, Vigneron P, et al. 2021a. The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite[J]. Earth, Planets and Space, 73(1): 45.
    [33] Yang Y, Zhou B, Hulot G, et al. 2021b. CSES high precision magnetometer data products and example study of an intense geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 126(4): e2020JA028026.
    [34] 袁静, 王桥, 杨德贺, 2021a. 张衡一号感应磁力仪数据闪电哨声波自动识别[J]. 地球物理学报, 64(11): 3905-3924. doi: 10.6038/cjg2021o0164"> 10.6038/cjg2021o0164.

    Yuan J, Wang Q, Yang D H, et al. 2021a. Automatic recognition algorithm of lightning whislters observed by the Search Coil Magnetometer onboard the Zhangheng-1 Satellite[J]. Chinese Journal of Geophysics, 64(11): 3905-3924 (in Chinese). doi: 10.6038/cjg2021o0164
    [35] 袁静, 王桥, 张学民, 等. 2021b. 基于电磁卫星的闪电哨声波智能检测算法的研究进展[J]. 地球物理学报, 64(5) : 1471-1495.

    Yuan J, Wang Q, Zhang X M, et al. 2021b. Advances in the automatic detection algorithms for lightning whistlers recorded by electromagnetic satellite data [J]. Chinese Journal of Geophysics, 64(5):1471-1495 (in Chinese).
    [36] 袁静, 王子杰, 泽仁志玛, 等. 2022. 基于智能语音技术的闪电哨声波自动识别[J]. 地球物理学报, 65(3): 882-897 doi: 10.6038/cjg2022P0365

    Yuan J, Wang Z J, Zeren Z, et al. 2022. Automatic recognition algorithm of the lightning whistler waves by using speech processing technology[J]. Chinese Journal of Geophysics, 65(3): 882-897 (in Chinese). doi: 10.6038/cjg2022P0365
    [37] Zeren Z, Huang J, Shen X, et al. 2020. Simultaneous observations of ELF/VLF rising-tone quasiperiodic waves and energetic electron precipitations in the high-latitude upper ionosphere[J]. Journal of Geophysical Research: Space Physics, 125(5): e2019JA027574.
    [38] Zeren Z, Hu Y, Shen X, et al. 2021. Storm-time features of the ionospheric ELF/VLF waves and energetic electron fluxes revealed by the China Seismo-Electromagnetic Satellite[J]. Applied Sciences, 11(6): 2617. doi: 10.3390/app11062617
    [39] Zeren Z, Yan R, Lin J, et al. 2022a. The possible seismo-ionospheric perturbations recorded by the China-Seismo-Electromagnetic Satellite[J]. Remote Sensing, 14(4): 905. doi: 10.3390/rs14040905
    [40] Zeren Z, Zhou B, Zhao S, et al. 2022b. Cross-calibration on the electromagnetic field detection payloads of the China Seismo-Electromagnetic Satellite[J]. Science China Technological Sciences, 18 (in press).
    [41] Zhang Z, Chen L, Liu S, et al. 2020. Chorus acceleration of relativistic electrons in extremely low L-shell during geomagnetic storm of August 2018[J]. Geophysical Research Letters, 47(4): e2019GL086226.
    [42] Zhang Z, Zhou R, Hua M, et al. 2021. Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms[J]. Chinese Physics B, 30 (10): 129401.
    [43] 赵庶凡, 廖力, 张学民. 2017. 地面VLF波穿透电离层的能量衰减变化[J]. 地球物理学报, 60(8): 3004-3014 doi: 10.6038/cjg20170809

    Zhao S F, Liao L, Zhang X M. 2017. Trans-ionospheric VLF wave power absorption of terrestrial VLF signal[J]. Chinese Journal of Geophysics, 60(8): 3004-3014 (in Chinese). doi: 10.6038/cjg20170809
    [44] Zhao S, Zhou C, Shen X, et al. 2019. Investigation of VLF transmitter signals in the ionosphere by ZH-1 observations and full-wave simulation[J]. Journal of Geophysical Research: Space Physics, 124(6): 4697-4709. doi: 10.1029/2019JA026593
    [45] Zhao S, Shen X, Zeren Z, et al. 2020a. The VLF transmitters' radio wave anomalies related to 2010 MS 7.1 Yushu earthquake observed by DEMETER satellite and the possible mechanism[J]. Annales Geophysicae Discussions, 38(5): 969-981. doi: 10.5194/angeo-38-969-2020
    [46] Zhao S, Shen X, Zhou C, et al. 2020b. The influence of the ionospheric disturbance on the ground based VLF transmitter signal recorded by LEO satellite–Insight from full wave simulation[J]. Results in Physics, 19: 103391. doi: 10.1016/j.rinp.2020.103391
    [47] Zhao S, Shen X, Liao L, et al. 2020c. Investigation of precursors in VLF subionospheric signals related to strong earthquakes (M> 7) in western China and possible explanations[J]. Remote Sensing, 12(21): 3563. doi: 10.3390/rs12213563
    [48] Zhao S, Shen X, Liao L, et al. 2021. A lithosphere-atmosphere-ionosphere coupling model for ELF electromagnetic waves radiated from seismic sources and its possibility observed by the CSES[J]. Science China Technological Sciences, 64(11): 9.
    [49] Zhou B, Yang Y, Zhang Y, et al. 2018. Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite[J]. Earth and Planetary Physics, 2(6): 455-461. doi: 10.26464/epp2018043
    [50] Zhu K, Zheng L, Yan R, et al. 2021. The variations of electron density and temperature related to seismic activities observed by CSES[J]. Natural Hazards Research, 1(2): 88-94. https://doi.org/10.1016/j.nhres.2021.06.001.
  • 加载中
图(5)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  43
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 录用日期:  2022-07-26
  • 修回日期:  2022-07-25
  • 网络出版日期:  2022-08-10

目录

    /

    返回文章
    返回