• ISSN 2097-1893
  • CN 10-1855/P

中-下地幔散射体:探测方法、研究进展和展望

李娟 陈思丹 何小波 王巍 杨凡

引用本文: 李娟,陈思丹,何小波,王巍,杨凡. 2022. 中-下地幔散射体:探测方法、研究进展和展望. 地球与行星物理论评(中英文),53(0):1-16
Li J, Chen S D, He X B, Wang W, Yang F. 2022. Mid-lower mantle scatterers: Detection methods, research progress and prospect. Reviews of Geophysics and Planetary Physics, 53(0): 1-16 (in Chinese)

中-下地幔散射体:探测方法、研究进展和展望

doi: 10.19975/j.dqyxx.2022-039
基金项目: 国家自然科学基金资助项目(42074063);中国科学院地质与地球物理研究所重点部署资助项目(IGGCAS-201904)
详细信息
    通讯作者:

    李娟,研究员,主要从事行星与地球深部结构和动力学过程研究. E-mail:juanli@mail.iggcas.ac.cn

  • 中图分类号: P315

Mid-lower mantle scatterers: Detection methods, research progress and prospect

Funds: Supported by the National Natural Science Foundation of China (Grant No. 42074063), and the Key Research Program of the Institute of Geology & Geophysics, CAS (Grant No. IGGCAS-201904)
  • 摘要: 得益于地震波传播理论的快速发展、数据分析方法日新月异的变化以及地震观测覆盖区域的增加,我们对地球深部的探测能力从原有的百千米尺度提升到目前的千米尺度. 地震层析成像研究很早就揭示出体积庞大的下地幔存在数千千米尺度的不均匀体,而对下地幔更小尺度上(约十千米至百千米)的认识则来自于基于台阵分析的高频地震散射波探测技术. 大量证据表明整个下地幔分布着数千米至数千千米不同尺度的速度不均匀体,其形成可能与俯冲至下地幔的洋壳和俯冲板片的岩石圈地幔物质密切相关. 因此,对下地幔不均匀体的探测及其分布规律和形成机理的认识,将有助于理解地球内部物质构成及其矿物相变、热化学结构等,进而深化我们对地幔流变性、地幔对流模式和地幔混合效率等地球内部热化学、动力学过程的认识. 本文聚焦于分布在约700~2000 km中-下地幔深度的小尺度不均匀体/散射体,首先从散射体的定义和小尺度不均匀性的统计学描述出发,分别介绍探测下地幔小尺度散射体的地震波“探针”及探测方法的特点和局限性,简要回顾一些代表性研究;其后基于搜集到的200余个下地幔散射体数据,统计了散射体的深度部分布特点;最后针对下地幔散射体探测方法中的问题给出思考,并对该研究方向进行了展望.

     

  • 图  1  不同模型的二维随机速度扰动示例. (a)高斯型,a=5 km,σ=0.05,其中a是代表相关长度,反映散射体的特征长度,σ是RMS(root mean square)速度扰动. (b)指数型,a=5 km,σ=0.05. (c)Von Karman 型,a=5 km,σ=0.05,κ=1.0,κ控制大尺度和小尺度异常体的比例. (d)Von Karman 型,a=5 km,σ=0.05,κ=0.1

    Figure  1.  Example of two-dimensional random velocity disturbance of different models. (a) Gaussian type, a=5 km, σ=0.05, where a represents the correlation length, reflecting the characteristic length of the scatterer, σ represents RMS (root mean square) velocity disturbance. (b) Exponential type, a=5 km, σ=0.05. (c) Von Karman type, a=5 km, σ=0.05, κ=1.0, where κ controls the proportion of large-scale and small-scale abnormal bodies. (d) Von Karman type, a=5 km, σ=0.05, κ=0.1

    图  2  散射波射线路径示意图. 菱形为深部地幔散射体,五角星为地震事件,三角形为地震台站. 实线代表地表台站接收到的不同体波震相的射线路径,如直达P波、PP、PKPPKP以及PKIKP波. 虚线代表上述体波震相,经过深部地幔散射体散射后的射线路径. 图中还示意了一种新震相PdpP的射线路径,原PP震相经由散射体散射,到达地表反射一次再被台站所接收

    Figure  2.  The schematic diagram of scattered wave ray path. The diamonds represent deep mantle scatterers; the pentagrams represent seismic events and the triangles represent seismic stations. The solid lines represent the ray paths of different body wave seismic phases received by surface stations, such as the direct P, PP, PKPPKP and PKIKP waves. The dotted lines represent the ray paths of the seismic phases scattered by the deep mantle scatterers. The figure also shows the ray path of a new seismic phase PdpP. The original PP seismic phase is first scattered by the scatterer, and then reflected on the surface once, before received by the seismic station

    图  3  SdP转换波示意图. 震源发出的S波遇到地幔中深度为d的不连续面或散射体,发生S-P波的转换,最终被地表台站所接收

    Figure  3.  The schematic diagram of SdP converted wave. The S-wave that emitted by the source will meet the discontinuity or scatterer located at depth of d; it will then convert to P wave before received by the station

    图  4  偏移成像示意图. x为散射点,$ {T}_{\mathrm{s}\mathrm{x}} $表示震源到散射点的旅行时,$ {T}_{\mathrm{x}\mathrm{r}} $表示散射点到接收台站的旅行时. $ {\theta }_{\mathrm{x}\mathrm{r}} $表示入射角

    Figure  4.  Schematic diagram of migration imaging. The x represents a scattering point, $ {T}_{\mathrm{s}\mathrm{x}} $ represents the travel time from the source to the scattering point, and $ {T}_{\mathrm{x}\mathrm{r}} $ represents the travel time from the scattering point to the station. $ {\theta }_{\mathrm{x}\mathrm{r}} $ represents the angle of incidence

    图  5  背景噪声互相关示意图. 台站$ {\mathrm{S}}_{1} $与台站$ {\mathrm{S}}_{2} $记录到的环境背景噪声进行互相关运算,等效于将一个台站当作虚拟源,另一个台站当成接收器,可以提取来自地球深部不连续面的反射信号

    Figure  5.  The diagram of the method of noise cross-correlation. The cross-correlation operation between the environmental noise that recorded by the station $ {\mathrm{S}}_{1} $ and the station $ {\mathrm{S}}_{2} $, is equivalent to taking one station as a virtual source and the other station as a receiver, and it can be applied to retrieve the body waves reflected from the discontinuities interior the Earth

    图  6  利用地震干涉技术提取下地幔散射体反射信号. (a)慢度谱与相位加权叠加的结果. 可以看到清楚的下地幔散射体X信号;(b)下地幔散射体上的PP体波震相的理论波形模拟. 测试异常体厚度与速度模型对结果的影响(修改自zhang L et al., 2020

    Figure  6.  Body wave reflected from the lower mantle scatter is retrieved from noise cross-correlation. (a) Through the superposition of slowness spectrum and phase weighting, we can find the X signal of lower mantle scatterer clearly; (b) Synthetic seismograms calculated for PP phase and the test for the influence of thickness of the scatterer and velocity model (modified from Zhang L et al., 2020)

    图  7  散射体深度分布直方图. 横坐标为探测到的散射体深度,纵坐标为频率,N为总计收集到的散射体数目. 超过70%的散射体分布在下地幔浅部,20%的散射体分布在下地幔中部,而下地幔底部具有极少数的非均匀性

    Figure  7.  The distribution histogram of the scatterers' depth. The horizontal and vertical coordinates are the depth of the detected scatterers and the frequency. N is the total number of scatterers collected. More than 70% scatterers are distributed in the shallow part of the lower mantle, 20% scatterers are distributed in the middle of the lower mantle, and only very few inhomogeneities at the bottom of the lower mantle

  • [1] Aki K. 1969. Analysis of the seismic coda of local earthquakes as scattered waves[J]. Journal of Geophysical Research, 74(2): 615-631. doi: 10.1029/JB074i002p00615
    [2] Aki K, Chouet B. 1975. Origin of coda waves: Source, attenuation, and scattering effects[J]. Journal of Geophysical Research, 80(23): 3322-3342. doi: 10.1029/JB080i023p03322
    [3] Benioff H, Harrison J C, Lacoste L, et al. 1959. Searching for the earth's free oscillations[J]. Journal of Geophysical Research, 64(9): 1334-1337. doi: 10.1029/JZ064i009p01334
    [4] Bentham H L M, Rost S. 2014. Scattering beneath western Pacific subduction zones: Evidence for oceanic crust in the mid-mantle[J]. Geophysical Journal International, 197: 1627-1641. doi: 10.1093/gji/ggu043
    [5] Bentham H L M, Rost S, Thorne M S. 2017. Fine-scale structure of the mid-mantle characterised by global stacks of PP precursors[J]. Earth and Planetary Science Letters, 472: 164-173. doi: 10.1016/j.jpgl.2017.05.027
    [6] Berteussen K A. 1976. The origin of slowness and azimuth anomalies at large arrays[J]. Bulletin of the Seismological Society of America, 66(3): 719-741.
    [7] Bodine A G J. 1956. Geophysical transducer[P]. U. S. Patent: 745-507.
    [8] Cao B, Romanowicz. 2007. Locating scatterers in the mantle using array analysis of PKP precursors from an earthquake doublet[J]. Earth and Planetary Science Letters, 255(1-2): 22-31. doi: 10.1016/j.jpgl.2006.12.002
    [9] Castle J C, Creager K C. 1999. A steeply dipping discontinuity in the lower mantle beneath Izu-Bonin[J]. Journal of Geophysical Research, 104(B4): 7279-7292. doi: 10.1029/1999JB900011
    [10] Chang A C, Cleary J R. 1981. Scattered PKKP: Further evidence for scattering at a rough core-mantle boundary[J]. Physics of the Earth and Planetary Interiors, 24: 15-29. doi: 10.1016/0031-9201(81)90075-3
    [11] Cleary J R, Haddon R A W. 1972. Seismic wave scattering near the core-mantle boundary: A new interpretation of precursors to PKP[J]. Nature, 240: 549-551. doi: 10.1038/240549a0
    [12] Courtier A M, Revenaugh J. 2008. Slabs and shear wave reflectors in the midmantle[J]. Journal of Geophysical Research, 113(B8): B08312.
    [13] Day E A, Deuss A. 2013. Reconciling PP and P′P′ precursor observations of a complex 660 km seismic discontinuity[J]. Geophysical Journal International, 194(2): 834-838. doi: 10.1093/gji/ggt122
    [14] Douglas A. 1998. Making the most of the recordings from short-period seismometer arrays[J]. Bulletin of the Seismological Society of America, 88: 1155-1170.
    [15] Durand S, Debayle E, Ricard Y, et al. 2017. Confirmation of a change in the global shear velocity pattern at around 1000 km depth[J]. Geophysical Journal International, 211 (3): 1628-1639. doi: 10.1093/gji/ggx405
    [16] Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model[J]. Physics of the Earth and Planetary Interiors, 25(4): 297-356. doi: 10.1016/0031-9201(81)90046-7
    [17] Dziewonski A M. 1984. Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6[J]. Journal of Geophysical Research, 89: 5929-5952. doi: 10.1029/JB089iB07p05929
    [18] Feng J, Yao H, Poli P, et al. 2017. Depth variations of 410-km and 660-km discontinuities in eastern North China Craton revealed by ambient noise interferometry[J]. Geophysical Research Letters, 44(16): 8328-8335. doi: 10.1002/2017GL074263
    [19] Forghani F, Snieder R. 2010. Underestimation of body waves and feasibility of surface-wave reconstruction by seismic interferometry[J]. The Leading Edge, 29 (7): 790-794. doi: 10.1190/1.3462779
    [20] Frankel A, Clayton R W. 1984. A finite difference simulation of wave propagation in two-dimensional random media[J]. Bulletin of the Seismological Society of America, 74: 2167-2186.
    [21] Frankel A, Clayton R W. 1986. Finite difference simulations of seismic scattering: Implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity[J]. Journal of Geophysical Research, 91( B6): 6465– 6489. doi: 10.1029/JB091iB06p06465
    [22] Frost D A, Sebastian R, Selby N D, et al. 2013. Detection of a tall ridge at the core-mantle boundary from scattered pkp energy[J]. Geophysical Journal International, 195(1): 558-574. doi: 10.1093/gji/ggt242
    [23] Frost D A, Garnero E J, Rost S. 2018. Dynamical links between small- and large-scale mantle heterogeneity: Seismological evidence[J]. Earth and Planetary Science Letters, 482: 135-146. doi: 10.1016/j.jpgl.2017.10.058
    [24] Grand S P. 2002. Mantle shear-wave tomography and the fate of subducted slabs[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 360(1800): 2475-2491.
    [25] Gudmundsson O, Davies J H, Clayton R W. 1990. Stochastic analysis of global traveltime data: Mantle heterogeneity and random errors in the ISC data[J]. Geophysical Journal International, 102(1): 25-43. doi: 10.1111/j.1365-246X.1990.tb00528.x
    [26] Gusev A A, Abubakirov I R. 1987. Monte Carlo simulation of record envelope of a near earthquake[J]. Physics of the Earth and Planetary Interiors, 49: 30–36. doi: 10.1016/0031-9201(87)90130-0
    [27] Gutenberg B, Richter C F. 1934. On seismic waves (first paper)[J]. Gerlands Beiträge zur Geophysik, 43: 56-133.
    [28] Haugland S M, Ritsema J, Kaneshima S, et al. 2017. Estimate of the rigidity of eclogite in the lower mantle from waveform modeling of broadband S-to-P wave conversions[J]. Geophysical Research Letters, 44(11): 778-784.
    [29] Hedlin M A H, Shearer P M, Earle P S. 1997. Seismic evidence for small-scale heterogeneity throughout the Earth's mantle[J]. Nature, 387(6629): 145-150. doi: 10.1038/387145a0
    [30] Hedlin M A H, Shearer P M. 2000. An analysis of large-scale variations in small-scale mantle heterogeneity using Global Seismographic Network recordings of precursors to PKP[J]. Journal of Geophysical Research, 105( B6): 13655-13673. doi: 10.1029/2000JB900019
    [31] He X, Zheng Y. 2018. S-to-p conversions from mid-mantle slow scatterers in slab regions: Observations of deep/stagnated oceanic crust?[J]. Pure and Applied Geophysics, 175(6): 2045-2055. doi: 10.1007/s00024-017-1763-z
    [32] Holliger K. 1996. Upper-crustal seismic velocity heterogeneity as derived from a variety of p-wave sonic logs[J]. Geophysical Journal of the Royal Astronomical Society, 125(3): 813-829. doi: 10.1111/j.1365-246X.1996.tb06025.x
    [33] Hoshiba M. 1991. Simulation of multiple scattered coda wave excitation based on the energy conservation law[J]. Physics of the Earth and Planetary Interiors, 67: 123-136. doi: 10.1016/0031-9201(91)90066-Q
    [34] 黄周传. 2022. 地震体波速度与各向异性层析成像研究进展[J]. 地球与行星物理论评, 53(6):656-679.

    Huang Z C. 2022. Review on body-wave tomography for seismic velocity and anisotropy[J]. Reviews of Geophysics and Planetary Physics, 53(6): 656-679 (in Chinese).
    [35] Hyung E, Shichun H, Michail I P, et al. 2016. Is the mantle chemically stratified? Insights from sound velocity modeling and isotope evolution of an early magma ocean[J]. Earth and Planetary Science Letters, 440: 158-168. doi: 10.1016/j.jpgl.2016.02.001
    [36] Jackson J M, Thomas C. 2021. Seismic and Mineral Physics Constraints on the D" Layer[M]// Mantle Convection and Surface Expressions: Geophysical Monograph. American Geophysical Union, 193–227.
    [37] Jenkins J, Deuss A, Cottaar S. 2016. Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe[J]. Earth and Planetary Science Letters, 459: 196-207.
    [38] Kaminsky F V. 2012. Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond[J]. Earth-Science Reviews, 110(1-4): 127-147. doi: 10.1016/j.earscirev.2011.10.005
    [39] Kaminsky F V. 2017. The Earth's Lower Mantle[M]. Springer International Publishing.
    [40] Kanasewich E R, Hemmings C D, Alpaslan T. 1973. Nth-root stack nonlinear multichannel filter[J]. Geophysics, 38: 327-338. doi: 10.1190/1.1440343
    [41] Kaneshima S, Helffrich G. 1998. Detection of lower mantle scatterers northeast of the Marianna subduction zone using short-period array data[J]. Journal of Geophysical Research, 103: 4825-4838. doi: 10.1029/97JB02565
    [42] Kaneshima S, Helffrich G. 1999. Dipping low-velocity layer in the mid-lower mantle: Evidence for geochemical heterogeneity[J]. Science, 283: 1888-1891. doi: 10.1126/science.283.5409.1888
    [43] Kaneshima S, Helffrich G. 2003. Subparallel dipping heterogeneities in the mid-lower mantle[J]. Journal of Geophysical Research, 108(B5): 2272.
    [44] Kaneshima S, Helffrich G. 2009. Lower mantle scattering profiles and fabric below Pacific subduction zones[J]. Earth and Planetary Science Letters, 282(1-4): 234-239. doi: 10.1016/j.jpgl.2009.03.024
    [45] Kaneshima S, Helffrich G. 2010. Small scale heterogeneity in the mid-lower mantle beneath the circum-Pacific area[J]. Physics of the Earth and Planetary Interiors, 183, 91-103. doi: 10.1016/j.pepi.2010.03.011
    [46] Kaneshima S. 2016. Seismic scatterers in the mid-lower mantle[J]. Physics of the Earth and Planetary Interiors, 257: 105-114. doi: 10.1016/j.pepi.2016.05.004
    [47] Kaneshima S. 2018. Seismic scatterers in the mid-lower mantle beneath Tonga-Fiji[J]. Physics of the Earth and Planetary Interiors, 274: 1-13. doi: 10.1016/j.pepi.2017.09.007
    [48] Kaneshima S. 2019. Seismic scatterers in the lower mantle near subduction zones[J]. Geophysical Journal International, 219: S2-S20. doi: 10.1093/gji/ggz241
    [49] Kawakatsu H, Niu F L. 1994. Seismic evidence for a 920-km discontinuity in the mantle[J]. Nature, 371: 301-305. doi: 10.1038/371301a0
    [50] Komatitsch D, Tromp J. 2002. "Spectral-element simulations of global seismic wave propagation -I. " Validation[J]. Geophysical Journal International, 149: 390-412. doi: 10.1046/j.1365-246X.2002.01653.x
    [51] Korenaga J. 2013. Stacking with dual bootstrap resampling[J]. Geophysical Journal International, 195(3): 2023-2036. doi: 10.1093/gji/ggt373
    [52] Korenaga J. 2015. Constraining the geometries of small-scale heterogeneities: A case study from the Mariana region[J]. Journal of Geophysical Research: Solid Earth, 120: 7830-7851. doi: 10.1002/2015JB012432
    [53] Krüger F, Weber M. 1992. The effect of low velocity sediments on the mislocation vectors of the GRF array[J]. Geophysical Journal International, 108: 387-393. doi: 10.1111/j.1365-246X.1992.tb00866.x
    [54] LeStunff Y, Wick C W, Romanowicz B. 1995. P′P′ precursors under Africa: Evidence for mid-mantle reflectors[J]. Science, 270(5233): 74-77. doi: 10.1126/science.270.5233.74
    [55] Leyton F, Koper K D. 2007. Using PKiKP coda to determine inner core structure: 1. Synthesis of coda envelopes using single-scattering theories[J]. Journal of Geophysical Research: Solid Earth, 112(5): 1-19.
    [56] Li J, Yuen D A. 2014. Mid-mantle heterogeneities associated with Izanagi plate: Implications for regional mantle viscosity[J]. Earth and Planetary Science Letters, 385: 137-144. doi: 10.1016/j.jpgl.2013.10.042
    [57] Ma X, Thomas C. 2020. Small-scale scattering heterogeneities in the lowermost mantle from a global analysis of PKP precursors[J]. Journal of Geophysical Research: Solid Earth, 125(3): 1-18.
    [58] Mancinelli N J, Shearer P M. 2013. Reconciling discrepancies among estimates of small-scale mantle heterogeneity from PKP precursors[J]. Geophysical Journal International, 195: 1721-1729. doi: 10.1093/gji/ggt319
    [59] Margerin L, Campillo M, van Tiggelen B. 2000. Monte Carlo simulation of multiple scattering of elastic waves[J]. Journal of Geophysical Research, 105: 7873–7892. doi: 10.1029/1999JB900359
    [60] Muirhead K. 1968. Eliminating false alarms when detecting seismic events automatically[J]. Nature, 217: 533-534. doi: 10.1038/217533a0
    [61] Muirhead K T, Datt R. 1976. The N-th root process applied to seismic array data[J]. Geophysical Journal International, 47: 197-210. doi: 10.1111/j.1365-246X.1976.tb01269.x
    [62] Neidell N S M, Taner T. 1971. Semblance and other coherency measures for multichannel data[J]. Geophysics, 36(3): 482-497. doi: 10.1190/1.1440186
    [63] Nissen-Meyer T, van Driel M, St¨ahler S, et al. 2014. AxiSEM: Broadband 3-D seismic wavefields in axisymmetric media[J]. Journal of Geophysical Research: Solid Earth, 5(1): 425-445.
    [64] Niu F. 2014. Distinct compositional thin layers at mid-mantle depths beneath northeast China revealed by the US Array[J]. Earth and Planetary Science Letters, 402: 305-312. doi: 10.1016/j.jpgl.2013.02.015
    [65] Nomura R, Ozawa H, Tateno S, et al. 2011. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle[J]. Nature, 473: 199-202. doi: 10.1038/nature09940
    [66] Pavlis G L. 1992. Appraising relative earthquake location errors[J]. Bulletin of the Seismological Society of America, 82: 836-859. doi: 10.1785/BSSA0820020836
    [67] Peng Z, Koper K D, Vidale J E, et al. 2008. Inner-core fine-scale structure from scattered waves recorded by LASA[J]. Journal of Geophysical Research: Solid Earth: 113(9): 1-11.
    [68] Poli P, Campillo M, Pedersen H, Group L W. 2012. Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise[J]. Science, 338: 1063-1065. doi: 10.1126/science.1228194
    [69] Ritsema J, Kaneshima S, Hauglanda S M. 2020. The dimensions of scatterers in the lower mantle using USArray recordings of S-wave to P-wave conversions[J]. Physics of the Earth and Planetary Interiors, 306: 106541. doi: 10.1016/j.pepi.2020.106541
    [70] Rost S, Thomas C. 2002. Array seismology: Methods and applications[J]. Reviews of Geophysics, 40(3): 1008.
    [71] Rost S, Weber M. 2002. The upper mantle transition zone discontinuities in the Pacific as determined by short-period array data[J]. Earth and Planetary Science Letters, 204: 347-361. doi: 10.1016/S0012-821X(02)00999-8
    [72] Rost S, Garnero E J, Williams Q. 2008. Seismic array detection of subducted oceanic crust in the lower mantle[J]. Journal of Geophysical Research, 113(B6): B06303.
    [73] Rost S, Thomas C. 2009. Improving seismic resolution through array processing techniques[J]. Surveys in Geophysics, 30(4): 271-299.
    [74] Rost S, Earle P S, Shearer P M, et al. 2015, Seismic Detections of Small-Scale Heterogeneities in the Deep Earth[M]//The Earth's Heterogeneneous Mantle. Springer International Publishing, 367-390.
    [75] Sato H, Fehler M C, Maeda T. 2012. Seismic Wave Propagation and Scattering in the Heterogeneous Earth[M]. Springer Berlin Heidelberg.
    [76] Savran W H, Olsen K B. 2016. Model for small-scale crustal heterogeneity in Los Angeles basin based on inversion of sonic log data[J]. Geophysical Journal International, 205(2): 856 - 863. doi: 10.1093/gji/ggw050
    [77] Schimmel M, Paulssen H. 1997. Noise reduction and detection of weak, coherent signals through phase-weighted stacks[J]. Geophysical Journal International, 130: 497-505. doi: 10.1111/j.1365-246X.1997.tb05664.x
    [78] Schultz R, Gu Y J. 2013. Multiresolution imaging of mantle reflectivity structure using SS and P′P′ precursors[J]. Geophysical Journal International, 19(1): 668-683.
    [79] Schultz R, Stern V, Gu Y J. 2014. An investigation of seismicity clustered near the Cordel Field, west central Alberta, and its relation to a nearby disposal well[J]. Journal of Geophysical Research: Solid Earth, 119: 3410-3423. doi: 10.1002/2013JB010836
    [80] Schumacher L, Thomas C, Abreu R. 2018. Out-of-plane seismic reflections beneath the Pacific and their geophysical implications[J]. Journal of Geophysical Research: Solid Earth, 123(3): 2286-2302. doi: 10.1002/2017JB014728
    [81] Shapiro N M, Ritzwoller M H. 2002. Monte-carlo inversion for a global shear-velocity model of the crust and upper mantle[J]. Geophysical Journal International, 151(1): 88-105. doi: 10.1046/j.1365-246X.2002.01742.x
    [82] Shearer P M. 1990. Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity[J]. Nature, 344(6262): 121-126. doi: 10.1038/344121a0
    [83] Shearer P M. Hedlin M A, Earle P S. 1998. PKP and PKKP precursor observations: Implications for the small-scale structure of the deep mantle and core[C]//Geophys. Monograph AGU: The Core-Mantle Boundary Region, Geodyn. Ser, 28: 37-55.
    [84] Shearer P M, Earle P S. 2004. The global short-period wavefield modeled with a Monte Carlo seismic phonon method[J]. Geophysical Journal International, 158: 1103-1117. doi: 10.1111/j.1365-246X.2004.02378.x
    [85] Shearer P M. 2007. Deep Earth structure-seismic scattering in the deep Earth[J]. Treatise on Geophysics, 1: 695-729. doi: 10.1016/B978-044452748-6/00021-3
    [86] Shen H W. 1979. Some notes on the Yellow River[J]. Eos Transactions American Geophysical Union, 60(31): 545-547. doi: 10.1029/EO060i031p00545
    [87] 沈旭章, 周蕙兰. 2009. 用PKIKP的前驱震相探测青藏高原东部地幔底部的散射体[J]. 科学通报, 54: 3844-3851.

    Shen X Z, Zhou H L. 2009. Locating seismic scatterers at the base of the mantle beneath eastern Tibet with PKIKP precursors[J]. Chinese Science Bulletin, 54: 3844–3851 (in Chinese).
    [88] Shen Y, Wolfe C J, Solomon S C. 2003. Seismological evidence for a mid-mantle discontinuity beneath Hawaii and Iceland[J]. Earth and Planetary Science Letters, 214(1-2): 143-151. doi: 10.1016/S0012-821X(03)00349-2
    [89] Thomas C, Weber M, Wicks C F, et al. 1999. Small scatterers in the lower mantle observed at German broadband arrays[J]. Journal of Geophysical Research, 104: 15073-15088. doi: 10.1029/1999JB900128
    [90] Tsuchiya T, Tsuchiya J, Umemoto K, et al. 2004. Elasticity of post-perovskite MgSiO3[J]. Geophysical Research Letters, 31(14): L14603. doi: 10.1029/2004GL020278
    [91] van der Hilst R, Engdahl E R, Spakman W, et al. 1991. Tomo-graphic imaging of subducted lithosphere below Northwest Pacific island arcs[J]. Nature, 353: 37-42. doi: 10.1038/353037a0
    [92] van der Meijde M, Lee S, Giardini D. 2005. Seismic discontinuities in the mediterranean mantle[J]. Physics of the Earth and Planetary Interiors, 148(2-4): 233-250. doi: 10.1016/j.pepi.2004.09.008
    [93] Vidale J E. 2019. Very slow rotation of earth's inner core from 1971 to 1974[J]. Geophysical Research Letters, 46(16): 9483-9488. doi: 10.1029/2019GL083774
    [94] Vinnik L, Kato M, Kawakatsu H. 2001. Search for seismic discontinuities in the lower mantle[J]. Geophysical Journal International, 147: 41-56. doi: 10.1046/j.1365-246X.2001.00516.x
    [95] Wang L, He X. 2020. Sharpness of the paired 660-km discontinuity beneath the Izu-Bonin area[J]. Earth and Planetary Physics, 4(6): 1-12.
    [96] Wang T, Song X, Xia H H. 2015. Equatorial anisotropy in the inner part of Earth/'s inner core from autocorrelation of earthquake coda[J]. Nature Geoscience, 8(3): 224-227. doi: 10.1038/ngeo2354
    [97] Wang W, Vidale J E. 2022. An initial map of fine-scale heterogeneity in the Earth’s inner core[J]. Nature Geoscience, 15: 240-244. doi: 10.1038/s41561-022-00903-8
    [98] Wang X, Tsuchiya T, Hase A. 2015. Computational support for a pyrolitic lower mantle containing ferric iron[J]. Nature Geoscience, 8(7): 556-559. doi: 10.1038/ngeo2458
    [99] Ward J, Thorne M, Nowacki A, et al. 2021. Automatic slowness vector measurements of seismic arrivals with uncertainty estimates using bootstrap sampling, array methods and unsupervised learning[J]. Geophysical Journal International, 226(3): 1847–1857. doi: 10.1093/gji/ggab196
    [100] Waszek L, Schmerr N C, Ballmer M D. 2018. Global observations of reflectors in the mid-mantle with implications for mantle structure and dynamics[J]. Nature Communications, 9: 385. doi: 10.1038/s41467-017-02709-4
    [101] Weber M, Wicks C W. 1996. Reflections from a distant subduction zone[J]. Geophysical Research Letters, 23(12): 1453-1456. doi: 10.1029/96GL01322
    [102] Wen L, Helmberger D V. 1998. Ultra-low velocity zones near the core-mantle boundary from broadband PKP precursors[J]. Science, 279(5357): 1701-1703. doi: 10.1126/science.279.5357.1701
    [103] Wu R S. 1985. Multiple scattering and energy transfer of seismic waves separation of scattering effect from intrinsic attenuation. I: Theoretical modelling[J]. Geophysical Journal of the Royal Astronomical Society, 82: 57-80. doi: 10.1111/j.1365-246X.1985.tb05128.x
    [104] Wu Z. 2016. Velocity structure and composition of the lower mantle with spin crossover in ferropericlase[J]. Journal of Geophysical Research: Solid Earth, 121(4): 2304-2314. doi: 10.1002/2015JB012667
    [105] Xie J, Luo Y, Yang Y. 2021. Retrieving PmP travel times from a persistent localized microseismic source[J]. Geophysical Research Letters, 48: e2021GL094827.
    [106] 徐涛, 宁俊瑞, 刘春成, 等. 2007. 地球介质自组织性对地震波走时和振幅的影响[J]. 地球物理学报, 50(4): 1174-1181.

    Xu T, Ning J R, Liu C C, et al. 2007. Influence of the self2organization of the Earth interior upon the traveltime and amplitude of seismic wave[J]. Chinese Journal of Geophysics, 50 (4): 1174-1181 (in Chinese).
    [107] Yang Z, He X. 2015. Oceanic crust in the mid-mantle beneath west-central Pacific subduction zones: Evidence from S to P converted waveforms[J]. Geophysical Journal International, 203(1): 541-547. doi: 10.1093/gji/ggv314
    [108] Yoshimoto K. 2000. Monte Carlo simulation of seismogram envelopes in scattering media[J]. Journal of Geophysical Research, 105: 6153-6161. doi: 10.1029/1999JB900437
    [109] 袁野. 2021. 基于台阵分析方法研究中下地幔小尺度异常体[D]. 合肥: 中国科学技术大学.

    Yuan Y. 2021. Using array analysis to study smallscale heterogeneities in the mid-lower mantle[D]. Hefei: University of Science and Technology of China.
    [110] Yuan Y, Sun D, Leng W, et al. 2021. Southeastward dipping mid-mantle heterogeneities beneath the sea of Okhotsk[J]. Earth and Planetary Science Letters, 573: 117151. doi: 10.1016/j.jpgl.2021.117151
    [111] Zeng Y. 1991. Compact solutions for multiple scattered wave energy in the time domain[J]. Bulletin of the Seismological Society of America, 81: 1022-1029. doi: 10.1785/BSSA0810031022
    [112] Zhan Z, Ni S, Helmberger D V, et al. 2010. Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise[J]. Geophysical Journal International, 182: 408-420.
    [113] Zhang B, Ni S, Sun D, et al. 2018. Constraints on small-scale heterogeneity in the lowermost mantle from observations of near podal PcP precursors[J]. Earth and Planetary Science Letters, 489: 267-276. doi: 10.1016/j.jpgl.2018.01.033
    [114] Zhang B, Zeng X, Xie J, et al. 2020. Validity of resolving the 785 km discontinuity in the lower mantle with P′ P′ precursors?[J]. Seismological Research Letters, 91(6): 3278-3285. doi: 10.1785/0220200210
    [115] Zhang L, Li J, Wang T, et al. 2020. Body waves retrieved from noise cross-correlation reveal lower mantle scatterers beneath the northwest Pacific subduction zone[J]. Geophysical Research Letters, 47(19): e2020GL088846.
    [116] Zhang Z, Stixrude L, Brodholt J. 2013. Elastic properties of mgsio3-perovskite under lower mantle conditions and the composition of the deep earth[J]. Earth and Planetary Science Letters, 379: 1-12. doi: 10.1016/j.jpgl.2013.07.034
    [117] 周元泽,王卓君. 2011. 伊豆—小笠原和汤加地区中地幔多层速度结构差异性研究[J].中国科学:地球科学,41(7):936-944.

    Zhou Y Z, Wang Z J. 2011. On the difference of mid-mantle multiple velocity structure beneath Izu-Bonin and Tonga areas[J]. Sciences China Earth Sciences, 41(7): 936–944 (in Chinese).
    [118] 朱介寿. 2000. 下地幔及核幔边界结构及地球动力学[J].地球科学进展,15(2):139-142.

    Zhu J S. 2000. Structure of lower mantle and core-mantle boundary region and its geodynamics[J]. Advance in Earth sciences,15(2):139-142 (in Chinese).
    [119] 左兆荣. 1983. PKP的前驱波的研究进展综述[J]. 国际地震动态, 4: 6-9.

    Zuo Z R. 1983. A review of research developments on the precursors of PKP[J].Recent Developments in World Seismology, 4: 6-9 (in Chinese).
  • 加载中
图(7)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  43
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 录用日期:  2022-06-18
  • 修回日期:  2022-06-17
  • 网络出版日期:  2022-06-22

目录

    /

    返回文章
    返回