• ISSN 2097-1893
  • CN 10-1855/P

利用Lg波计算地震应力降的方法及在青藏高原东缘典型震例中的应用

沈琳 赵连锋 谢小碧 何熹 王卫民 姚振兴

引用本文: 沈琳,赵连锋,谢小碧,何熹,王卫民,姚振兴. 2022. 利用Lg波计算地震应力降的方法及在青藏高原东缘典型震例中的应用. 地球与行星物理论评(中英文),54(0):1-20
Shen L, Zhao L F, Xie X B, He X, Wang W M, Yao Z X. 2022. Stress drops calculated from seismic Lg-waves and their applications for investigating the typical earthquake sequences in the eastern margin of the Tibetan Plateau. Reviews of Geophysics and Planetary Physics, 54(0): 1-20 (in Chinese)

利用Lg波计算地震应力降的方法及在青藏高原东缘典型震例中的应用

doi: 10.19975/j.dqyxx.2022-038
基金项目: 国家自然科学基金资助项目(U2139206,42104055,41974061,41974054);中国地震科学实验场资助项目(2019CSES0103)
详细信息
    作者简介:

    沈琳,女,博士研究生,主要从事地震学研究,E-mail:shenlin@mail.iggcas.ac.cn

    通讯作者:

    赵连锋,男,研究员,主要从事地震学研究,Email:zhaolf@mail.iggcas.ac.cn

  • 中图分类号: P315

Stress drops calculated from seismic Lg-waves and their applications for investigating the typical earthquake sequences in the eastern margin of the Tibetan Plateau

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. U2139206, 42104055, 41974061, 41974054), and the China Seismic Experimental Site (Grant No. 2019CSES0103)
  • 摘要: 地震应力降标志震源破裂过程中作用在断层系统上的应力释放水平,是刻画震源物理过程和预测震源辐射特性的重要参数. 地震应力降主要受控于构造环境、震源机制和地震类型等. 观测得到的应力降还受到观测频带的影响,所以它的绝对值难以准确测定. 采用体波、面波以及零频观测(大地测量、GPS、InSAR)等不同类型的数据获得的应力降也存在差异. 对于地震波数据,通常采用间接方法去除传播路径中的衰减效应并获得震源激发谱,进而估计应力降. 随着宽频带地壳Lg波衰减模型的建立,可以构建直接校正路径衰减的方法,从而获得对Lg波震源激发函数的准确估计. 进而通过对观测和理论震源谱的拟合获得整个地震序列中各个地震的标量地震矩、拐角频率和高频下降率等震源参数,再根据断层模型计算应力降. 本文分别以青藏高原东缘典型的构造地震2017年Ms7.0九寨沟地震和潜在的工业注水诱发地震2019年Ms6.0长宁地震为例,计算两个地震序列应力降的时-空变化过程,探索构造地震与诱发地震之间的潜在的物理差异. 2017年九寨沟地震的主震应力降为27 MPa,余震震级和应力降均呈快速下降趋势. 2019年长宁地震的主震应力降为32 MPa,余震序列的应力降以起伏形式缓慢下降,并曾出现过与主震应力降数值相当的余震. 这一现象主要来源于长宁地区长期的工业注水干扰了区域应力场,提升了断层内的流体静压力并降低了断层滑动的驱动应力. 这一过程需经过震后较长的时间才能恢复. 上述两个地震序列具有相似的主震应力降但属于完全不同的类型,说明在该区域无法通过单独观测主震应力降来区分构造与诱发地震,而通过研究整个序列中应力降的时-空发展过程则有可能揭示出与此有关的进一步信息.

     

  • 图  1  宽频带Lg波Q值及台站分布图(Zhao et al., 2013a, 2013b). 其中三角形为地震台站,黑色线段为板块边界和断层线. BH:巴颜喀拉块体;CB:华夏块体;CDB:川滇块体;HM:喜马拉雅块体;ICP:印支块体; LH:拉萨块体;NCC:华北克拉通;OB:鄂尔多斯盆地;QB:柴达木盆地;QDO:秦岭大别造山带;QM:祁连山脉;QT:羌唐块体;SB:四川盆地;YC:扬子克拉通

    Figure  1.  Map showing a broadband regional Lg-wave Q distribution, overlapped by faults (thin black lines), geological sutures (thick black lines), and seismic stations (triangles) (Zhao et al., 2013a, 2013b). Abbreviations: BH, Bayan Har Block; CB, Cathaysia Block; CDB, Chuandian Block; HM, Himalaya Block; ICP, Indo-China Plate; LH, Lhasa Block; NCC, North China Craton; OB, Ordos Basin; QB; Qaidam Basin; QDO, Qinling-Dabie Orogen; QM, Qilian Mountain; QT, Qiangtang Block; SB, Sichuan Basin; YC, Yangtze Craton

    图  2  青藏高原东缘地表地形和2017年九寨沟和2019年长宁地震序列分布图. (a)青藏高原东缘地表地形图和主要的板块边界(黑色粗线)、断层(黑色细线)和俯冲带(带三角的线段). 图中给出震级大于6.5地震的震源机制解(黑白震源球)、以欧亚大陆为参考的GPS速率(蓝色箭头)(修改自Kreemer et al., 2014)和2017年九寨沟和2019年长宁主震的位置(红色五角星);(b)2017年九寨沟地震序列分布图,其中主震位置用五角星表示,余震分布用蓝色圆圈表示;(c)2019年长宁地震序列分布图,图中叠加了震源区域内的背斜(黑色实线)和向斜(虚线)、盐矿开采井(绿色方块)和页岩气开采井的位置(蓝色圆圈加十字). 2019年长宁地震序列重定位和震源机制的部分结果来自Lei等(2019). 图中的缩写分别为,BH:巴颜喀拉块体;BSA:白象岩—狮子滩背斜;CB:华夏块体;CDB:川滇块体;CNA:长宁背斜;CXS:长官—叙永向斜;FJS:符江向斜;HLA:花香—梁子背斜;HM:喜马拉雅块体;HYF:虎牙断层;ICP:印支块体;JCXA:贾村溪背斜;JLA:筠连背斜;JWS:建武向斜;KLF:昆仑断层;LCS:罗场向斜;LH:拉萨块体;LRBF:龙日坝断层;MJF:岷江断层;NCC:华北克拉通;OB:鄂尔多斯盆地;QB:柴达木盆地;QDO:秦岭大别造山带;QM:祁连山脉;QT:羌唐块体;SB:四川盆地;SHA:双河背斜;TLA:腾龙背斜;TZF:塔藏断层;XLS:相岭向斜;XSA:巡司场背斜;XSLZF:雪山梁子断层;YC:扬子克拉通;YHA:玉和背斜

    Figure  2.  Topographic maps showing the eastern margin of the Tibetan Plateau, overlapped by both the locations of the 2017 Jiuzhaigou and 2019 Changning earthquakes and their aftershock sequence. (a) Map showing the eastern margin of the Tibetan Plateau overlaid with major block boundaries (thick black lines), fault system (thin black lines), and subduction zone (line with triangles). The black beach balls denote focal mechanisms of nearby earthquakes larger than the local magnitude of 6.5. The blue arrows represent the GPS velocities concerning the Eurasia block (modified from Kreemer et al., 2014). The red stars show the location of the 2017 Jiuzhaigou and 2019 Changning earthquakes. (b) Map showing the location of the 2017 Jiuzhaigou earthquake (red star) with its aftershock sequence (blue circles). (c) Map showing the location of the 2019 Changning earthquake sequence, overlain by anticline (black lines), syncline (black dashed lines), salt mine area (green square), and shale gas well (blue cross-circles). The relocation data and focal mechanism for the 2019 Changning earthquake sequence are retrieved from Lei et al. (2019). Abbreviations: BH, Bayan Har Block; BSA, Baixiangyan-Shizitan anticline; CB, Cathaysia Block; CDB, Chuandian Block; CNA, Changning anticline; CXS, Changguan-Xuyong syncline; FJS, Fujiang syncline; HLA, Huaxiang-Liangzi anticline; HM, Himalaya Block; HYF, Huya fault; ICP, Indo-China Plate; JCXA, Jiacunxi anticline; JLA, Junlian anticline; JWS, Jianwu syncline; KLF, Kunlun fault; LCS, Luochang syncline; LH, Lhasa Block; LRBF, Longriba fault; MJF, Minjiang fault; NCC, North China Craton; OB: Ordos Basin; QB; Qaidam Basin; QDO, Qinling-Dabie Orogen; QM, Qilian Mountain; QT, Qiangtang Block; SB, Sichuan Basin; SHA, Shuanghe anticline; TLA, Tenglong anticline; TZF, Tazang fault; XLS, Xiangling syncline; XSA, Xunsichang anticline; XSLZF, Xueshanliangzi fault; YC, Yangtze Craton; YHA, Yuhe anticline

    图  3  不同信噪比阈值下所得震源参数之间的对比,其中最左列为标量地震矩$ {M}_{0} $,中间一列为拐角频率,最右列为应力降. 每张子图分别显示了不同信噪比阈值(y轴)相对于信噪比阈值2.0(x轴)所得震源参数之间的对比. (a-c)、(d-f)、(g-i)和(j-l)分别表示信噪比阈值为3.0、4.0、5.0和10.0下的震源参数结果. 黑色和灰色的圆圈分别为ML≥3.5和ML<3.5地震的结果

    Figure  3.  Comparison of source moments $ {M}_{0} $ (left column), corner frequency (middle column), and stress drop (right column) obtained using visually determined truncation and different SNR thresholds of 3.0 (a-c), 4.0 (d-f), 5.0 (g-i), and 10.0 (j-l). Shown in each panel are parameters obtained using different thresholds (vertical coordinate) versus those using threshold 2.0 (horizontal coordinate). The black and grey circles are for earthquakes with ML≥3.5 and ML<3.5, respectively

    图  4  (a)长宁地区盐矿注入、泵出水量以及二者之差随时间的变化曲线(修改自Shen et al., 2022; Sun et al., 2017);(b)长宁地区地震活动分布图

    Figure  4.  (a) Water injection, pumping, and water loss rates for the Changning salt mine (modified from Shen et al., 2022; Sun et al., 2017) and (b) seismicity in the Changning and its surrounding area

    图  5  Lg波震源激发函数及震源参数拟合结果示例. 其中黑色十字表示反演得到的Lg波震源项,实线是拟合得到的最佳震源模型,粉色区域为拟合的标准差. 每幅图顶部给出了各个地震事件的发震时刻,左下角给出了地方性震级$ {M}_{\mathrm{L}} $、拟合得到的地震矩$ {M}_{0} $、拐角频率$ {f}_{\mathrm{c}} $和高频下降率n

    Figure  5.  Lg-wave source excitation spectra for 12 selected events from the Jiuzhaigou and Changning earthquake sequence. The origin time of each event is on the top of each panel. The black crosses are source spectra inverted from the observed Lg-wave spectra. Solid lines are the best-fit source models, and pink shades are their standard deviations. All the fitting frequency bands for smaller earthquakes (${{{{M}}}}_{\mathrm{L}} < 3.5$) are visually selected. The local magnitude$ {M}_{\mathrm{L}} $, moment magnitude$ {M}_{\mathrm{W}} $, seismic moment $ {M}_{0} $, corner frequency $ {f}_{\mathrm{c}} $, and high-frequency falloff rate n along with their standard deviations, are labeled in each panel

    图  6  (a)标量地震矩$ {M}_{0} $与拐角频率$ {f}_{\mathrm{c}} $之间的关系. (b)地方性震级$ {M}_{\mathrm{L}} $与根据地震矩$ {M}_{0} $得到的矩震级$ {M}_{\mathrm{W}} $之间的关系图. 蓝色代表2017年九寨沟地震序列的结果,红色代表 2019年长宁地震序列的结果

    Figure  6.  (a) Seismic moment versus corner frequency for the 2017 Jiuzhaigou earthquake sequence (green dots) and 2019 Changning earthquake sequence (red dots) in this study. The dashed lines mark constant stress drops for 0.1, 1.0, and 10 MPa. (b) The local magnitude $ {M}_{\mathrm{L}} $ measured by CENC versus moment magnitude $ {M}_{\mathrm{W}} $ derived from the seismic moment $ {M}_{0} $. The dashed line represents the relation of $ {M}_{\mathrm{L}}={M}_{\mathrm{W}} $. The red and green solid lines represent the best fit relation between $ {M}_{\mathrm{L}} $ and $ {M}_{\mathrm{W}} $ for the 2017 Jiuzhaigou and 2019 Changning earthquake sequence, respectively

    图  7  2017年九寨沟(a, b)和2019年长宁地震序列(c, d)应力降的空间分布图. 其中图(a, c)中圆圈内的颜色表示应力降数值大小,图(b, d)中圆圈尺寸表示应力降大小,颜色表示余震发生时间

    Figure  7.  The spatial distribution for the 2017 Jiuzhaigou (a, b) and 2019 Changning (c, d) earthquake sequence. The filled color in (a) and (c) represents the stress drop value. The size of the circle and its filled color denote the time after the mainshock (in days) and stress drop value, respectively

    图  8  (a, c)2017年九寨沟和2019年长宁地震序列应力降随震源深度的关系,实线是拟合得到的二者之间的线性关系. (b, d)两个地震序列应力降与震级ML的关系,虚线表示回归得到的线性关系,颜色标明震源深度

    Figure  8.  The stress drops from the 2017 Jiuzhaigou and 2019 Changning earthquake sequence versus the focal depth and local magnitude, respectively. The circles represent the stress drop value, the solid and dashed lines denote the linear relationship for the stress drop with focal depth and local magnitude, respectively. The filled color in (b) and (d) represent the focal depth

    图  9  2017年九寨沟(a)和2019年长宁地震序列(b)的应力降(圆圈)和地方性震级(灰色竖线高度)随时间的变化趋势. 黑色虚线为整个地震序列的应力降中值. 注意时间为对数尺度

    Figure  9.  The temporal distribution of stress drop and local magnitude for 2017 Jiuzhaigou (a) and 2019 Changing earthquake sequence (b). The vertical gray lines represent the seismicity with their heights denoting the magnitudes. The horizontal black dashed lines mark the median stress drop of the whole earthquake sequence. Note that the time axis is on a logarithmic scale

    图  10  2019年长宁地震序列应力降与注水井距离之间的关系

    Figure  10.  Stress drop of the 2019 Changning earthquake sequence versus distance away from the injection well

  • [1] Abercrombie R E. 1995. Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5-km depth[J]. Journal of Geophysical Research: Solid Earth, 100: 24015-24036. doi: 10.1029/95JB02397
    [2] Abercrombie R E. 2014. Stress drops of repeating earthquakes on the San Andreas Fault at Parkfield[J]. Geophysical Research Letters, 41: 8784-8791. doi: 10.1002/2014GL062079
    [3] Abercrombie R E. 2015. Investigating uncertainties in empirical Green's function analysis of earthquake source parameters[J]. Journal of Geophysical Research: Solid Earth, 120: 4263-4277. doi: 10.1002/2015JB011984
    [4] Abercrombie R E, Chen X, Zhang J. 2020. Repeating earthquakes with remarkably repeatable ruptures on the San Andreas Fault at Parkfield[J]. Geophysical Research Letters, 47: e2020GL089820.
    [5] Abercrombie R E, Trugman D T, Shearer P M, et al. 2021. Does earthquake stress drop increase with depth in the crust? [J]. Journal of Geophysical Research: Solid Earth, 126, e2021JB022314.
    [6] Aki K. 1967. Scaling law of seismic spectrum[J]. Journal of Geophysical Research, 72: 1217-1231. doi: 10.1029/JZ072i004p01217
    [7] Allmann B P, Shearer P M. 2007. Spatial and temporal stress drop variations in small earthquakes near Parkfield, California[J]. Journal of Geophysical Research: Solid Earth, 112: B04305.
    [8] Allmann B P, Shearer P M. 2009. Global variations of stress drop for moderate to large earthquakes[J]. Journal of Geophysical Research: Solid Earth, 114: B01310.
    [9] Anderson J. 1986. Implication of attenuation for studies of the earthquake source[J]. American Geophysical Union, 37: 311-318.
    [10] Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3: 358-362. doi: 10.1038/ngeo830
    [11] Baltay A S, Hanks T C, Beroza G C. 2013. Stable stress-drop measurements and their variability: Implications for ground-motion prediction[J]. Bulletin of the Seismological Society of America, 103: 211-222. doi: 10.1785/0120120161
    [12] Bao X W, Song X D, Li J T. 2015. High-resolution lithospheric structure beneath mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth and Planetary Science Letters, 417: 132-141. doi: 10.1016/j.jpgl.2015.02.024
    [13] Bethmann F, Deichmann N, Mai P M. 2011. Scaling relations of local magnitude versus moment magnitude for sequences of similar earthquakes in Switzerland[J]. Bulletin of the Seismological Society of America, 101: 515-534. doi: 10.1785/0120100179
    [14] Boatwright J. 1980. A spectral theory for circular seismic sources; simple estimates of source dimension, dynamic stress drop, and radiated seismic energy[J]. Bulletin of the Seismological Society of America, 70: 1-27.
    [15] Boyd O S, McNamara D E, Hartzell S, et al. 2017. Influence of lithostatic stress on earthquake stress drops in North America[J]. Bulletin of the Seismological Society of America, 107: 856-868. doi: 10.1785/0120160219
    [16] Brown L, Wang K, Sun T. 2015. Static stress drop in the MW 9 Tohoku-oki earthquake: Heterogeneous distribution and low average value[J]. Geophysical Research Letters, 42: 10595-10600. doi: 10.1002/2015GL066361
    [17] Brune J N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. Journal of Geophysical Research, 75: 4997-5009. doi: 10.1029/JB075i026p04997
    [18] Byerlee J. 1978. Friction of rocks[J]. Pure and Applied Geophysics, 116: 615–626. doi: 10.1007/BF00876528
    [19] Campillo M, Plantet J-L, Bouchon M. 1985. Frequency-dependent attenuation in the crust beneath central France from Lg waves: Data analysis and numerical modeling[J]. Bulletin of the Seismological Society of America, 75: 1395-1411. doi: 10.1785/BSSA0750051395
    [20] Chen S, Zhu Y, Qin Y, et al. 2014. Reservoir evaluation of the lower Silurian Longmaxi formation shale gas in the southern Sichuan basin of China[J]. Marine and Petroleum Geology, 57: 619-630. doi: 10.1016/j.marpetgeo.2014.07.008
    [21] Chen X, Shearer P M. 2011. Comprehensive analysis of earthquake source spectra and swarms in the Salton Trough, California[J]. Journal of Geophysical Research: Solid Earth, 116: B09309.
    [22] Chen X, Abercrombie R E. 2020. Improved approach for stress drop estimation and its application to an induced earthquake sequence in Oklahoma[J]. Geophysical Journal International, 223: 233-253. doi: 10.1093/gji/ggaa316
    [23] Clerc F, Harrington R M, Liu Y, et al. 2016. Stress drop estimates and hypocenter relocations of induced seismicity near Crooked Lake, Alberta[J]. Geophysical Research Letters, 43: 6942-6951. doi: 10.1002/2016GL069800
    [24] Cocco M, Tinti E, Cirella A. 2016. On the scale dependence of earthquake stress drop[J]. Journal of Seismology, 20: 1151-1170. doi: 10.1007/s10950-016-9594-4
    [25] Dahlen F A. 1974. On the ratio of P-wave to S-wave corner frequencies for shallow earthquake sources[J]. Bulletin of the Seismological Society of America, 64: 1159-1180. doi: 10.1785/BSSA0640041159
    [26] Dahm T, Becker D, Bischoff M, et al. 2013. Recommendation for the discrimination of human-related and natural seismicity[J]. Journal of Seismology, 17: 197-202. doi: 10.1007/s10950-012-9295-6
    [27] Das S, Henry C. 2003. Spatial relation between main earthquake slip and its aftershock distribution[J]. Reviews of Geophysics, 41, 1013.
    [28] Drouet S, Souriau A, Cotton F. 2005. Attenuation, seismic moments, and site effects for weak-motion events: Application to the Pyrenees[J]. Bulletin of the Seismological Society of America, 95: 1731-1748. doi: 10.1785/0120040105
    [29] Efron B. 1983. Estimating the error rate of a prediction uule: improvement on cross-validation[J]. Publications of the American Statistical Association, 78: 316-331. doi: 10.1080/01621459.1983.10477973
    [30] Ellsworth W L. 2013. Injection-induced earthquakes[J]. Science, 341: 142.
    [31] Ellsworth W L, Giardini D, Townend J, et al. 2019. Triggering of the Pohang, Korea, earthquake (MW 5.5) by enhanced geothermal system stimulation[J]. Seismological Research Letters, 90, 1844-1858.
    [32] Eric K, Harkins N, Wang E, et al. 2007. Slip rate gradients along the eastern Kunlun fault[J]. Tectonics, 26, TC2010.
    [33] Eshelby J D. 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London, 241: 376-396.
    [34] Fan G, Lay T. 2002. Characteristics of Lg attenuation in the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 107: 2256.
    [35] Fischer T, Hainzl S. 2017. Effective stress drop of earthquake clusters[J]. Bulletin of the Seismological Society of America, 107: 2247-2257. doi: 10.1785/0120170035
    [36] Folesky J, Kummerow J, Shapiro S A. 2021. Stress drop variations in the region of the 2014 MW 8.1 Iquique Earthquake, Northern Chile[J]. Journal of Geophysical Research: Solid Earth, 126, e2020JB020112.
    [37] Furumura T, Kennett B L N. 1997. On the nature of regional seismic phases—II. On the influence of structural barriers[J]. Geophysical Journal of the Royal Astronomical Society, 129: 221-234. doi: 10.1111/j.1365-246X.1997.tb01577.x
    [38] Gallegos A, Xie J. 2020. A multichannel deconvolution method to retrieve source–time functions: Application to the regional Lg wave[J]. Geophysical Journal International, 223, 323-347. doi: 10.1093/gji/ggaa303
    [39] Gallovič F, Valentová Ľ. 2020. Earthquake stress drops from dynamic rupture simulations constrained by observed ground motions[J]. Geophysical Research Letters, 47, e2019GL085880.
    [40] Goebel T H W, Hauksson E, Shearer P M, et al. 2015. Stress-drop heterogeneity within tectonically complex regions: a case study of San Gorgonio Pass, southern California[J]. Geophysical Journal International, 202: 514-528. doi: 10.1093/gji/ggv160
    [41] Goertz-Allmann B P, Edwards B, Bethmann F, et al. 2011a. A new empirical magnitude scaling relation for Switzerland[J]. Bulletin of the Seismological Society of America, 101: 3088-3095. doi: 10.1785/0120100291
    [42] Goertz-Allmann B P, Goertz A, Wiemer S. 2011b. Stress drop variations of induced earthquakes at the Basel geothermal site[J]. Geophysical Research Letters, 38, L09308.
    [43] Goertz-Allmann B P, Wiemer S. 2013. Geomechanical modeling of induced seismicity source parameters and implications for seismic hazard assessment[J]. Geophysics, 78: KS25-KS39. doi: 10.1190/geo2012-0102.1
    [44] 谷继成, 谢小碧, 赵莉. 1982. 强余震的空间分布特征及其理论解释[J]. 地震学报, 4: 380-388

    Gu J C, Xie X B, Zhao L. 1982. On spatial distribution of large aftershocks of the sequence of a major earthquake and preliminary theoretical explanation[J]. Acta Sismological Sinica, 4(4): 380-388 (in Chinese).
    [45] Hanks T C, Kanamori H. 1979. A moment magnitude scale[J]. Journal of Geophysical Research: Solid Earth, 84, 2348-2350. doi: 10.1029/JB084iB05p02348
    [46] Hao J, Ji C, Wang W, et al. 2013. Rupture history of the 2013 MW 6.6 Lushan earthquake constrained with local strong motion and teleseismic body and surface waves[J]. Geophysical Research Letters, 40: 5371-5376. doi: 10.1002/2013GL056876
    [47] Hardebeck J L, Aron A. 2009. Earthquake stress drops and inferred fault strength on the Hayward Fault, East San Francisco Bay, California[J]. Bulletin of the Seismological Society of America, 99: 1801-1814. doi: 10.1785/0120080242
    [48] Hauksson E. 2014. Average stress drops of Southern California earthquakes in the context of crustal geophysics: Implications for fault zone healing[J]. Pure and Applied Geophysics, 172(5): 1359–1370.
    [49] He D F, Lu R Q, Huang H Y, et al. 2019. Tectonic and geological setting of the earthquake hazards in the Changning shale gas development zone, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 46: 1051-1064. doi: 10.1016/S1876-3804(19)60262-4
    [50] He X, Zhao L F, Xie X B, et al. 2020. Stress drop assessment of the August 8, 2017, Jiuzhaigou earthquake sequence and its tectonic implications[J]. Earthquake Science, 33: 1-16. doi: 10.29382/eqs-2020-0001-01
    [51] Holmgren J M, Atkinson G M, Ghofrani H. 2019. Stress drops and directivity of induced earthquakes in the western Canada Sedimentary Basin[J]. Bulletin of the Seismological Society of America, 109, 1635-1652. doi: 10.1785/0120190035
    [52] Hough S E. 1997. Empirical Green's function analysis: Taking the next step[J]. Journal of Geophysical Research-Solid Earth, 102: 5369-5384. doi: 10.1029/96JB03488
    [53] Hough S E. 2014. Shaking from injection-induced earthquakes in the central and eastern United States[J]. Bulletin of the Seismological Society of America, 104: 2619-2626. doi: 10.1785/0120140099
    [54] 华卫, 陈章立, 郑斯华. 2009.2008年汶川8.0级地震序列震源参数分段特征的研究[J]. 地球物理学报, 52: 365-371

    Hua W, Chen Z L, Zheng S H. 2009. A study on segmentation characteristics of aftershocks source parameters of Wenchuan M8.0 earthquake in 2008[J]. Chinese Journal of Geophysics, 52(2): 365-371(in Chinese).
    [55] Huang Y, Beroza G C, Ellsworth W L. 2016. Stress drop estimates of potentially induced earthquakes in the Guy-Greenbrier sequence[J]. Journal of Geophysical Research: Solid Earth, 121: 6597-6607. doi: 10.1002/2016JB013067
    [56] Huang Y, Ellsworth W L, Beroza G C. 2017. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable[J]. Science Advances, 3, e1700772. doi: 10.1126/sciadv.1700772
    [57] Ide S, Beroza G C. 2001. Does apparent stress vary with earthquake size? [J]. Geophysical Research Letters, 28: 3349-3352. doi: 10.1029/2001GL013106
    [58] Jeong S J, Stump B W, DeShon H R, et al. 2021. Stress-drop estimates for induced seismic events in the fort Worth Basin, Texas[J]. Bulletin of the Seismological Society of America, 111: 1405-1421. doi: 10.1785/0120200268
    [59] 季灵运, 刘传金, 徐晶, 等. 2017. 九寨沟MS7.0地震的InSAR观测及发震构造分析[J]. 地球物理学报, 60(10): 4069-4082.

    Ji L Y, Liu C J, Xu J, et al. 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou Ms 7.0 earthquake in China[J]. Chinese Journal of Geophysics, 60(10): 4069-4082 (in Chinese) .
    [60] Jia K, Zhou S, Zhuang J, et al. 2020. Nonstationary background seismicity rate and evolution of stress changes in the Changning salt mining and shale-gas hydraulic fracturing region, Sichuan Basin, China[J]. Seismological Research Letters, 91: 2170-2181. doi: 10.1785/0220200092
    [61] Kanamori H, Anderson D L. 1975. Theoretical basis of some empirical relations in seismology[J]. Bulletin of the Seismological Society of America, 65: 1073-1095.
    [62] Kanamori H, Rivera L. 2004. Static and dynamic scaling relations for earthquakes and their implications for rupture speed and stress drop[J]. Bulletin of the Seismological Society of America, 94: 314-319. doi: 10.1785/0120030159
    [63] Kaneko Y, Shearer P M. 2014. Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture[J]. Geophysical Journal International, 197: 1002-1015. doi: 10.1093/gji/ggu030
    [64] Kato N. 2009. A possible explanation for difference in stress drop between intraplate and interplate earthquakes[J]. Geophysical Research Letters, 36, L23311. doi: 10.1029/2009GL040985
    [65] Kemna K B, Verdecchia A, Harrington R M. 2021. Spatio-temporal evolution of earthquake static stress drop values in the 2016–2017 central Italy seismic sequence[J]. Journal of Geophysical Research: Solid Earth, 126, e2021JB022566.
    [66] Kennett B L N. 1989. On the nature of regional seismic phases-I. Phase representations for Pn, Pg, Sn, Lg[J]. Geophysical Journal of the Royal Astronomical Society, 98: 447-456. doi: 10.1111/j.1365-246X.1989.tb02281.x
    [67] Kirkpatrick S, Gelatt C D, Vecchi M P. 1983. Optimization by simulated annealing[J]. Science, 220: 671-680. doi: 10.1126/science.220.4598.671
    [68] Kreemer C, Blewitt G, Klein E C. 2014. A geodetic plate motion and Global Strain Rate Model [J]. Geochemistry, Geophysics, Geosystems, 15: 3849-3889.
    [69] Lei X L, Huang D J, Su J R, et al. 2017. Fault reactivation and earthquakes with magnitudes of up to MW4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China[J]. Scientific Reports, 7: 7971. doi: 10.1038/s41598-017-08557-y
    [70] Lei X L, Wang Z W, Su J R. 2019. Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China[J]. Earth and Planetary Physics, 3(6): 510-525. doi: 10.26464/epp2019052
    [71] Lei X L, Su J, Wang Z. 2020. Growing seismicity in the Sichuan Basin and its association with industrial activities[J]. Science China Earth Sciences, 63: 1633-1660. doi: 10.1007/s11430-020-9646-x
    [72] Lengline O, Lamourette L, Vivin L, et al. 2014. Fluid-induced earthquakes with variable stress drop[J]. Journal of Geophysical Research: Solid Earth, 119: 8900-8913. doi: 10.1002/2014JB011282
    [73] Li T, Sun J, Bao Y, et al. 2021. The 2019 MW5.8 Changning, China earthquake: A cascade rupture of fold-accommodation faults induced by fluid injection[J]. Tectonophysics, 801: 228721. doi: 10.1016/j.tecto.2021.228721
    [74] Li W, Ni S D, Zang C, et al. 2020. Rupture directivity of the 2019 MW5.8 Changning, Sichuan, China, earthquake and implication for induced seismicity[J]. Bulletin of the Seismological Society of America, 110, 2138-2153. doi: 10.1785/0120200013
    [75] 刘杰, 郑斯华, 黄玉龙. 2003. 利用遗传算法反演非弹性衰减系数、震源参数和场地响应[J]. 地震学报, 25: 211-218

    Liu J, Zheng S H, Huang Y L. 2003. The inversion of non-elasticity coefficient, source parameters, site response using genetic algorithms[J]. Acta Seismologica Sinica, 25: 211-218(in Chinese).
    [76] 刘瑞丰, 陈运泰, 王丽艳. 2018. 新的震级国家标准的技术要点与主要特点[J]. 地震地磁观测与研究, 39: 1-11

    Liu R F, Chen Y-T, Wang L Y. 2018. The technical key points and main features of the new national standard of magnitude[J]. Seismological and Geomagnetic Observation and Research, 39: 1-11 (in Chinese).
    [77] Ma S, Motazedian D, Corchete V. 2012. Shear wave velocity models retrieved using Rg wave dispersion data in shallow crust in some regions of southern Ontario, Canada[J]. Journal of Seismology, 17: 683-705.
    [78] Madariaga R. 1976. Dynamics of an expanding circular fault[J]. Bulletin of the Seismological Society of America, 66: 639-666. doi: 10.1785/BSSA0660030639
    [79] Mayeda K, Walter W R. 1996. Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes [J]. Journal of Geophysical Research Atmospheres, 101: 11195. doi: 10.1029/96JB00112
    [80] McGarr, A. 1984. Scaling of ground motion parameters, state of stress, and focal depth[J]. Journal of Geophysical Research, 89: 6969. doi: 10.1029/JB089iB08p06969
    [81] Munafò I, Malagnini L, Chiaraluce L. 2016. On the relationship between MW and ML for small earthquakes[J]. Bulletin of the Seismological Society of America, 106: 2402–2408. doi: 10.1785/0120160130
    [82] Nuttli O W. 1973. Seismic wave attenuation and magnitude relations for eastern North America[J]. Journal of Geophysical Research, 78: 876-885. doi: 10.1029/JB078i005p00876
    [83] Nuttli O W. 1986. Yield estimates of nevada test site explosions obtained from seismic Lg waves[J]. Journal of Geophysical Research: Solid Earth, 91: 2137-2151. doi: 10.1029/JB091iB02p02137
    [84] Oth A. 2013. On the characteristics of earthquake stress release variations in Japan[J]. Earth and Planetary Science Letters, 377-378: 132-141. doi: 10.1016/j.jpgl.2013.06.037
    [85] Ottemöller L, Shapiro N M, Singh S K, et al. 2002. Lateral variation of Lg wave propagation in southern Mexico[J]. Journal of Geophysical Research: Solid Earth, 107(B1): 2008.
    [86] Ottemöller L, Havskov J. 2003. Moment magnitude determination for local and regional earthquakes based on source spectra[J]. Bulletin of the Seismological Society of America, 93: 203-214. doi: 10.1785/0120010220
    [87] Paige C C, Saunders M A. 1982. LSQR an algorithm for sparse linear-equations and sparse least-squares[J]. Acm Transactions on Mathematical Software, 8: 43-71. doi: 10.1145/355984.355989
    [88] Phillips W S, Hartse H E, Taylor S R, et al. 2000. 1 Hz Lg Q tomography in central Asia[J]. Geophysical Research Letters, 27: 3425-3428. doi: 10.1029/2000GL011482
    [89] Press F, Ewing M. 1952. Two slow surface waves across North America[J]. Bulletin of the Seismological Society of America, 42: 219-228. doi: 10.1785/BSSA0420030219
    [90] Prieto G A, Shearer P M, Vernon F L, et al. 2004. Earthquake source scaling and self-similarity estimation from stacking P and S spectra[J]. Journal of Geophysical Research: Solid Earth, 109, B08310.
    [91] Ringdal F, Marshall P D, Alewine R W. 1992. Seismic yield determination of Soviet underground nuclear-explosions at the Shagan river test site[J]. Geophysical Journal International, 109: 65-77. doi: 10.1111/j.1365-246X.1992.tb00079.x
    [92] Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau[J]. Science, 321: 1054-1058. doi: 10.1126/science.1155371
    [93] Ruan X, Cheng W, Zhang Y, et al. 2008. Research of the activity of earthquakes induced by water injection of salt mining in Changning county, Sichuan province[J]. Earthquake Research in China, 24: 226-234.
    [94] Ruhl C J, Abercrombie R E, Smith K D. 2017. Spatiotemporal variation of stress drop during the 2008 Mogul, Nevada, earthquake swarm[J]. Journal of Geophysical Research: Solid Earth, 122: 8163-8180. doi: 10.1002/2017JB014601
    [95] Sato T, Hirasawa T. 1973. Body wave spectra from propagating shear cracks[J]. Journal of Physics of the Earth, 21: 415-431. doi: 10.4294/jpe1952.21.415
    [96] Schlittenhardt J. 2001. Teleseismic Lg of Semipalatinsk and Novaya Zemlya nuclear explosions recorded by the GRF (Grafenberg) array: Comparison with regional Lg (BRV) and their potential for accurate yield estimation[J]. Pure and Applied Geophysics, 158: 2253-2274. doi: 10.1007/PL00001148
    [97] Scholz C H, Aviles C A, Wesnousky S G. 1986. Scaling differences between large interplate and intraplate earthquakes[J]. Bulletin of the Seismological Society of America, 76: 65-70.
    [98] Shapiro S A, Krüger O S, Dinske C, et al. 2011. Magnitudes of induced earthquakes and geometric scales of fluid-stimulated rock volumes[J]. Geophysics, 76: WC55–WC63. doi: 10.1190/geo2010-0349.1
    [99] Shearer P M, Prieto G A, Hauksson E. 2006. Comprehensive analysis of earthquake source spectra in southern California[J]. Journal of Geophysical Research: Solid Earth, 111: B06303.
    [100] Shearer P M, Abercrombie R E, Trugman D T, et al. 2019. Comparing EGF methods for estimating corner frequency and stress drop from P wave spectra[J]. Journal of Geophysical Research: Solid Earth, 124, 3966-3986. doi: 10.1029/2018JB016957
    [101] Shen L, Zhao L F, Xie X B, et al. 2022. Stress drop variations of the 2019 ML 6.0 Changning earthquake and its aftershock sequence in the southern Sichuan Basin, China[J]. Geophysical Journal International (under revision)
    [102] Shen Z-K, Sun J, Zhang P, et al. 2009. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2: 718-724. doi: 10.1038/ngeo636
    [103] Sibson R H. 1974. Frictional constraints on thrust, wrench and normal faults[J]. Nature, 249: 542-544. doi: 10.1038/249542a0
    [104] Sibson R H. 1982. Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States [J]. Bulletin of the Seismological Society of America, 72: 151-163.
    [105] Stein S, Wysession M. 2003. An Introduction to Seismology, Earthquakes, and Earth Structure[M]. Blackwell Publishing Ltd.
    [106] Street R L, Herrmann R B, Nuttli O W. 1975. Spectral characteristics of the Lg wave generated by central United States earthquakes[J]. Geophysical Journal International, 41: 51-63. doi: 10.1111/j.1365-246X.1975.tb05484.x
    [107] Sumy D F, Neighbors C J, Cochran E S, et al. 2017. Low stress drops observed for aftershocks of the 2011 MW5.7 Prague, Oklahoma, earthquake[J]. Journal of Geophysical Research: Solid Earth, 122: 3813-3834. doi: 10.1002/2016JB013153
    [108] Sun X L, Yang P T, Zhang Z W. 2017. A study of earthquakes induced by water injection in the Changning salt mine area, SW China[J]. Journal of Asian Earth Sciences, 136: 102-109. doi: 10.1016/j.jseaes.2017.01.030
    [109] Trugman D T, Shearer P M. 2017. Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California[J]. Journal of Geophysical Research: Solid Earth, 122: 2890-2910. doi: 10.1002/2017JB013971
    [110] Trugman D T. 2020. Stress-drop and source scaling of the 2019 Ridgecrest, California, earthquake sequence[J]. Bulletin of the Seismological Society of America, 110, 1859-1871. doi: 10.1785/0120200009
    [111] Uchide T, Shearer P M, Imanishi K. 2014. Stress drop variations among small earthquakes before the 2011 Tohoku-oki, Japan, earthquake and implications for the main shock[J]. Journal of Geophysical Research: Solid Earth, 119: 7164-7174. doi: 10.1002/2014JB010943
    [112] van der Elst N J, Page M T, Weiser D A, et al. 2016. Induced earthquake magnitudes are as large as (statistically) expected[J]. Journal of Geophysical Research: Solid Earth, 121: 4575-4590. doi: 10.1002/2016JB012818
    [113] Wald L A, Heaton T H. 1991. Lg and Rg waves on the California regional networks from the December 23, 1985 Nahanni earthquake[J]. Journal of Geophysical Research, 96: 12099. doi: 10.1029/91JB00920
    [114] Wang B, Harrington R M, Liu Y, et al. 2020. A study on the largest hydraulic-fracturing-induced earthquake in Canada: observations and static stress-drop estimation[J]. Bulletin of the Seismological Society of America, 111, 1392-1404.
    [115] Wang E, Meng K, Su Z, et al. 2014. Block rotation: Tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang fault[J]. Tectonics, 33: 686-718. doi: 10.1002/2013TC003337
    [116] 王宏伟, 任叶飞, 温瑞智. 2017.2017年8月8日九寨沟MS7.0地震震源谱及震中区域品质因子[J]. 地球物理学报, 60: 4117-4123

    Wang H W, Ren Y F, Wen R Z. 2017. Source spectra of the 8 Augest 2017 Jiuzhaigou Ms 7.0 earthquake and the quality factor of the epicenter area[J]. Chinese Journal of Geophysics, 60: 4117-4123 (in Chinese).
    [117] Wang Q, Zhang P Z, Freymueller J T, et al. 2001. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 294: 574-577. doi: 10.1126/science.1063647
    [118] Wang S, Jiang G, Weingarten M, et al. 2020. InSAR evidence indicates a link between fluid injection for salt mining and the 2019 Changning (China) earthquake sequence[J]. Geophysical Research Letters, 47, e2020GL087603.
    [119] Wang S Z, Li Z Q, Guo M, et al. 2013. Developmental characteristics of longmaxi formation shaly fissure in Changning of south of Sichuan area[J]. Science Technology & Engineering, 13, 1671-1815.
    [120] 王卫民, 何建坤, 郝金来, 等. 2017. 2017年8月8日四川九寨沟7.0级地震震源破裂过程反演初步结果[EB/OL]. http://www.itpcas.ac.cn/xwzx/zhxw/201708/t20170809_4840737.html.

    Wang W M, He J K, Hao J L, et al. 2017. Preliminary result for rupture process of Aug. 8, 2017, M7.0 earthquake, Jiuzhaigou, Sichuan, China [EB/OL]. http://www.itpcas.ac.cn/xwzx/zhxw/201708/t20170809_4840737.html (in Chinese).
    [121] 王悦兵, 甘卫军, 陈为涛, 等. 2018. GNSS观测的九寨沟7.0级地震同震位移初步结果[J]. 地球物理学报, 61: 161-170

    Wang Y B, Gan W J, Chen W T, et al. 2018. Coseismic displacement of the 2017 Jiuzhaigou M7.0 earthquake observed by GNSS: Preliminary results[J]. Chinese Journal of Geophysics, 61: 161-170 (in Chinese).
    [122] Warren L M, Shearer P M. 2000. Investigating the frequency dependence of mantle Q by stacking P and PP spectra[J]. Journal of Geophysical Research: Solid Earth, 105: 25391-25402. doi: 10.1029/2000JB900283
    [123] Wessel P, Smith W. 1998. New, improved version of generic mapping tools released[J]. Eos Transactions, 79, 579-579. doi: 10.1029/98EO00426
    [124] Wu Q, Chapman M. 2017. Stress-drop estimates and source scaling of the 2011 Mineral, Virginia, mainshock and aftershocks[J]. Bulletin of the Seismological Society of America, 107: 2703-2720. doi: 10.1785/0120170098
    [125] Wu Q, Chapman M, Chen X. 2018. Stress-drop variations of induced earthquakes in Oklahoma[J]. Bulletin of the Seismological Society of America, 108: 1107-1123. doi: 10.1785/0120170335
    [126] 吴微微, 吴朋, 魏娅玲, 等. 2017. 川滇活动块体中-北部主要活动断裂带现今应力状态的分区特征[J]. 地球物理学报, 60: 1735-1745

    Wu W W, Wu P, Wei Y L, et al. 2017. Regional characteristics of stress state of main seismic active faults in mid-northern part of Sichuan-Yunnan block[J]. Chinese Journal of Geophysics, 60: 1735-1745(in Chinese).
    [127] Wu W W, Long F, Liang M, et al. 2020. Spatial and temporal variations in earthquake stress drops between the 2008 Wenchuan and 2013 Lushan earthquakes[J]. Acta Geologica Sinica-English Edition, 94, 1635-1650. doi: 10.1111/1755-6724.14582
    [128] 吴忠良, 陈运泰, Mozaffari P. 1999. 应力降的标度性质与震源谱高频衰减常数[J]. 地震学报, 21: 462-468

    Wu Z L, Chen Y-T, Mozaffari P. 1999. Scaling property of stress drop and high-frequency attenuation constant of source spectrum [J]. Acta Seismologica Sinica, 21: 462-468 (in Chinese).
    [129] Xie J, Mitchell B J. 1990. Attenuation of multiphase surface waves in the basin and range province, part I: Lg and Lg coda[J]. Geophysical Journal International, 102: 121-137. doi: 10.1111/j.1365-246X.1990.tb00535.x
    [130] Xie J, Gok R, Ni J, et al. 2004. Lateral variations of crustal seismic attenuation along the INDEPTH profiles in Tibet from Lg Q inversion[J]. Journal of Geophysical Research: Solid Earth, 109, B10308.
    [131] 徐锡伟, 陈桂华, 王启欣, 等. 2017. 九寨沟地震发震断层属性及青藏高原东南缘现今应变状态讨论[J]. 地球物理学报, 60: 4018-4026

    Xu X W, Chen G H, Wang Q X, et al. 2017. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 60: 4018-4026 (in Chinese).
    [132] Yang Y-H, Hu J-C, Chen Q, et al. 2021. Shallow slip of blind fault associated with the 2019 MS6.0 Changning earthquake in fold-and-thrust belt in salt mines of southeast Sichuan, China[J]. Geophysical Journal International, 224: 909-922.
    [133] 易桂喜, 龙锋, 梁明剑, 等. 2019. 2019年6月17日四川长宁MS6.0地震 序列震源机制解与发震构造分析[J]. 地球物理学报, 62(9): 3432-3447.

    Yi G X, Long F, Liang M J, et al. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence[J]. Chinese Journal of Geophysics, 62(9): 3432-3447 (in Chinese).
    [134] Yoo S-H, Rhie J, Choi H, et al. 2010. Evidence for non-self-similarity and transitional increment of scaled energy in the 2005 west off Fukuoka seismic sequence[J]. Journal of Geophysical Research, 115, B08308.
    [135] 赵翠萍, 陈章立, 华卫, 等. 2011. 中国大陆主要地震活动区中小地震震源参数研究[J]. 地球物理学报, 54: 1478-1489.

    Zhao C P, Chen Z L, Hua W, et al. 2011. Study on source parameters of small to moderate earthquakes in the main seismic active regions, China mainland[J]. Chinese Journal of Geophysics, 54: 1478-1489 (in Chinese).
    [136] Zhao L F, Xie X B, Wang W M, et al. 2008. Regional seismic characteristics of the 9 October 2006 North Korean nuclear test[J]. Bulletin of the Seismological Society of America, 98: 2571-2589. doi: 10.1785/0120080128
    [137] Zhao L F, Xie X B, Wang W M, et al. 2010. Seismic Lg-wave Q tomography in and around Northeast China[J]. Journal of Geophysical Research: Solid Earth, 115, B08307.
    [138] Zhao L F, Xie X B, Wang W M, et al. 2012. Yield estimation of the 25 May 2009 North Korean nuclear explosion[J]. Bulletin of the Seismological Society of America, 102: 467-478. doi: 10.1785/0120110163
    [139] Zhao L F, Xie X B, He J K, et al. 2013a. Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography[J]. Earth and Planetary Science Letters, 383: 113-122. doi: 10.1016/j.jpgl.2013.09.038
    [140] Zhao L F, Xie X B, Wang W M, et al. 2013c. Crustal Lg attenuation within the North China Craton and its surrounding regions[J]. Geophysical Journal International, 195: 513-531. doi: 10.1093/gji/ggt235
    [141] Zhao L F, Xie X B. 2016. Strong Lg-wave attenuation in the Middle East continental collision orogenic belt[J]. Tectonophysics, 674: 135-146. doi: 10.1016/j.tecto.2016.02.025
    [142] Zhao L F, Xie X B, Wang W M, et al. 2017. The 9 September 2016 North Korean underground nuclear test[J]. Bulletin of the Seismological Society of America, 107: 3044-3051. doi: 10.1785/0120160355
    [143] Zhao L F, Mousavi S M. 2018. Lateral variation of crustal Lg attenuation in eastern North America[J]. Scientific Reports, 8: 7285. doi: 10.1038/s41598-018-25649-5
    [144] 郑秀芬, 欧阳飚, 张东宁, 等. 2009. "国家数字测震台网数据备份中心"技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报, 52: 1412-1417

    Zheng X-F, Ouyang B, Zhang D-N, et al. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal Geophysics, 52: 1412-1417 (in Chinese).
    [145] Zheng X F, Yao Z X, Liang J H, et al. 2009. The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake sisaster relief and researches[J]. Bulletin of the Seismological Society of America, 100: 2866-2872.
    [146] 周少辉, 蒋海昆, 曲均浩, 等. 2018. 应力降研究进展综述[J]. 中国地震, 34: 591-605

    Zhou S H, Jiang H K, Qu J H, et al. 2018. A review on research of foreshocks[J]. Earthquake Research in China, 34: 591-605 (in Chinese).
  • 加载中
图(10)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  23
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 录用日期:  2022-10-09
  • 修回日期:  2022-10-09
  • 网络出版日期:  2022-10-19

目录

    /

    返回文章
    返回