• ISSN 2097-1893
  • CN 10-1855/P

震形图APP:一种基于Android系统的地震形变模拟应用程序

倪瑞胜 许文斌

引用本文: 倪瑞胜,许文斌. 2022. 震形图APP:一种基于Android系统的地震形变模拟应用程序. 地球与行星物理论评(中英文),53(0):1-11
Ni R S, Xu W B. 2022. Codefmap APP: A seismic deformation simulation application based on Android system. Reviews of Geophysics and Planetary Physics, 53(0): 1-11 (in Chinese)

震形图APP:一种基于Android系统的地震形变模拟应用程序

doi: 10.19975/j.dqyxx.2022-037
基金项目: 国家重点研发课题资助项目(2019YFC1509205);国家自然科学基金资助项目(42174023)
详细信息
    作者简介:

    倪瑞胜(1994-),男,硕士研究生,主要从事空间大地测量数据处理与应用开发. E-mail:778968556@qq.com

    通讯作者:

    许文斌(1985-),男,教授,主要从事大地测量与地球物理学研究. E-mail:wenbin.xu@csu.edu.cn

  • 中图分类号: P315

Codefmap APP: A seismic deformation simulation application based on Android system

Funds: Supported by the National Key Research and Development Project (Grant No. 2019YFC1509205) and the National Natural Science Foundation of China (Grant No. 42174023)
  • 摘要: 若能在短时间内了解发震区域的地表变形程度,对及时评估受灾程度、配合抗震救灾工作的开展具有重要意义. 空间大地测量技术具有监测精度高、空间分辨率高等优势,已广泛应用在地震形变监测相关领域. 通过处理空间大地测量数据得到的地震同震形变图能够直观地展现地震产生的地表形变、为判断发震区域受灾情况提供参考. 但是现实中,由于数据的获取存在滞后性,往往无法在地震发生后短时间内提供同震形变数据. 本文利用近实时USGS NEIC的震源机制解、地震弹性位错模型和地震经验公式,基于Java和Python语言开发了一种基于Android智能手机的地震形变模拟应用程序(简称:震形图APP). 该程序具有全球地震目录查询、主动获取USGS NEIC震源参数、显示震中位置、自动计算同震形变的功能,对于重要地震事件能够在一天内给出形变模拟结果,尤其适用于隐伏型震级较大的地震,可在一定程度上为判定潜在危险区域和早期抗震救灾提供参考依据.

     

  • 图  1  技术路线图

    Figure  1.  Workflow

    图  2  Okada模型计算地震地表形变

    Figure  2.  Calculation of coseismic deformation using Okada model

    图  3  应用系统架构

    Figure  3.  Application system architecture

    图  4  震形图APP四大模块. (a)条件筛选模块;(b)地震分布信息模块. 默认显示中国及周边地区当前时间一年内5级以上地震分布情况;(c)地震速报信息模块. 默认加载我国及周边地区当前时间一年内5级以上地震信息,对于6级以上地震标红显示;(d)地震形变信息模块. 底图右上角形变图类型选择按钮,红点代表震中位置,且点击按钮加载沙滩球,左下角为形变图图例和震源机制解参数

    Figure  4.  Four modules of Codefmap APP. (a) Conditional screening module; (b) Seismic distribution information module. By default, it displays the distribution of earthquakes with $ {M}_{\mathrm{W}} $> 5 earthquakes in one year in China and its surrounding areas; (c) The early earthquake information module. By default, the information on earthquakes of $ {M}_{\mathrm{W}} $> 5 within one year of the current time in the country and surrounding areas is loaded, and earthquakes of $ {M}_{\mathrm{W}} $> 6 are displayed in red; (d) Seismic deformation information module. In the upper right corner of the base map, click the deformation map type selection button. The red dot represents the epicenter and click the button to load the focal mechanism. The lower left corner is the deformation map legend and the focal mechanism solution parameters from USGS NEIC

    图  5  应用爬虫获取数据流程图

    Figure  5.  Workflow of data acquisition using application spider

    图  6  应用数据处理流程

    Figure  6.  Workflow of application data processing

    图  7  震形图APP计算生成的同震地表形变图. (a-e)分别是东方向、北方向、垂直向、缠绕升轨、缠绕降轨的形变图

    Figure  7.  The coseismic surface deformation map calculated by Codefmap APP. (a-e) represent the simulated coseismic deformation maps in the east-west direction, the north-south direction, the vertical direction, the warped ascending orbit, and the warped descending orbit respectively

    图  8  (a)门源升轨同震形变图;(b)震形图APP模拟升轨同震形变图,白色五角星表示USGS提供的震中位置;(c)门源降轨同震形变图;(d)震形图APP模拟降轨同震形变图

    Figure  8.  (a) The ascending coseismic deformation map of simulated orbit lift of the Menyuan earthquake; (b) The simulated ascending coseismic deformation map by Codefmap APP, The white star indicates the epicenter provided by the USGS; (c) The descending coseismic deformation map of the Menyuan earthquake; (d) The simulated descending coseismic deformation map by Codefmap APP

    图  9  (a)于田升轨同震形变图;(b)震形图APP模拟升轨同震形变图,白色五角星表示USGS提供的震中位置;(c)于田降轨同震形变图;(d)震形图APP模拟降轨同震形变图

    Figure  9.  (a) The ascending coseismic deformation map of the Yutian earthquake. (b) The simulated ascending coseismic deformation map by Codefmap APP. The white star indicates the epicenter provided by the USGS. (c) The descending coseismic deformation map of the Yutian earthquake. (d) The simulated ascending coseismic deformation map by Codefmap APP

    图  10  (a)ShakeMap显示的中国青海省门源6.6级地震地面震动;(b)地震预警助手APP显示的中国青海省门源6.6级地震地面震动;(c)震形图APP显示的中国青海省门源6.6级地震形变;(d, e, f)对应应用显示的日本奈美惠7.3级地震震动与形变结果

    Figure  10.  (a) The ground shaking of the Menyuan County MW6.6 earthquake displayed by ShakeMap; (b) The ground shaking of the MW6.6 earthquake in Menyuan County, Qinghai, China displayed by the Earthquake Early Warning Assistant APP; (c) The MW6.6 earthquake in Menyuan County, Qinghai, China displayed by the Codefmap APP Deformation; (d, e, f) The vibration and deformation results of the MW7.3 Namie earthquake in Japan displayed by the corresponding application

    表  1  地震样本的震源机制解发布时间统计

    Table  1.   The statistics of release time of focal mechanism solutions

    发震区域矩震级发震时间(UTC)USGS震源机制
    发布时间(UTC)
    APP形变模拟
    结果发布时间(UTC)
    首期震后Sentinel-1A
    数据发布时间(UTC)
    瓦努阿图诺苏普 6.3 2022-04-09 20:52:37 2022-04-09 21:58:58 2022-04-09 21:59:58 2022-04-13 07:22:19
    菲律宾拉巴斯 5.5 2022-04-03 10:24:56 2022-04-03 10:56:29 2022-04-03 10:57:10 2022-04-13 21:23:41
    日本浪江 5.2 2022-03-25 03:08:16 2022-03-25 03:45:21 2022-03-25 03:45:58 2022-04-05 20:42:55
    中国台湾花莲县 6.7 2022-03-22 17:41:38 2022-03-23 02:43:29 2022-03-23 02:44:29 2022-03-26 10:01:49
    日本奈美惠 7.3 2022-03-16 14:36:33 2022-03-16 14:55:45 2022-03-16 14:57:45 2022-03-24 20:42:55
    下载: 导出CSV

    表  2  震形图APP形变模拟采用的地震参数

    Table  2.   Source parameters used in the deformation simulation of Codefmap APP

    发震地区发震时间经度/(°)纬度/(°)矩震级深度/($ \mathrm{k}\mathrm{m} $)走向/(°)倾向/(°)滑动角/(°)
    门源 2016-01-21 101.6409 37.6709 5.9 9 141 50 79
    于田 2020-06-26 82.4158 35.5948 6.3 10 24 42 −108
    下载: 导出CSV
  • [1] Blaser L, Kruger F, Ohrnberfer M, et al. 2010. Scaling relations of earthquake source parameter estimates with special focus on subduction environment[J]. Bulletin of the Seismological Society of America, 100(6): 2914-26. doi: 10.1785/0120100111
    [2] 陈颙, 陈运泰, 张国民, 等. 2005. "十一·五"期间中国重大地震灾害预测预警和防治对策[J]. 灾害学, 20(1): 1-14

    Chen Y, Chen Y T, Zhang G M et al. 2005. Forecast and early-warning and preparedness measures for great earthquake disasters in China during the period of the 11th five-year plan[J]. Journal of Catastrophology, 20(1): 1-14 (in Chinese).
    [3] China Internet Network Information Center. 2021.The 48 statistical report on China's internet development[R]. Beijing: China Internet Network Information Center(in Chinese).
    [4] 董建辉, 吴启红, 万世明, 等. 2018. 突发滑坡灾害的应急监测预警技术体系[J]. 科学技术与工程, 18(11): 135-140 doi: 10.3969/j.issn.1671-1815.2018.11.021

    Dong J H, Wu Q H, Wan S M, et al. 2018. Emergency monitoring and early warning system for sudden landslide[J]. Science Technology and Engineering, 18(11): 135-140 ( in Chinese). doi: 10.3969/j.issn.1671-1815.2018.11.021
    [5] Gaberiel A K, Goldstein R M, Zebker H A. 1989. Mapping small elevation changes over large areas: Differential radar interferometry[J]. Journal of Geophysical Research Solid Earth, 94(B7): 9183-91. doi: 10.1029/JB094iB07p09183
    [6] Hanks T C, Kanamori H. 1979. A moment magnitude scale[J]. Journal of Geophysical Research, 84(B5): 2348. doi: 10.1029/JB084iB05p02348
    [7] 何霆, 叶佳宁. 2015. 基于微信的地震行业APP服务系统设计与实现[J]. 华南地震, 35(2): 37-42

    He T, Ye J N. 2015. Design and implementation of earthquake industry APP service system based on Wechat[J]. South China Journal of Seismology, 35(2): 37-42 (in Chinese).
    [8] Kanamori H. 1977. The energy release in great earthquakes[J]. Journal of Geophysical Research, 82(20): 2981-2987.
    [9] Li X, Xu W B, Jonsson S, et al. 2020. Source model of the 2014 $ {M}_{\mathrm{W}} $6.9 Yutian earthquake at the southwestern end of the Altyn Tagh fault in Tibet estimated from satellite images[J]. Seismological Research Letters, 91(6): 3161–3170. doi: 10.1785/0220190361
    [10] Massonnet D, Rossi M, Carmona C, et al. 1993. The displacement field of the landers earthquake mapped by radar interferometry[J]. Nature, 364(6433): 138-42. doi: 10.1038/364138a0
    [11] Okada Y. 1985. Surface deformation due to shear and tensile faults in a half space[J]. Bulletin of the Seismological Society of America, 75(4): 1135-1154. doi: 10.1785/BSSA0750041135
    [12] Okada Y. 1992. Internal deformation due to shear and tensile faults in a half space[J]. Bulletin of the Seismological Society of America, 82(2): 1018-40. doi: 10.1785/BSSA0820021018
    [13] 柔洁, 伊力亚尔·阿不力孜, 陈建波. 2006. 关于地震烈度的讨论——以新疆地区为例[J]. 中国地震, 22(1): 94-102 doi: 10.3969/j.issn.1001-4683.2006.01.010

    Rou J, Yi L Y E·A, Chen J B. 2006. Discussion on seismic intensity——Taking the Xinjiang area as an example[J]. Earthquake Research in China, 22(1): 94-102 (in Chinese). doi: 10.3969/j.issn.1001-4683.2006.01.010
    [14] Wald D J, Quitoriano V, Heaton T H, et al. 1999. TriNet "ShakeMaps": Rapid generation of peak ground motion and intensity maps for earthquakes in southern california [J]. Earthquake Spectra, 15(3): 537-55. doi: 10.1193/1.1586057
    [15] 王红. 2008. 中国数字地震台网(CDSN)数据通信走过的历程[J]. 防灾科技学院学报, 10(4): 68-70 doi: 10.3969/j.issn.1673-8047.2008.04.016

    Wang H. 2008. The digital telecommunication courses of China Digital Seismograph Network (CDSN) [J]. Journal of Institute of Disaster-Prevention Science and Technology. 10(4): 68-70 (in Chinese). doi: 10.3969/j.issn.1673-8047.2008.04.016
    [16] Xu W B. 2017. Finite-fault slip model of the 2016 $ {M}_{\mathrm{W}} $7.5 Chiloe earthquake, southern Chile, estimated from Sentinel-1 data [J]. Geophysical Research Letters, 44: 4774-4780. doi: 10.1002/2017GL073560
    [17] 袁一凡. 2008. 四川汶川8.0级地震损失评估[J]. 地震工程与工程振动, 28(5): 10-19

    Yuan Y F. 2008. Loss assessment of Wenchuan M8.0 earthquake[J]. Journal of Earthquake Engineering and Engineering Vibratio, 28(5): 10-19 (in Chinese).
    [18] 张国民. 2002. 我国地震监测预报研究的主要科学进展[J]. 地震, 22(1): 2-8 doi: 10.3969/j.issn.1000-3274.2002.01.002

    Zhang G M. 2002. The main science advance of earthquake monitoring and prediction in China[J]. Earthquake, 22(1): 2-8 (in Chinese). doi: 10.3969/j.issn.1000-3274.2002.01.002
    [19] 张维佳, 杨天青, 刘瑞丰, 等. 2016. 地震灾害快速评估在地震科学命名中的应用[J]. 地球物理学进展, 31(6): 2475-2481 doi: 10.6038/pg20160616

    Zhang W J, Yang T Q, Liu R F, et al. 2016. Application of rapid assessment in naming an earthquake[J]. Progress in Geophysics, 31( 6): 2475-2481 (in Chinese). doi: 10.6038/pg20160616
    [20] Zhao R, Liu X T, Xu W B . 2020. Integration of coseismic deformation into WebGIS for near real-time disaster evaluation and emergency response[J]. Environmental Earth Sciences, 79(18): 414. doi: 10.1007/s12665-020-09153-6
    [21] 赵永, 薛峰, 刘阳, 等. 2002. 国家数字地震台网中心技术系统与服务[J]. 地震地磁观测与研究, 23(1): 16-23 doi: 10.3969/j.issn.1003-3246.2002.01.003

    Zhao Y, Xue F, Liu Y, et al. 2002. The technological system of National Digital Seismic Network Center in China [J]. Seismological And Geomagnetic Observation and Research, 23(1): 16-23 (in Chinese). doi: 10.3969/j.issn.1003-3246.2002.01.003
    [22] 中国互联网络信息中心. 2021. 2021年第 48次中国互联网络发展状况统计报告[R]. 北京: 中国互联网络信息中心.
    [23] 左如斌, 黄志斌, 薛峰等. 2001. 国家数字地震台网中心Web网站[J]. 地震, 21(4): 106-111 doi: 10.3969/j.issn.1000-3274.2001.04.016

    Zuo R B, Huang Z B, Xue F, et al. 2001. The Website of China Center Digital Seismic Network[J]. Earthquake, 21(4): 106-111 (in Chinese). doi: 10.3969/j.issn.1000-3274.2001.04.016
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  731
  • HTML全文浏览量:  83
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-23
  • 录用日期:  2022-05-05
  • 修回日期:  2022-04-29
  • 网络出版日期:  2022-05-20

目录

    /

    返回文章
    返回