• ISSN 2097-1893
  • CN 10-1855/P



引用本文: 张友君. 2023. 地核的热输运性质与地核对流的驱动机制. 地球与行星物理论评(中英文),54(1):100-101
Zhang Y J. 2023. Thermal transport property of the Earth's core and its convection. Reviews of Geophysics and Planetary Physics, 54(1): 100-101 (in Chinese)


doi: 10.19975/j.dqyxx.2022-035
基金项目: 国家自然科学基金资助项目(42074098)

    张友君(1986-),男,研究员,主要从事高压物理与高压矿物物理研究. E-mail: zhangyoujun@scu.edu.cn

  • 中图分类号: P315

Thermal transport property of the Earth's core and its convection

Funds: Supported by the National Natural Science Foundation of China (Grant No. 42074098)
  • 图  1  地核的热流量、热分层以及对流示意图. 地核顶部的亚绝热环境可造成地核的热分层,该热分层会抑制热对流的产生并影响地震波的波速

    Figure  1.  Schematic of the heat flux, thermal stratification, and convection in Earth's core. A subadabatic temperature gradient at the top of the outer core may inhibit its thermal convection and change the seismic wave velocity

  • [1] Buffett B A. 2000. Earth's core and the geodynamo[J]. Science, 288: 2007-2012. doi: 10.1126/science.288.5473.2007
    [2] Dobson D. 2016. Geophysics: Earth's core problem[J], Nature, 534(7605): 45-45.
    [3] Driscoll P E, Du Z. 2019. Geodynamo conductivity limits[J]. Geophysical Research Letters, 46: 7982-7989. doi: 10.1029/2019GL082915
    [4] He Y, Sun S, Kim D Y, et al. 2022. Superionic iron alloys and their seismic velocities in Earth's inner core[J]. Nature, 602: 258-262. doi: 10.1038/s41586-021-04361-x
    [5] Hirose K, Wood B, Vočadlo L. 2021. Light elements in the Earth's core[J]. Nature Reviews Earth & Environment, 2: 645-658.
    [6] Hou M, He Y, Jang B G, et al. 2021. Superionic iron oxide-hydroxide in Earth's deep mantle[J]. Nature Geoscience, 14: 174-178. doi: 10.1038/s41561-021-00696-2
    [7] Hsieh W-P, Deschamps F, Okuchi T, et al. 2018. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 115: 4099-4104. doi: 10.1073/pnas.1718557115
    [8] Hsieh W-P, Goncharov A F, Labrosse S, et al. 2020. Low thermal conductivity of iron-silicon alloys at Earth's core conditions with implications for the geodynamo[J]. Nature Communications, 11: 3332. doi: 10.1038/s41467-020-17106-7
    [9] Huang Y, Hou M, Gan B, et al. 2022. Iron-carbon alloy under shock compression: Implications for the carbon concentration in Earth's inner core[J]. Journal of Geophysical Research: Solid Earth, 127: e2021JB023645.
    [10] Tarduno J A, Cottrell R D, Watkeys M K, et al. 2010. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago[J]. Science, 327: 1238-1240.
    [11] Tschauner O, Huang S, Yang S, et al. 2021. Discovery of davemaoite, CaSiO3-perovskite, as a mineral from the lower mantle[J]. Science, 374: 891-894. doi: 10.1126/science.abl8568
    [12] Zhang Y, Sekine T, Lin J-F, et al. 2018, Shock compression and melting of an Fe-Ni-Si alloy: Implications for the temperature profile of the Earth's core and the heat flux across the core-mantle boundary[J]. Journal of Geophysical Research: Solid Earth, 123(2): 1314-1327.
    [13] Zhang Y, Hou M, Liu G, et al. 2020. Reconciliation of experiments and theory on transport properties of iron and the geodynamo[J]. Physical Review Letters, 125: 078501. doi: 10.1103/PhysRevLett.125.078501
    [14] Zhang Y, Hou M, Driscoll P, et al. 2021. Transport properties of Fe-Ni-Si alloys at Earth's core conditions: Insight into the viability of thermal and compositional convection[J]. Earth and Planetary Science Letters, 553: 116614. doi: 10.1016/j.jpgl.2020.116614
    [15] Zhang Y, Luo K, Hou M, et al. 2022. Thermal conductivity of Fe-Si alloys and thermal stratification in Earth's core[J]. Proceedings of the National Academy of Sciences of the United States of America, 119: e2119001119. doi: 10.1073/pnas.2119001119
  • 加载中
  • 文章访问数:  50
  • HTML全文浏览量:  52
  • PDF下载量:  15
  • 被引次数: 0
  • 收稿日期:  2022-04-18
  • 录用日期:  2022-04-19
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2023-01-01